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Abstract: In this article, we have dealt with the controllability for impulsive (Imp.) neutral fractional functional integro-differential
equations with state dependent delay (S-D Delay) subject tonon-local conditions. We have obtained the appropriate conditions for
Controllability result by using the classical fixed point technique and analytic operator theory under the more generalconditions. At
last, an example is presented to demonstrate the application of the obtained result.
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1 Introduction

In this article, we deliberate a class of neutral fractional(Frac.) functional (Func.) integro-differential equations (Diff.
Eqns.) subject to impulsive (Imp.) and non-local conditions on complex Banach space(X,‖ · ‖X)

CDα
t N[t,y] = AN[t,y]+Bu(t)+ f (t,yρ(t,yt))+ (q∗g)(t), t ∈ J, t 6= tk, (1)

y(t)+h(yρ1, . . . ,yρn)(t) = φ(t), t ∈ (−∞,0], (2)

∆y(tk) = Ik(y(t
−
k )), k= 1,2, . . . ,m, (3)

whereCDα
t denote the Caputo’s Frac. derivative of orderα ∈ (0,1);A : D(A) ⊂ X → X is the closed linear operator

sectorial type defined onX;N[t,y] = y(t)+ p(t,yρ(t,yt )) and(q∗g)(t) =
∫ t

0 q(t − s)g(s,yρ(s,ys))ds. The functionsf ;g; p :
J×Bh → X, q : J → X, ρ : J×Bh → (−∞,T] andh : Bh

n → X are given and satisfies some assumptions. The history
functionyt : (−∞,0] → X is demarcated byyt(θ ) = y(t + θ ), θ ∈ (−∞,0] fits in the abstract phase spaceBh andJ =
(0,T], 0< T < ∞, is an operational interval such that 0≤ t0 < t1 < · · ·< tm < tm+1 ≤ T, are impulse points.B : U → X is
a linear bounded operator, and the control mapu(·) belong in Banach spaceL2(J,U) of admissible control maps withU
as a given Banach space. The mapφ(t) ∈Bh;∆y(tk) = y(t+k )− y(t−k ), y(t+k ) andy(t−k ), represents the right hand and left
hand limits of functiony(t) at t = tk andy(t−k ) = y(tk) andIk : X → X, k= 1,2, . . . ,m, are continuous and bounded maps.

Frac. Diff. Eqns. originate in several fields as engineering, physics, biology, signal and image processing etc. so these
equations become more naturalistic and practical than integer equations models. For more details descriptions one cansee
[3,25] and references therein. Imp. effects have a realistic rolein the evolutionary processes owing to wide applications
in science especially for population description, biological and social macro-systems. We mention the reader to see the
papers [1,6,10,11,12,13,14,29] for more details and concept of Imp. effects.

The non-local conditions give improved results when compared to the normal local condition, for instance, to define
the diffusion phenomenon of a slight quantity of gas in a apparent tube. For more details of these topics one can refer to
[5,10,12,24,29]. For several decades Frac. Func. Diff. Equs. with S-D Delayare frequently applied in many fields, such
as modeling of equations, panorama of natural phenomena andporous media [1,2,4,6,7,8,9,15,18,19,20,21,23].

Nowadays, controllability is one of the important ideas in mathematical control theory and has a chief role in many
areas of science and technology. In Controllability systems control maps, which steers the solution of the problem from
its primary state to last state, where the primary and last states may diverge over the whole space, deals existence results.
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Many authors studied Controllability systems and established several results. In [26] H. Qin et al. studied the existence of
PC-mild solutions for Imp. Frac. semi-linear integro-Diff. Eqns.

Dα
t x(t) = Ax(t)+Bu(t)+ f (t,x,Hx(t)), t ∈ J = [0,b], t 6= tk,

∆x(tk) = Ik(x(t
−
k )), k= 1,2, . . . ,m, x(0) = x0 ∈ X,

and then presented controllability results using fixed point theorem,C0−semigroup theory, and the generalized Bellman
inequality. H. Zhang et al. [30] studied the following problem

Dα
t x(t) = Ax(t)+Bx(t− τ)+Cu(t), t ∈ [0,T]\ {t1, t2, . . . , ti},

∆x(ti) = x(t+i )− x(t−i ) = Ii(x(t
−
i )), i = 1,2, . . . ,k,

x(t) = φ(t), t ∈ [−τ,0],

and established sufficient conditions of controllability standards. Z. Tai et al. [28] obtained the appropriate conditions for
the controllability with Frac. calculus,C0−semigroup theory and Krasnoselskii’s theorem of the following problem

dq

dtq
[x(t)−g(t,xt)] = (Ax)(t)+ (Bu)(t)+ f (t,xt,

∫ t

0
h(t,s,xs)ds), t ∈ [0,T], t 6= tk,

∆x(tk) = Ik(x(t
−
k )), k= 1,2, . . . ,m, x0 = φ ∈Bv.

Controllability of Frac. Imp. neutral evolution integro-Diff. Eqns. in a Banach space has been mentioned in the paper [27]
for the following system

dq

dtq
[x(t)−g(t,xt)] = A(t)x(t)(t)+ f (t,xt ,

∫ t

0
h(t,s,xs)ds)+ (Gu)(t), t ∈ [0,T],

∆x(tk) = Ik(x(t
−
k )), k= 1,2, . . . ,m, x0 = φ ∈Bv, t 6= tk.

In paper [29] sufficient condition for the controllability is established by means of solution operator of the following
problem

dα

dtα
x(t) = Ax(t)+Bu(t)+ f (t,x(t),x(a1(t),), . . . ,x(am(t))), t ∈ [0,T], t 6= ti ,

x(0)+g(x) = x0, ∆y(ti) = Ii(y(t
−
i )), i = 1,2. . . ,k.

Recently, sufficient conditions are derived by R. Ganesh et al. [17] for the exact controllability of nonlinear neutral Imp.
Frac. Func. equation with infinite delay

Dα
t [x(t)+g(t,xt)] = A[x(t)+g(t,xt)]+ J1−α

t [Bu(t)+ f (t,xt ,Hx(t))], t ∈ [0,T],

∆x(tk) = Ik(x(t
−
k )), k= 1,2, . . . ,m, x0 = φ ∈Bh.

Very recently, author of the paper [22] remarks on some current results on exact controllability of abstract differential
control systems with a linear part prevailed by a sectorial operator. Actually, author shows that the abstract control
problems [17,26,28] are not exactly controllable becauseA is consider as unbounded operator, therefore the generated
α-resolvent family is unbounded and due to this fact, resultsare absurd.

Our work is motivated by the mention work [17,26,27,28,29,30]. We followed the idea mentioned in [22] and
applying it on (1)-(3) and obtained the sufficient conditions for non-local neutral Imp. Frac. Func. Diff. Eqns. with S-D
Delay regarding infinite delay. In author knowledge this topics is unread yet. In this work, we established a general
background to find the mild solutions for such Imp. Frac. integro-Diff. Eqns. and demarcated the mild solutions of the
equations (1)-(3) by means of the idea presented in [14], in which the mild solutions are related with Mittag–Leffler map,
resolvent operator and solution operator.

This work is divided in four sections. The second section offers some definitions and basic preliminaries to be used
in proving our result. In the third section, we obtain the controllability results for the problem. The fourth section is
concerned with an example.

2 Preliminaries and Definitions

Let (X,‖ · ‖X) be a complex Banach space taking the norm

‖y‖X = sup{|y(t)| : y∈ X, t ∈ J,}
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andL(X) denotes the Banach space of all bounded linear operatorsK : X → X taking the norm

‖K‖L(X) = sup{‖Ky‖X : ‖y‖X ≤ 1,y∈ X}.

We did our computations in an abstract phase spaceBh due to infinite delay andB′
h due to impulse effect which are same

as described in [13].

Lemma 1.From the paper [6] “If y : (−∞,T]→ X be a map s.t. y0 = φ ,y∈B
′
h, then for all t∈ J, the following conditions

holds:

(C1) yt ∈Bh.
(C2) ‖y(t)‖X ≤ H‖yt‖Bh, where H is a positive constant.
(C3) ‖yt‖Bh ≤ K(t)sup{‖y(s)‖X : 0 ≤ s≤ t}+M(t)‖φ‖Bh,K,M : [0,∞) → [0,∞), K(·) are continuous, M(·) is locally

bounded and K,M are independent of y(t).
(C4φ ) The map t→ φt is well defined and continuous from the set

ℜ(ρ−) = {ρ(s,ψ) : (s,ψ) ∈ J×Bh}

intoBh and∃ a continuous and bounded map Jφ : ℜ(ρ−)→ (0,∞) s.t.‖φt‖Bh ≤ Jφ (t)‖φ‖Bh for every t∈ ℜ(ρ−).”

Lemma 2.From the paper [6] “Let y : (−∞,T]→ X be map s.t. y0 = φ ,y∈B
′
h, and if (C4φ ) hold, then

‖ys‖Bh ≤ (Mb+ Jφ )‖φ‖Bh +Kbsup{‖y(θ )‖X; θ ∈ [0,max{0,s}]}, s∈ ℜ(ρ−)∪J,

where Jφ = supt∈ℜ(ρ−) Jφ (t), Mb = sups∈[0,T]M(s) and Kb = sups∈[0,T] K(s).”

Definition 1.From the monograph [25] “The Riemann-Liouville (R-L) Frac. integral operator of orderα > 0, for a map
g∈ L1

loc(R
+,X) is defined by

J0
t g(t) = g(t), Jα

t g(t) =
1

Γ (α)

∫ t

0
(t − s)α−1g(s)ds, t > 0,

whereΓ (·) denotes the Euler-Gamma map.”

Definition 2.From the monograph [25] “ Caputo’s Frac. derivative of orderα > 0 for a mapg∈Cn(R+,X) is defined by

CDα
t g(t) =

1
Γ (n−α)

∫ t

0
(t − s)n−α−1g(n)(s)ds= Jn−αg(n)(t),

for n−1< α < n, n∈ N. If 0 < α < 1, then

CDα
t g(t) =

1
Γ (1−α)

∫ t

0
(t − s)−αg(1)(s)ds.

It is cleat that, Caputo’s Frac. derivative of a constant function is equal to zero.”

To circumvent the reappearances of some definitions used in this paper we refer the researcher: such as Mittag–Lefller
type function [25], sectorial operator [13], solution operator [14] andα-resolvent family [3].

Definition 3.A function y: (−∞,T]→ X such that y(t) ∈B
′
h is called the mild solution of the problem (1)-(3) if for any

u∈ L2(J,U) and y(t) = φ(t)−h(yρ1, . . . ,yρn)(t) for t ∈ (−∞,0], and it satisfy the following integral equation

y(t) =





Sα(t)(φ(0)−h(yρ1, . . . ,yρn)(0)+ p(0,φ(0)−h(yρ1, . . . ,yρn)(0))− p(t,yρ(t,yt))

+
∫ t

0 Tα(t − s){ f (s,yρ(s,ys))+
∫ s
0 q(s− ξ )g(ξ ,yρ(ξ ,yξ )

)dξ +Bu(s)}ds, t ∈ (0, t1],
Sα(t)(φ(0)−h(yρ1, . . . ,yρn)(0)+ p(0,φ(0)−h(yρ1, . . . ,yρn)(0))− p(t,yρ(t,yt))
+Sα(t − t1){Ii(y(t

−
1 ))+ p(t1,yρ(t1,y(t−1 )+I1(y(t

−
i ))))− p(t1,yρ(t1,yt1)

)}
+
∫ t

0 Tα(t − s){ f (s,yρ(s,ys))+
∫ s
0 q(s− ξ )g(ξ ,yρ(ξ ,yξ )

)dξ +Bu(s)}ds, t ∈ (t1, t2],
...
Sα(t)(φ(0)−h(yρ1, . . . ,yρn)(0)+ p(0,φ(0)−h(yρ1, . . . ,yρn)(0))− p(t,yρ(t,yt))
+∑m

i=1Sα(t − ti){Ii(y(t
−
i ))+ p(ti,yρ(ti ,y(t−i )+Ii(y(t

−
i ))))− p(ti,yρ(ti ,yti )

)}
+
∫ t

0 Tα(t − s){ f (s,yρ(s,ys))+
∫ s
0 q(s− ξ )g(ξ ,yρ(ξ ,yξ )

)dξ +Bu(s)}ds, t ∈ (tm,T].

(4)
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where

Sα(t) =
1

2π i

∫

Γ
eλ tλ α−1R(λ α ,A)dλ ;Tα(t) =

1
2π i

∫

Γ
eλ tR(λ α ,A)dλ ,

are called analytic solutions operator,α-resolvent family andΓ is a suitable path lying on∑θ ,ω .

Remark.The functionsSα(t);Tα (t) are strongly continuous. Ifα ∈ (0,1) andA∈A
α(θ0,ω0) then∀x∈ X andt > 0 there

∃ M̃ such that‖Sα(t)‖L(X) ≤ M̃;‖Tα(t)‖L(X) ≤ M̃.

Note that, the mild solution (4) depends on control mapsu(·). The solution of equations (1)-(3) under a controlu(·),
refereed asy(·;u), is said to the trajectory (state) map of (1) underu(·), set of all possible final states, refereed as

KT( f ) := {y(T;u) ∈ X : u∈ L2(J;U)},

is said to the approachable set of equation (1) at terminal timeT. System (1)-(3) is called the controllable on J ifKT( f ) =
X.

3 Controllability Result

To prove our primary results we shall assume that the function ρ : J×Bh → (−∞,T] is continuous map andφ ∈ Bh.
If y ∈ Bh we defined ¯y : (−∞,T) → X as the denotation ofy to (−∞,T] s.t. ȳ(t) = φ − g(yρ1, . . . ,yρp)(t). We defined
ỹ : (−∞,T)→X s.t.ỹ= y+xwherex : (−∞,T)→X is the denotation ofφ ∈Bh s.t.x(t) =Sα(t)(φ(0)−g(yρ1, . . . ,yρp)(0)
for t ∈ J. In the continuation, we introduce the coming axioms:

(A1) The functionf ∈C(J×Bh;X) and there∃ α1 ∈ (0,1) andL f (t) ∈ L
1

α1 (J,R) s.t.

‖ f (t,ψ)− f (t,χ)‖X ≤ L f (t)‖ψ − χ‖Bh, ψ ,χ ∈Bh.

(A2) The functiong∈C(J×Bh;X) and there∃ α2 ∈ (0,1) andLg(t) ∈ L
1

α2 (J,R) s.t.

‖g(t,ψ)−g(t,χ)‖X ≤ Lg(t)‖ψ − χ‖Bh, ψ ,χ ∈Bh.

(A3) The functionp∈C(J×Bh;X) and there∃ α3 ∈ (0,1) andLp(t) ∈ L
1

α3 (J,R) s.t.

‖p(t,ψ)− p(t,χ)‖X ≤ Lp(t)‖ψ − χ‖Bh, ψ ,χ ∈Bh.

(A4) The functionh∈C(J×B
n
h;X) and there∃ α4 ∈ (0,1) andLh(t) ∈ L

1
α4 (J,R) s.t.

‖h(t,ψn)−h(t,χn)‖X ≤ Lh(t)‖ψ − χ‖Bh, ∀ n ψ ,χ ∈Bh.

(A5) The functionsIk ∈C(X;X) and there∃ α5 ∈ (0,1) andLI (t) ∈ L
1

α5 (J,R) s.t.

‖Ik(x)− Ik(y)‖X ≤ LI (t)‖x− y‖X, x,y∈ X.

(A6) The linear operatorsWk : L2([tk−1, tk];U)→ X defined by

Wku=

∫ k

0
Tα(tk− s)Bu(s)ds

has an invertible operatorW−1
k taking values inL2([tk−1, tk];U)\Ker(Wk) and there∃ aM > 0 s.t.‖BW−1

k ‖ ≤ M, ∀ k.

Now, we are in a situation to state the existence of theorem based on Contraction principal.

Theorem 1.Let the assumptions (A1)-(A6) hold and there∃ a constant

δ =






M̃Kb‖Lh‖
L

1
α4 (J,R)

(1+ ‖Lp‖
L

1
α3 (J,R)

)+Kb‖Lp‖
L

1
α3 (J,R)

+mM̃(‖LI‖
L

1
α5 (J,R)

+2Kb‖Lp‖
L

1
α3 (J,R)

)

+TM̃(Kb‖L f ‖
L

1
α1 (J,R)

+q∗Kb‖Lg‖
L

1
α2 (J,R)

+TM̃C∗ < 1,

whereq∗ = supt∈J
∫ t

0 ‖q(t− s)‖ds. Then there∃ a control of the system (1)-(3).
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Proof.Let z∈B
′
h be any arbitrary function, now to transfer the system (1)-(3) from the primary state to finial statez(T),

we consider the control function

u(t) =






W−1
1 [z(t1)−Sα(t1)[φ(0)−h(yρ1, . . . ,yρn)(0)+ p(0,φ(0)−h(yρ1, . . . ,yρn)(0)]+ p(t1,yρ(t1,yt1)

)

−∫ t1
0 Tα(t1− s){ f (s,yρ(s,ys))+

∫ s
0 q(s− ξ )g(ξ ,yρ(ξ ,yξ )

)dξ}ds](t), t ∈ (0, t1],

W−1
2 [z(t2)−Sα(t2)[φ(0)−h(yρ1, . . . ,yρn)(0)+ p(0,φ(0)−h(yρ1, . . . ,yρn)(0)]+ p(t2,yρ(t2,yt2)

)

−Sα(t2− t1){I1(y(t
−
1 ))+ p(t1,yρ(t1,y(t−1 )+I1(y(t

−
1 ))))− p(t1,yρ(t1,yt1)

)}
−∫ t2

0 Tα(t2− s){ f (s,yρ(s,ys))+
∫ s
0 q(s− ξ )g(ξ ,yρ(ξ ,yξ )

)dξ}ds](t), t ∈ (t1, t2],
...
W−1

m [z(tm)−Sα(tm)[φ(0)−h(yρ1, . . . ,yρn)(0)+ p(0,φ(0)−h(yρ1, . . . ,yρn)(0)]+ p(tm,yρ(tm,ytm))

∑m
i=1Sα(tm− ti){Ii(y(t

−
i ))+ p(ti,yρ(ti ,y(t−i )+Ii(y(t

−
i ))))− p(ti,yρ(ti ,yti )

)}
−
∫ tm

0 Tα(tm− s){ f (s,yρ(s,ys))+
∫ s
0 q(s− ξ )g(ξ ,yρ(ξ ,yξ )

)dξ}ds](t), t ∈ (tm,T],

Let φ̄ : (−∞,T) → X be the extension ofφ to (−∞,T] such thatφ̄ (t) = φ(0) onJ. Consider the spaceB′′
h = {y∈B

′
h :

y(0) = φ(0)−h(ȳρ1, . . . , ȳρn)(0)} andy(t) = φ(t)− h(ȳρ1, . . . , ȳρn)(t)), for t ∈ (−∞,0] having the uniform convergence
topology. Now, let us define an operatorP : B′′

h →B
′′
h by

P(y(t)) =





Sα(t)(φ(0)−h(ȳρ1, . . . , ȳρn)(0)+ p(0,φ(0)−h(ȳρ1, . . . , ȳρn)(0))− p(t, ȳρ(t,ȳt))

+
∫ t

0 Tα(t − s){ f (s, ȳρ(s,ȳs))+
∫ s
0 q(s− ξ )g(ξ , ȳρ(ξ ,ȳξ )

)dξ +Bū(s)}ds, t ∈ (0, t1],
Sα(t)(φ(0)−h(ȳρ1, . . . , ȳρn)(0)+ p(0,φ(0)−h(ȳρ1, . . . , ȳρn)(0))− p(t, ȳρ(t,ȳt))
Sα(t − t1){I1(y(t

−
1 ))+ p(t1, ȳρ(t1,ȳ(t−1 )+I1(y(t

−
1 ))))− p(t1, ȳρ(t1,ȳt1)

)}
+
∫ t

0 Tα(t − s){ f (s, ȳρ(s,ȳs))+
∫ s
0 q(s− ξ )g(ξ , ȳρ(ξ ,ȳξ )

)dξ +Bū(s)}ds, t ∈ (t1, t2],
...
Sα(t)(φ(0)−h(ȳρ1, . . . , ȳρn)(0)+ p(0,φ(0)−h(ȳρ1, . . . , ȳρn)(0))− p(t, ȳρ(t,ȳt))

∑m
i=1Sα(t − ti){Ii(y(t

−
i ))+ p(ti, ȳρ(ti ,ȳ(t−i )+Ii(y(t

−
i ))))− p(ti, ȳρ(ti ,ȳti )

)}
+
∫ t

0 Tα(t − s){ f (s, ȳρ(s,ȳs))+
∫ s
0 q(s− ξ )g(ξ , ȳρ(ξ ,ȳξ )

)dξ +Bū(s)}ds, t ∈ (tm,T],

whereȳ : (−∞,T]→ X is such that ¯y(0) = φ(0)−h(ȳρ1, . . . , ȳρn)(0) andȳ= y onJ. This is obvious that operatorP is well
specified. We will express that the operatorP : B′′

h →B
′′
h has a fixed point. Without loss of generality, we prove the result

for the interval,t ∈ (tk, tk+1]. For convenience, let us take

P(y) =





Sα(t)(φ(0)−h(ȳρ1, . . . , ȳρn)(0)+ p(0,φ(0)−h(ȳρ1, . . . , ȳρn)(0))− p(t, ȳρ(t,ȳt))

+∑k
i=1Sα(t − ti){Ii(y(t

−
i ))+ p(ti, ȳρ(ti ,ȳ(t−i )+Ii (y(t

−
i ))))− p(ti,yρ(ti ,yti )

)}
+
∫ t

0 Tα(t − s){ f (s, ȳρ(s,ȳs))+
∫ s
0 q(s− ξ )g(ξ , ȳρ(ξ ,ȳξ )

)dξ}ds,+
∫ t
0 Tα(t − s)D j(s,y)ds,

where

D j(s,y) =






BW−1
j [z(t j)−Sα(t j)[φ(0)−h(ȳρ1, . . . , ȳρn)(0)+ p(0,φ(0)−h(ȳρ1, . . . , ȳρn)(0)]+ p(t j , ȳρ(t j ,ȳt j )

)

−∑k
i=1Sα(t j − ti){Ii(y(t

−
i ))+ p(ti, ȳρ(ti ,ȳ(t−i )+Ii (y(t

−
i ))))− p(ti, ȳρ(ti ,ȳti )

)}
−
∫ t j

0 Tα(t j − s){ f (s, ȳρ(s,ȳs))+
∫ s
0 q(s− ξ )g(ξ , ȳρ(ξ ,ȳξ )

)dξ}ds](s),

for j = 1,2, . . . ,m and using the given assumptions, we have

‖D j(s,y)−D j(s,y
∗)‖X ≤ M[M̃Kb‖Lh‖

L
1

α4 (J,R)
(1+ ‖Lp‖

L
1

α3 (J,R)
)+Kb‖Lp‖

L
1

α3 (J,R)

+mM̃(‖LI‖
L

1
α5 (J,R)

+2Kb‖Lp‖
L

1
α3 (J,R)

)+TM̃(Kb‖L f ‖
L

1
α1 (J,R)

+q∗Kb‖Lg‖
L

1
α2 (J,R)

)]‖y− y∗‖X

≤C∗‖y− y∗‖X.
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To showP has a fixed point, let us considery,y∗ ∈B
′′
h then

‖P(y)−P(y∗)‖X ≤ ‖Sα(t)‖L(X)‖(h(ȳρ1, . . . , ȳρn)−h(ȳ∗ρ1
, . . . , ȳ∗ρn

)‖X

+‖p(0,φ(0)−h(ȳρ1, . . . , ȳρn))− p(0,φ(0)−h(ȳ∗ρ1
, . . . , ȳ∗ρn

))‖X

+‖p(t, ȳρ(t,ȳt ))− p(t, ȳ∗ρ(t,ȳ∗t ))‖X +
k

∑
i=1

‖Sα(t − ti)‖L(X){‖Ii(y(t
−
i ))− Ii(y

∗(t−i ))‖X

+‖p(ti,yρ(ti ,ȳ(t−i )+Ii (y(t
−
i ))))− p(ti, ȳ

∗
ρ(ti ,ȳ∗(t−i )+Ii (y∗(t−i )))

)‖X

+‖p(ti, ȳρ(ti ,ȳti )
)− p(ti, ȳ

∗
ρ(ti ,ȳ∗ti )

)‖X}+
∫ t

0
‖Tα(t − s)‖(L(X))

×{‖ f (s, ȳρ(s,ȳs))− f (s, ȳ∗ρ(s,ȳ∗s))‖X +

∫ s

0
‖q(s− ξ )‖Xg(ξ , ȳρ(ξ ,ȳξ )

)−g(ξ , ȳ∗ρ(ξ ,ȳ∗ξ ))‖Xdξ}ds

+
∫ t

0
‖Tα(t − s)‖L(X)‖D j(s,y)−D j(s,y

∗)‖Xds

≤ [M̃Kb‖Lh‖
L

1
α4 (J,R)

(1+ ‖Lp‖
L

1
α3 (J,R)

)+Kb‖Lp‖
L

1
α3 (J,R)

+mM̃(‖LI‖
L

1
α5 (J,R)

+2Kb‖Lp‖
L

1
α3 (J,R)

)

+TM̃(Kb‖L f ‖
L

1
α1 (J,R)

+q∗Kb‖Lg‖
L

1
α2 (J,R)

+TM̃C∗)]‖y− y∗‖X.

Sinceδ < 1, its implies thatP is contraction and has a unique fixed pointy∈B
′′
h. Hence the system of equations (1)-(3)

are controllable on intervalJ. This completes the proof.

4 Application

In this section, we look at an example to prove our result.

∂ α

∂ tα [z(t,y)+
e−t

(et +e−t)

∫ t

−∞
e2(s−t) z(s−σ1(s)σ2(‖z‖),y)

49
ds]

=
∂ 2

∂y2 [z(t,y)+
e−t

(et +e−t)

∫ t

−∞
e2(s−t) z(s−σ1(s)σ2(‖z‖),y)

49
ds]

+
e−t

(1+ t)(et +e−t)

1
9

∫ t

−∞
e2(s−t) z(s−σ1(s)σ2(‖z‖),y)

(1+ z(s−σ1(s)σ2(‖z‖),y))ds

+
e−t

(1+ t)(1+et)

∫ t

0
cos(t − s)

z(t −σ1(t)σ2(‖z‖),y)
25

ds+Bu(t,y), t 6= 1
2
, (5)

z(t,0) = 0= z(t,π), t ≥ 0, (6)

z(t,y)+
e−t

(1+et)

∫ π

0
sin(1+ |z(s,y)|)ds= φ(t), t ∈ (−∞,0], y∈ [0,π ], (7)

∆u|t= 1
2
=

e−t

(1+e−t)

u(y, 1−
2 )

16+u(y, 1−
2 )

, (8)

where ∂ α

∂ tα is Caputo’s fractional derivative of orderα ∈ (0,1) 0< t1 < t2 < · · ·< tn < T are prefixed numbers andφ ∈Bh.
From paper [14]. “Let X = L2[0,π ] and define the operatorA : D(A) ⊂ X → X which is the infinitesimal generator of a
solution operator{Sα(t)}t≥0, such that‖Sα(t)‖L(X) ≤ M for t ∈ (0,T]. Let h(s) = e2s, s< 0 thenl =

∫ 0
−∞ h(s)ds= 1

2 <
∞, for t ∈ (−∞,0] and define

‖φ‖Bh =

∫ 0

−∞
h(s) sup

θ∈[s,0]
|φ(θ )‖L2ds.

Hence for(t,φ) ∈ [0,T]×Bh, whereφ(θ )(y) = φ(θ ,y), (θ ,y) ∈ (−∞,0]× [0,π ].”
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Setz(t)(y) = z(t,y), andρ(t,φ) = ρ1(t)ρ2(‖φ(0)‖) we have

f (t,φ)(y) =
e−t

(1+ t)(et +e−t)

1
9

∫ 0

−∞
e2(s) φ

(1+φ)
ds; g(t,φ)(y) =

e−t

(1+ t)(1+et)

φ
25

,

p(t,φ)(y) =
e−t

(et +e−t)

∫ 0

−∞
e2(s) φ

49
ds; Ii(φ)(y) =

e−t

1+et)

φ
16+φ

,

h(t,φ)(y) =
e−t

1+e−t)

∫ π

0
sin(1+φ)dθ .

Then, with these above settings, the system (5)-(8) can be written in the abstract pattern of the system (1)-(3). To treat this
system, we take thatρi : [0,∞)→ [0,∞), i = 1,2, are continuous functions. Now, let us see that for(t,φ),(t,ψ) ∈ J×Bh,
we have

‖ f (t,φ)− f (t,ψ)‖L2 =

[∫ π

0

{
1
9

e−t

(1+ t)(et +e−t)
‖
∫ 0

−∞
e2(s) φ

(1+φ)
ds−

∫ 0

−∞
e2(s) ψ

(1+ψ)
ds‖

}2

dy

]1/2

≤
[∫ π

0

{
1
9

e−t

(1+ t)(et +e−t)

∫ 0

−∞
e2(s)‖ φ

1+φ
− ψ

1+ψ
‖ds

}2

dy

]1/2

≤
[∫ π

0

{
1
9

e−t

(1+ t)(et +e−t)

∫ 0

−∞
e2(s) ‖φ −ψ‖

(1+φ)(1+ψ)
ds

}2

dy

]1/2

≤
[∫ π

0

{
1
9

e−t

(1+ t)(et +e−t)

∫ 0

−∞
e2(s) sup‖φ −ψ‖ds

}2

dy

]1/2

≤
√

π
9

e−t

(1+ t)(et +e−t)
‖φ −ψ‖Bh.

Hence functionf satisfies (A1). Similarly, we can show that the functionsg, p, Ii, h satisfy (A2), (A3), (A4) respectively.
Hence, all the conditions of the Theorem1 have been attained, so, we derived that the system (5)-(8) has a control onJ.
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