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The convergence rates of the explicit group methods derived from the standard and
skewed (rotated) finite difference operators depend on the spectral properties of the
coefficient matrices resulted from these group discretization formulas. By applying
appropriate preconditioner, we may transform the resulting linear system into another
equivalent system that has the same solution, but has a better spectral property than its
unpreconditioned form. In Saeed and Ali [11], the application of a specific splitting-
type block preconditioner to the Explicit Decoupled Group Successive Over-Relaxation
(EDG SOR) method was presented where the preconditioned scheme was shown to
have a better rate of convergence compared to its unpreconditioned counterpart. In
this paper, some new Fundamental theorems and lemmas related to the convergence
properties of this preconditioned scheme will be established and presented.

Keywords: Preconditioning method, Explicit decoupled group (EDG) method, π-
consistently ordered matrix.

1 Introduction

In solving systems of linear equations arising from practical scientific and engineering
modelling and simulations such as electromagnetic applications, it is critical to choose a
fast and robust solver. Improved techniques using explicit group methods derived from
the standard and skewed (rotated) finite difference operators have been developed over the
last few years in solving the linear systems that arise from the discretization of the elliptic
partial differential equation ([1], [2], [3], [4], [5], [9], [10], [16]). It is widely recognized
that preconditioning is the most critical ingredient in the development of efficient solvers
for challenging problems in scientific computation. A good preconditioner should be con-
structed inexpensively and should be a good approximation to the inverse of coefficient
matrix of the iterative method. Many researchers have investigated preconditioners applied
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to linear systems. For example, Gunawardena et al. [6] introduced a preconditioner that
improves the convergence rate of the Gauss-Seidel method. Such work has been further
enhanced by Usui et al. [13]. Martins et al. [8] analyzed and verified the superiority of
the preconditioner proposed by Usui et al. [13] theoretically. In Lee [7], precondition-
ers have been successfully applied to the rotated five point formula in solving the Poisson
problem with promising results. Recently, Saeed and Ali [11], presented a (I + S̄) -type
preconditioning matrix applied to the original system obtained from the four point Explicit
Decoupled Group (EDG) method for solving the elliptic partial differential equation, where
S̄ is obtained by taking the first upper diagonal groups of the iteration matrix of the original
system. The focus of this study is to establish the convergence properties of the precon-
ditioning techniques for improving the performance and reliability of the explicit group
methods derived from the rotated finite difference formula. In this paper we will prove
that, under certain conditions, the rate of convergence of the EDG SOR iterative method
can be enlarged if the above preconditioner (I + S̄) applied to this method. The proof
depends on the spectral properties of the coefficient matrices resulted from these group dis-
cretization formulas. This work is structured in 5 Sections: In Section 2, we present some
definitions and preliminary results related to the under study preconditioning techniques. A
brief description of the application of the preconditioner in block formulation to the EDG
SOR is given in Section 3. The theoretical convergence analysis of this method is discussed
in Section 4. Finally, we report a brief conclusion in Section 5.

2 Preparatory Knowledge

For convenience, we shall now briefly explain some of the definitions and theorems
used in this paper. We will denote the spectral radius of a matrix by ρ(.) , which is defined
as the largest of the moduli of the eigenvalues of the iteration matrix.

Theorem 2.1. ([14]). Let A and B be two n× n matrices with 0 ≤ |B| ≤ A. Then,
ρ(B) ≤ ρ(A).

For the following theorem we consider expressing the matrix A in the form A = M−N ,
where M and N are also n × n matrices. If M is non-singular, we say that this expression
represent a splitting of the matrix A, and associated with this splitting is an iterative method

Mx(m+1) = Nx(m) + k, m ≥ 0 (2.1)

which we write equivalently as x(m+1) = M−1Nx(m) +

M−1k, m ≥ 0

Theorem 2.2. ([14]). If A=M-N is a regular splitting of the matrix A and A−1 ≥ 0, then
ρ(M−1N) = ρ(A−1N)

1+ρ(A−1N) < 1.
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Thus, the matrix M−1N is convergent, and the iterative method of (2.1) converges for any
initial vector x(0) .

Definition 2.1. ([14]). A matrix A of order n has property A if there exists two disjoint
subsets S and T of W = {1, 2, ..., n} such that if i ̸= j and if either aij ̸= 0 and aji ̸= 0,
then i ∋ S and j ∋ T or else i ∋ T and j ∋ S.

Definition 2.2. ([15]). An ordered grouping π of W = {1, 2, ..., n} is a subdivision of W
into disjoint subsets R1, R2, ..., Rq such that R1 +R2 + ...+Rq = W .

Given a matrix A and and an ordered grouping π we define the submatrices Am,n for
m,n = 1, 2, ..., q as follows: Am,n is formed from A deleting all rows except those corre-
sponding to Rm and all columns except those corresponding to Rn.

Definition 2.3. ([15]). Let π be an ordered grouping with q groups. A matrix A has Prop-
erty A(π) if the q × q matrix Z = (zr,s) defined by zr,s = {0 if Ar,s = 0 or 1 if Ar,s ̸=
0} has Property A.

Definition 2.4. ([15]). A matrix A of order n is consistently ordered if for some t there

exist disjoint subsets S1, S2, ..., St of W = {1, 2, ..., n} such that
t∑

k=1

Sk = W and such

that if i and j are associated, then j ∈ Sk+1 if j > i and j ∈ Sk−1 if j < i,where Sk is the
subset containing i. Note that a matrix A is a π-consistently ordered matrix if the matrix Z
is consistently ordered.

An accurate analysis of convergence properties of the SOR method is possible if the
matrix A is consistently ordered in the following sense (see [12]).

Definition 2.5. For given positive integers q and r, the matrix A of ordered N is a (q,r)-
consistently ordered matrix (a CO(q,r)-matrix) if for some t, there exist disjoint subsets

S1, S2, ..., St of W = {1, 2, ..., N} such that
t∑

k=1

Sk = W and such that: if ai,j ̸= 0 and

i < j, then i ∈ S1 + S2 + ...+ St−r and j ∈ Sk+r, where Sk is the subset containing i; if
ai,j ̸= 0 and i > j, then i ∈ Sq+1 + Sq+2 + ...+ St and j ∈ Sk−q where Sk is the subset
containing i.

Definition 2.6. A matrix A is a generalized (q,r)-consistently ordered matrix (a GCO(q,r)-
matrix) if: ∆ = det(αqE + α−rF − kD) is independent of α for all α ̸= 0 and for all
k. Here D=diag A and E and F are strictly lower and strictly upper triangular matrices,
respectively, such that: A=D- E-F .

In this paper, we will denote the block Jacobi iterative of A by BJ(A) such that BJ =

L+ U .
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3 Preconditioned Explicit Decoupled Group SOR (EDG SOR)

The linear system

Aũ = b̃ (3.1)

is obtained after the discretisation of the Poisson equation using the EDG finite difference
scheme [11] where

A =



R0 R1

R2 R0 R1

R2 R0

. . .
. . .

. . . R1

R2 R0


(N−1)2

2 × (N−1)2

2

,

R0 =


R00 R01

R02 R00
. . .

. . . . . . R01

R02 R00


(N−1)×(N−1)

,

R00 =

[
1 − 1

4

−1
4 1

]
, R01 =

[
0 0

−1
4 0

]
, R02 = RT

01,

R1 =


R01 R01

R01
. . .
. . . R01

R01


(N−1)×(N−1)

,

R2 =


R02

R02 R02

. . . . . .

R02 R02


(N−1)×(N−1)

It is observed that the partitioning of A is in the following block form:

A =



A11 A12

A21 A22 A23

A32 A33
. . .

. . . . . . A(p−1)p

Ap(p−1) App


(3.2)
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with p=(N-1), where Aii ∈ Cni,ni
π,p , i = 1, 2, ..., p and

p∑
i=1

ni = n. Let Cni,ni
π,p denote the

set of all matrices in Cni,ni which are of the form (3.2) relative to some given block parti-
tioning π. Let A ∈ Cni,ni

π,p be written as A = D - E - F, where D = diag(A11, A22, ..., App)

and

E = (Eij) =

{
−Aij for j < i

0 for j > i
, F = (Fij) =

{
−Aij for j > i

0 for j 6 i
(3.3)

are block matrices consisting of the block diagonal, strict block lower triangular, and strict
block upper triangular parts of A. Here the diagonal entries Aii are nonsingular. The block
Jacobi iteration matrix is BJ = D−1(E + F ) = L+ U , where L = D−1E, U = D−1F ,
the block Gauss-seidel iteration matrix is BGS = (I − L)−1U , and the Block Successive
Over-Relaxation method (BSOR) iteration matrix is

Bℓw = (I − wL)−1{(1− w)I + wU} (3.4)

Since the matrix A of Eq. (3.2) is a π- consistently ordered and possesses property A(π)

(Abdullah [1]), therefore the theory of block SOR is valid for this iterative method.
For convenience, we refer to the generally consistently ordered (π,q,r) of a matrix A as the
following:

Definition 3.1. ([12]). A matrix A of the form (3.2) is said to be generally consistently
ordered (π,q,r) or simply GCO(π,q,r),where q and r are positive integers, if for the parti-
tioning π of A, the diagonal submatrices Aii, i = 1, 2, ..., p(> 2) are non-singular, and the
eigenvalues of:

BJ(α) = αrL+ α−qU (3.5)

are independent of α, for all α ̸= 0, where L and U are given in (3.4).

For any matrix C = (cij) in Cni,ni
π,p , let |C| denote the block matrix in Cni,ni

π,p with
entries |ci,j |. Given the matrix:

BJ = L+ U (3.6)

Let µ̄ denote the spectral radius of matrix:

|BJ | = |L+ U | = |L|+ |U | (3.7)

Namely, µ̄ := ρ(|BJ |. For the following part of this paper we assume that the matrix A of
(3.2) belongs to the matrix set

F = {A ∈ Cni,ni
π,p / |BJ | = |L+ U | = |L|+ |U | is a GCO(π, q, r)−matrix}

The preconditioner P of Saeed and Ali [11] applied to this linear system (3.1) and
transformed it into another equivalent system

PAũ = P b̃ (3.8)
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with P = (I + S), where I is the identity matrix which has the same dimension as A while
S̄ is obtained by taking the first upper diagonal groups of R0 in the original system above
as the following:

S =


Z1

Z1

. . .

Z1


(N−1)2

2 × (N−1)2

2

, Z1 =


0∼ −R01

0∼
. . .

. . . −R01

0∼


(N−1)×(N−1)

Therefore, the preconditioner, (I + S) matrix will become

I+S =


Z2

Z2

. . .

Z2


(N−1)2

2 × (N−1)2

2

, Z2 =


I0 −R01

I0
. . .
. . . −R01

I0


(N−1)×(N−1)

Here I0 is a (2× 2) identity matrix and the system (3.1) become

(I + S̄)Aũ = (I + S̄)b̃ (3.9)

Hence, the SOR method can be applied to the linear system of equations

Āũ =¯̃b (3.10)

where Ā = (I + S̄)A = I − L− S̄L− (U − S̄ + S̄U) and ¯̃b = (I + S̄)b̃.

The SOR iteration matrix can be obtained, we can call it a Modified Block Successive
Over-Relaxation iteration matrix (MBSOR) and it is given by

B̃ℓw = {I − w(L+ S̄L)}−1[(1− w)I + w(U − S̄ + S̄U)] (3.11)

In the next section, we will present some theoretical results for the SOR method applied to
the preconditioned linear system (3.10).

4 Convergence of the Preconditioned EDG SOR

Lemma 4.1 (12). . Let |BJ | of (3.7) be a GCO (q,r)-matrix and p := q + r. Then for any
real nonnegative constant α, β and γ with γ ̸= 0 satisfying: αrβqµ̄p < γp, the matrix
T := γI − α |L| − β |U | is such that: T−1 > 0.

Lemma 4.2. Suppose A= I -L-U is a GCO(π,q,r), where -L and -U are strictly lower
and upper triangular matrices respectively. Let Bℓw be the block iteration matrix of the
SOR method given by (3.4). If 0 < w < 2, then the block SOR method converges, i.e.
ρ(Bℓw) < 1 .
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Proof. Let a matrix A with partitioning π be given as in (3.2) and let the block SOR
iteration matrix Bℓw be given as in (3.4). Setting: B′

ℓw
= (I−|wL|)−1{|1− w| I+ |w|U}

Clearly, we can see that |Bℓw | < B′
ℓw

and hence by theorem 2.1, ρ(Bℓw) 6 ρ(B′
ℓw
).

Consider the matrix Â ∈ Cni,ni
π,p defined by: Â := M̄ − N̄ , where M̄ := I − |w| |L|

and N̄ := |1− w| I + |w| |U |. It is easily seen that M̄ is nonsingular and B′
ℓw

= M̄−1N̄ .

Moreover, since M̄−1 > 0 and N̄ > 0, M̄ − N̄ is a regular splitting of Â (cf.[14]). In
addition to this, for w satisfying the condition 0 < w < 2, Lemma (4.1) above implies
that Â−1 > 0 Therefore, recalling Theorem 2.2 above, we have ρ(B′

ℓw
) < 1. Hence,

ρ(Bℓw) < 1.

Theorem 4.1. Suppose A= I -L-U is a GCO(π,q,r), where -L and -U are strictly lower and
upper triangular matrices respectively. Let Bℓw and B̃ℓw be the iteration matrices of the
SOR method given by (3.4) and (3.11) respectively. If 0 < w < 2, then
(i) ρ(B̃ℓw) < ρ(Bℓw) if ρ(Bℓw) < 1

(ii) ρ(B̃ℓw) = ρ(Bℓw) if ρ(Bℓw) = 1

(iii) ρ(B̃ℓw) > ρ(Bℓw) if ρ(Bℓw) > 1

Proof. From Lemma 4.2 and since the matrix A of (3.2) is a GCO(π,q,r) and
Bℓw = (I − wL)−1{(1− w)I + wU}, there exists a positive vector x
such that: Bℓwx = λx, where: λ = ρ(Bℓw)

or: equivalently,

[(1− w)I + wU ]x = λ(I − wL)x (4.1)

thus,

B̃ℓwx− λx = {I − w(L+ S̄L)}−1[(1− w)I + w(U − S̄ + S̄U)− λ{I − w(L+ S̄L)}]x

= {I − w(L+ S̄L)}−1[(1− (1− S̄)w − λ)I + (wλ− λS̄)L+ (w + S̄)U ]x
(4.2)

But, from (4.1) we have:
[λwL+ wU ]x = [(λ− 1 + w)I]x

Hence,
B̃ℓwx− λx = {I − w(L+ S̄L)}−1[(1− λ)− (1− S̄)wI + (λ− 1 +w)I − S̄(U − S̄)]x

In addition to this, for 0 < w < 2 and from [8] we can get:
(i) λ < 1, then B̃ℓwx− λx < 0 and from [6] we have ρ(B̃ℓw) < ρ(Bℓw).

(ii) λ = 1, then B̃ℓwx = λx and from [6] we have ρ(B̃ℓw) = ρ(Bℓw) = 1.

(iii) λ > 1, then B̃ℓwx− λx > 0 and from [6] we have ρ(B̃ℓw) > ρ(Bℓw).

Thus, the proof is complete.

Remark 4.1. In view of Theorem 4.1 the superiority of the preconditioned EDG SOR
against unpreconditioned EDG SOR in [11] is theoretically confirmed.
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5 Conclusions

In this work, we introduced a theoretical convergence analysis of the application of
a specific splitting-type preconditioner in block formulation for the EDG SOR iterative
method. A new theoretical framework for the method of preconditioned EDG SOR has
been presented. We have proven that the spectral radius of the iteration matrix of precondi-
tioned EDG SOR method is smaller than that of the unpreconditioned EDG SOR method,
if the relaxation parameter ω ∈ (0, 2) . We conclude that the rate of convergence of the
preconditioned EDG SOR method is faster than the rate of convergence of the unprecondi-
tioned EDG SOR iterative method. Finally, we have also point out that the block successive
over-relaxation(BSOR) leads to a great improvement when the underlying iteration matrix
is generally consistently ordered.
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