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1 Introduction

A lot of work has been done in the literature to deal with various inferential problems related toR= P(Y > X),
which represents the reliability of an item of random strength Y subject to a random stress X. For a brief review, one may
refer to Church and Harris (1970)[6], Enis and Geisser (1971)[9], Downton (1973)[8], Tong (1974)[15], Kelly, Kelly and
Schucany (1976)[11], Sathe and Shah (1981)[13], Chao (1982)[5], Awad and Gharraf (1986)[1], Chaturvedi and Rani
(1997)[2], Chaturvedi and Surinder (1998)[4], Chaturvedi and Sharma (2007)[3], Constantine Karson and Tse (1986)[7],
Surinder and Mayank (2014)[14].

In the present paper, we have considered the generalized inverse Weibull distribution proposed by Keller and Kanath
(1982)[10], which covers many lifetime distributions as specific cases. In section 2, the MLE and UMVUE of′R′ are
derived, when the random variables (rv’s)X andY follows generalized inverse Weibull distribution. In section 3, we
construct the confidence interval for′R′. In order to derive the MLE, UMVUE and confidence interval for′R′ the major
role is played by the transformation method.

2 MLE and UMVUE of R= P(Y > X) for Generalized Inverse Weibull distributions

The probability density function (pdf) of generalized inverse Weibull distribution is given by

f (x;α,β ,γ) = γβ αβ x−(β+1)exp[−γ(
α
x
)β ]; ,x> 0 (2.1)
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On considering different values forα,β ,γ the pdf’s of different continuous distributions such as one-parameter Inverse
exponential distribution, Inverse Weibull distribution,Inverse Rayleigh distribution etc. can be obtained. Let therv’s X
andY follows the generalized inverse Weibull distribution given at (2.1) with the parameters(α,β ,γ) and (θ ,µ ,χ),
respectively.
Theorem 1:The MLE ofR= P(Y > X) is given by

R̃=
T̄Y

T̄X + T̄Y
(2.2)

whereε̄ = 1
n1

n1

∑
i=1

X−β1
i = T̄X(say) and,̄η =

1
n2

n2

∑
j=1

Y−β2
j = T̄Y(say).

Proof: Let us consider the transformationx−β = ε in(2.1) we get

f (ε;λ ) = λ exp[−λ ε]; ε,λ > 0 (2.3)

which is exponential distribution with parameterλ , whereλ = αβ γ.
Now , let us consideredε andη two independent rv’s which follows exponential distribution λ1 andλ2 parameters

respectively, whereε = x−β1 andη = y−β2.
Thus forR= P(η > ε), we have

R= P(η > ε) =
∫ ∞

0

∫ η

ε=0
f (ε|λ1)dε f (η |λ2)dη

where f (ε|λ1) = λ1exp(−λ1ε) and f (η |λ2) = λ2exp(−λ2η),

R=
∫ ∞

0
(1−exp(−λ1ε))λ2exp(−λ2ε)dε

R=
λ1

λ1+λ2
(2.4)

If ε1.....εn1 andη1.....ηn2 are two independent random samples of sizen1 andn2 from the pdf’s f (ε|λ1) and f (η |λ2)
respectively, then the joint pdf is given by

f (ε,η |λ1,λ2) = λ1
n1λ2

n2 exp(−n1λ1ε̄ −n2λ2η̄) (2.5)

Taking likelihood function of (2.5) and derivatives w.r.toλ1 andλ2 and equating to zero, we get MLE’s ofλ1 andλ2

respectively i.e.
dL
dλ1

=
n1

λ1
−n1ε̄ = 0⇒ λ̃1 =

1
ε̄

dL
dλ2

=
n2

λ2
−n2ε̄ = 0⇒ λ̃2 =

1
η̄

The reliability functionR̃= η̄
ε̄+η̄ ,can be written as

R̃=
T̄Y

T̄X + T̄Y
,

hence, the theorem follows.
Corollary 1

1. On substitutingγ = 1 in (2.1), we get the pdf of Inverse Weibull distribution andsubsequently

R̃=
T̄Y

T̄X + T̄Y
,

whereT̄X = 1
n1

n1

∑
i=1

X−β
i and,T̄Y =

1
n2

n2

∑
j=1

Y−β
j , which is MLE of R= P(Y > X) whenX andY follows Inverse Weibull

distribution.
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2. On substitutingγ = β = 1 in (2.1), we get the pdf of Inverse exponential distribution and subsequently

R̃=
T̄Y

T̄X + T̄Y
,

whereT̄X = 1
n1

n1

∑
i=1

X−1
i and,T̄Y =

1
n2

n2

∑
j=1

Y−1
j , which is MLE ofR= P(Y > X) whenX andY follows Inverse exponential

distribution.
3. On substitutingγ = 1,β = 2 in (2.1), we get the pdf of Inverse Rayleigh distribution and subsequently

R̃=
T̄Y

T̄X + T̄Y
,

whereT̄X = 1
n1

n1

∑
i=1

X−2
i and,T̄Y =

1
n2

n2

∑
j=1

Y−2
j , which is MLE of R= P(Y > X) whenX andY follows Inverse Raleigh

distribution.
Theorem 2:The UMVUE ofR= P(Y > X) is given by

R̂=















n2−1
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n2−i)Γ (n1+i)(
n1ε̄
n2η̄ )

i ; ifn1ε̄ < n2η̄
n1−2
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n1−i−1)Γ (n2+i+1)(
n2η̄
n1ε̄ )

i+1; ifn1ε̄ > n2η̄
(2.6)

whereε̄ = 1
n1

n1

∑
i=1

X−β1
i , andη̄ =

1
n2

n2

∑
j=1

Y−β2
j .

Proof: Let us consider the transformationx−β = ε in(2.1), we get

f (ε|α, ,β ,γ) = λ exp(−λ ε); ε,λ > 0

Now we obtainP(η > ε), we required to obtain UMVUE off (ε;λ1) and f (η ;λ2) i.e. f̂ (ε;λ1) and f̂ (η ;λ2) which is
given by

f̂ (ε;λ1) =
(n1−1)
n1ε̄n1−1

[

ε̄ −
ε
n1

]n1−2
; ε < n1ε̄ (2.7)

Similarly on replacingε by η andn1 by n2 in (2.7), we get the UMVUE off (η ;λ2).

f̂ (η ;λ2) =
(n2−1)
n2η̄n2−1

[

η̄ −
η
n2

]n2−2
; η < n2η̄ (2.8)

Now, let us considerε andη be the two random variables follows exponential distribution with the parametersλ1 and
λ2 respectively, whereε = x−β1 andη = y−β2

R̂==
∫ n1ε̄

0

∫ n2η̄

ε
f̂ (ε;λ1) f̂ (η ;λ2)dηdε

R̂=

∫ n1ε̄

0

∫ n2η̄

ε

(n1−1)
n1ε̄n1−1

[

ε̄ −
ε
n1

]n1−2 (n2−1)
n2η̄n2−1

[

η̄ −
η
n2

]n2−2
dηdε

Let t = (1− η
n2η̄ ),

R̂=
(n1−1)

n1ε̄

∫ n1ε̄

0

[

1−
ε

n1ε̄
]n1−2[

1−
ε

n2η̄
]n2−1

dε

=
(n1−1)

n1ε̄

∫ min(n1ε̄,n2η̄)

0

[

1−
ε

n1ε̄
]n1−2

n2−1

∑
i=0

(−1)i
(

n2−1
i

)

(
ε

n2η̄
)idε

Now,consider the case (i) when,n1ε̄ < n2η̄ ,
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R̂=
(n1−1)

n1ε̄

n2−1

∑
i=0

(−1)i
(

n2−1
i

)

∫ min(n1ε̄,n2η̄)

0

[

1−
ε

n1ε̄
]n1−2

(
ε

n2η̄
)idε

Let (1− ε
ε̄n1

) = z,

R̂= (n1−1)
n2−1

∑
i=0

(−1)i
(

n2−1
i

)

(
ε̄n1

n2η̄
)

∫ 1

0
zn1−2(1− z)idz

R̂=
n2−1

∑
i=0

(−1)i Γ (n1)Γ (n2)

Γ (n2− i)Γ (n1+ i)
(

n1ε̄
n2η̄

)i ; ifn1ε̄ < n2η̄ (2.9)

Case (ii) when,n1ε̄ > n2η̄ ,

=
(n1−1)

n1ε̄

∫ n1η̄

0

[

1−
ε

n1ε̄
]n1−2[

1−
ε

n2η̄
]n2−1

dε

R̂= (n1−1)
n1−2

∑
i=0

(−1)i
(

n1−2
i

)

(
η̄n2

n1ε̄
)i+1

∫ 1

0
zn2−1(1− z)idz

R̂=
n1−2

∑
i=0

(−1)i Γ (n1)Γ (n2)

Γ (n1− i −1)Γ (n2+ i +1)
(
n2η̄
n1ε̄

)i+1; ifn1ε̄ > n2η̄ (2.10)

which is the UMVUE forR= P(Y > X) whereε̄ = 1
n1

n1

∑
i=1

X−β1
i andη̄ =

1
n2

n2

∑
j=1

Y−β2
j in (2.9) and (2.10), whenX andY

follows Generalized Inverse Weibull distribution, hence the theorem follows.
Corollary 2

1. On substitutingγ = 1 in (2.1), we get the pdf of Inverse Weibull distribution andsubsequently

R̂=















n2−1
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n2−i)Γ (n1+i)(
n1ε̄
n2η̄ )

i ; ifn1ε̄ < n2η̄
n1−2
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n1−i−1)Γ (n2+i+1)(
n2η̄
n1ε̄ )

i+1; ifn1ε̄ > n2η̄
(2.11)

whereε̄ = 1
n1

n1

∑
i=1

X−β
i andη̄ =

1
n2

n2

∑
j=1

Y−β
j , which is UMVUE of R= P(Y > X) whenX andY follows Inverse Weibull

distribution.
2. On substitutingγ = β = 1 (2.1), we get the pdf of Inverse exponential distribution and subsequently

R̂=















n2−1
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n2−i)Γ (n1+i)(
n1ε̄
n2η̄ )

i ; ifn1ε̄ < n2η̄
n1−2
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n1−i−1)Γ (n2+i+1)(
n2η̄
n1ε̄ )

i+1; ifn1ε̄ > n2η̄
(2.12)

whereε̄ = 1
n1

n1

∑
i=1

X−1
i andη̄ =

1
n2

n2

∑
j=1

Y−1
j , which is UMVUE ofR= P(Y > X) whenX andY follows Inverse exponential

distribution.
3. On substitutingγ = 1,β = 2 we get the pdf of Inverse Rayleigh distribution and subsequently

R̂=















n2−1
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n2−i)Γ (n1+i)(
n1ε̄
n2η̄ )

i ; ifn1ε̄ < n2η̄
n1−2
∑

i=0
(−1)i Γ (n1)Γ (n2)

Γ (n1−i−1)Γ (n2+i+1)(
n2η̄
n1ε̄ )

i+1; ifn1ε̄ > n2η̄
(2.13)

whereε̄ = 1
n1

n1

∑
i=1

X−2
i andη̄ =

1
n2

n2

∑
j=1

Y−2
j , which is UMVUE of R= P(Y > X) whenX andY follows Inverse Rayleigh

distribution.
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3 Interval estimation of R= P(Y > X)

Theorem 3: The confidence interval forR= P(Y > X) is given by

P[
n2R̃a

n1(1− R̃)(1−a)+n2R̃a
< R<

n2R̃b

n1(1− R̃)(1−b)+n2R̃b
] = 1− γ (3.1)

whereR̃= η̄
ε̄+η̄ , a andb are random quantities.

Proof: We know thatR= λ1
λ1+λ2

and the MLE of R is̃R= η̄
ε̄+η̄

where ε̄ = 1
n1

n1

∑
i=1

X−β1
i and, η̄ =

1
n2

n2

∑
j=1

Y−β2
j . Here ε̄n1 and η̄n2 follows gamma distribution with parameters

(λ1,n1)and (λ2,n2) respectively. In order to obtain exact confidence interval for R= P(Y > X), we derive the exact
distribution of

ζ =
λ1n1ε̄

(λ1n1ε̄ +λ2n2η̄)

On substitutingφ = λ1n1ε̄ andψ = λ2n2η̄ , we observe thatφ andψ have gamma distribution with parameters(1,n1)
and(1,n2). We can write

ζ =
φ

φ +ψ

On takingτ = ψ and expressing the old variables in terms of new set of variables thenφ = ζτ
1−ζ , we find joint probability

density function of(ζ ,τ).

ρ(ζ ,τ) =
e
−( τ

1−ζ )τn1+n2−1ζ n1−1

Γ n1Γ n2(1− ζ )n1+1

The marginal distribution ofζ ,

p(ζ ) =
1

[B(n1,n2)]
ζ n1−1(1− ζ )n2−1; 0< ζ < 1

heren1 ,n2 are the known parameters for any value 0< a< b.

P(a< ζ < b) = Ib(n1,n2)− Ia(n1,n2)

whereIx(n1,n2) =
1

[B(n1,n2)]

∫ x
0 zn1−1(1− z)n2−1dz is incomplete beta function. We know thatR= λ1

λ1+λ2
andR̃= η̄

ε̄+η̄ ,
we get

ζ =
[

1+
n2R̃(1−R)

n1R(1− R̃

]−1
(3.2)

The right hand side pivotal quantities isa andb such that
Ib(n1,n2)− Ia(n1,n2) = 1− γ, then

P(a< ζ < b) = 1− γ

On substituting the value from (3.2), get

P(a<
[

1+
n2R̃(1−R)

n1R(1− R̃

]−1
< b) = 1− γ.

Hence

P[
n2R̃a

n1(1− R̃)(1−a)+n2R̃a
< R<

n2R̃b

n1(1− R̃)(1−b)+n2R̃b
] = 1− γ
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whereR̃= η̄
ε̄+η̄ andT̄X = 1

n1

n1

∑
i=1

X−β1
i = ε̄, T̄Y =

1
n2

n2

∑
j=1

Y−β2
j = η̄ , a andb random quantity and the theorem follows.

Corollary 3
1. On substitutingγ = 1 in (2.1), we get the pdf of Inverse Weibull distribution andsubsequently

P[
n2R̃a

n1(1− R̃)(1−a)+n2R̃a
< R<

n2R̃b

n1(1− R̃)(1−b)+n2R̃b
] = 1− γ

whereR̃= η̄
ε̄+η̄ and T̄X = 1

n1

n1

∑
i=1

X−β
i = ε̄, T̄Y =

1
n2

n2

∑
j=1

Y−β
j = η̄ , a and b are the random quantities which is the

confidence interval forR= P(Y > X) whenX andY follows Inverse Weibull distribution.
2. On substitutingγ = β = 1 in (2.1), we get the pdf of Inverse exponential distribution and subsequently

P[
n2R̃a

n1(1− R̃)(1−a)+n2R̃a
< R<

n2R̃b

n1(1− R̃)(1−b)+n2R̃b
] = 1− γ

whereR̃= η̄
ε̄+η̄ and T̄X = 1

n1

n1

∑
i=1

X−1
i = ε̄, T̄Y =

1
n2

n2

∑
j=1

Y−1
j = η̄ , a and b are the random quantities which is the

confidence interval forR= P(Y > X) whenX andY follows Inverse exponential distribution.
3. On substitutingγ = 1,β = 2 in (2.1), we get the pdf of Inverse Rayleigh distribution and subsequently

P[
n2R̃a

n1(1− R̃)(1−a)+n2R̃a
< R<

n2R̃b

n1(1− R̃)(1−b)+n2R̃b
] = 1− γ

whereR̃= η̄
ε̄+η̄ and T̄X = 1

n1

n1

∑
i=1

X−2
i = ε̄, T̄Y =

1
n2

n2

∑
j=1

Y−2
j = η̄ , a and b are the random quantities which is the

confidence interval forR= P(Y > X) whenX andY follows Inverse Rayleigh distribution.
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