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Abstract: In this article, the following fractional order multi-pdiboundary value problem
—°DUu(t) = f (t,u(t)); ted=10,1,1<q<2

m-2
() =g(u(E)), DUt~ 3 Fu(m) =h(u(n), 0<p<1

m-2
is considered, wheré,n, &, n;i € (0,1) g,h € C(J,R) are given functions andy d&ni <1; f : J xR — Ris a continuous function
i=1

and®DY is the Caputo derivative of fractional orderThe notatiorfDPu(1) means the value dDPu(t) att = 1. We use topological
degree theory approach to establish sufficient conditionsxXistence and uniqueness of solutions. We provide angheaimshow the
usefulness of our results.

Keywords: Fractional differential equations, boundary value proise Caputo fractional derivative, Green’s function, tagital
degree theory.

1 Introduction

The rapidly growing applications of fractional order diéatial equations in various fields of sciences have a#thitte
attentions of many researchers. This can be attributeéliadyie to rapid advances in the theory of fractional calsulu
and its wide range of applications in real life problems. S&happlications can be found in various scientific and
engineering disciplines, for details, sded, 3,4]. Furthermore, its applicability in modeling real worldgritomena have
led the researchers to show great concern about the exéstaidicuniqueness results. For details, the readers areegkfer
to [5,6,7,8].

The existence and uniqueness of solutions of multi-poiatidlary value problems are studied quite recently by means
of classical fixed point theorems such as Banach contraptianiple, Schauder fixed point theorem, and Leray-Schaude
degree etc. in7,9,10,11,12,13 14,15]. The application of the above mentioned fixed point the@egaquire strong
condition such as compactness of the corresponding opefdite non compact cases can not be covered under these
results. For the generalization of the theory of existemmkuiqueness to cover the case of non compact operators as
well, the approach of coincidence degree theory for coridgmaaps has already been used, we refer to the recent work
studied in [L6,17,18,19,20].

Wang et al 18], considered some classes of nonlocal Cauchy problemsp@dgical degree method and develop its
existence and data dependence results. Chen &8ladtudied sufficient conditions for existence results viacmence
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degree theory approach for the following p-Laplacian ofgenaroblem

DY, (CDBu(t)) = f (t,u(t),CDBu(t))
°DPu(0) = 0, °DPu(1) =0,

where®D? and°DP represents caputo derivativess@, B < 1, 1< a + 8 < 2. Tang et al20] applied coincidence theory
and established existence results for

DY, (CDﬁu(t)) = f (t,u(t),CDﬁu(t))
u(0)=0, °DPu(0)=°DPu(1),
where®D? and°DP are caputo derivatives,9a, B <1,1< a+p < 2.

The present article is a motivation from the above mentiomerk. Here, we used the approach of the coincidence
degree theory for condensing maps and carry out the inagistits for the following BVP

—Du(t) = f (t,u(t)); tedl<qg<z,

m-2 (1.1)
u(0)=g(u(§)), °DPu(1)— Zl gu(ni) =h(u(n)), 0<p<1,

whereg, h are given functions anoz &ni < 1; f is a continuous functior§, n, &, ni € (0,1) and the notatioiDPu(1)

stands for the value 6DPu(t) att = 1 Finally, the results have been demonstrated with the dfedp example.

2 Background Materials

Here, we represent the Banach spaceXand the family of all its bounded sets will be denotedBby P(X). We state
some important definitions and lemmas. For details, we teff,3,4,21,22].

Definition 2.1 Letye L ([a,b]), then the integral of fractional order is defined by

19(t) = I'(lq) /at c i/(ss))lq ds where ge R+

Definition 2.2 Let ye C"[a, b] be a function, then its Caputo derivative is represented by

°pAy(t) = l'(nl_ > /a‘ ; _);()-:)Ml ds where n= [q] + 1,

and[q] represents the integer part of q.

Lemma 2.3Let > 0O, then
y(t) = Co+Cat + Cot? + ...+ Cpgt"

is the solution ofDY%(t) = 0 for some ce R;i=0,1,2,....n— 1.

Lemma 2.4For a fractional derivative and integral of order g, we have
19(°DY)y(t) = y(t) + Co+ C1t + Cat? + ... +-Cn_at" L,

where¢e R, i=0,1,2,...,n—1

We recall some important definitions, propositions and téexs from R2].

Definition 2.5 We define the functiom : B — R as

a(B) =inf{d > 0},

where Be B admits a finite cover by sets of diameted anda is Kuratowski measure of noncompactness.
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Proposition 2.6 The functiona satisfy the following properties:

(i) a(B) =0, (if and only if B is relatively compact).
(it) a (B1) +a (Bz) > a (B1+By).

(iii) 11B1 C Ba thena (Bz) > o (By).

(iv) a (convB = a (B).

(v) a(B)=a(B).

Recall that folK > 0, the condition for the functioR : Q — X to be Lipschitz is
IF () =FW)Il < K[x=yll,
and ifK < 1, thenF is a strict contraction.

Definition 2.7 Let the function E Q — X be a continuous bounded map, wh&e- X. Then for F to bex-Lipschitz, we
have
a (F(B)) <Ka(B), where K> 0.

Further, F will be stricta-contraction if K< 1.

Definition 2.8 Leta(B) > 0, then for F to bexr-condensing, we need
a(F(B)) <a(B).

Moreover,a (B) =0, if a(B) < a (F(B)).

Here, we consider the following:

Let OC, (Q) be the class of all strictr-contractions= andCq, (Q) be the class of alb-condensing mapBE, where
F:Q—X

Remark 2.9 For constant K= 1, every Fe Cq (Q) is a-Lipschitz anddCq (Q) C Cq (Q).

Proposition 2.10Let for constants K and KF and G area-Lipschitz maps respectively, thentfG are alsoa-Lipschitz
with constant K+ K.

Proposition 2.11if function F is compact, then F will be-Lipschitz having constant K 0.

Proposition 2.12 The function F will bea-Lipschitz having same constant K provided F is a Lipschitecfion with
constant K.

Theorem 2.1323] Consider® = {x € X : such that x= AFx whereA € [0,1]} where F: X — X isa-condensing, such
that© C By (0), where r> 0 and@© is a bounded set in X, then the degree is defined as

D (1 —AF,B(0),0) =1, VA € [0,1].

This implies that F has at least one fixed point and the setesfefiixed points of F lies in,B)).

3 Main Results

m-—2
To obtain the main results for BVR. (1), we defineA = 5 &ni and assume throughout the paper that 1.
i=1

Lemma 3.1Fory € L'(J,R), the BVP

‘Dlu(t)+y(t)=0; ted=]|0, 1] 1<q<2,

u(0) = g(u(€)), °DPu(1) Z&um (1)), 0< p<1, (3.1)
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) r(2-p) (hu z “s0(u
has a solution ¢t) = g( O 2 t+/ G(t,s)y(s)ds, where

r(2—pit (1-99P-1 5 ) _ 1 1. ) _
Fr2) T (2-pa rap Jrq) (nj—9)4 ! _W(t_s)q Los<t, nii<s<n,

Glt,s) = i - i i=12...m—1, (3.2)
I—(pr)t (l,s>Q*Pfl Jé' 61 . q—l . t < . < n:
Farzma | rae  r@ TS <SS M1 <S< i,
i i i=12..m-1

Proof. We divide the boundary value probler8.J) into two parts:(i) Non-homogeneous part of the equation with
homogeneous conditions, afid) Homogeneous equation having non-homogeneous boundadgijtions. Consider the
first case, apply® on the fractional differential equation®DYu(t) = y(t) and from @.4), we have

u(t) = —19%(t) +co+cat, co,c1 €R (3.3)

Hence, it follows that

°DPu(t) = —197Py(t) +¢; 1P,

)
r(2-p)
-2
Applying u(0) = 0 givescy = 0 and the boundary conditiéibPu(1) — mz au(n;) =0, implies
i=1

( m-2

—Iq‘py(1)+cll_(rzf)p) = Zi 5 [— 19y (mi) + Co+ Cani

m-2
from which it follows thatc; = % [I Pyl - ¥ dlqy(ni)} Hence, we obtain
i=1

ut) = 1) + 7y [ zicm‘*y m]. (3.4)

For 0<t < n3, equation 8.4) can be rewritten as

N > 9 i

[ r2-—pt (1—99 Pt J 1 _ _ (t—s)a-t
m—2
- 390

[(2—pi m(1-9)4P1 5 -
+F(2)—Al’(2—p)/t ( r(q—p) r(q) ( j—9) 1)Y(5)d5
m-2
1 sq p-1 JZ 4
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forn_, <t<n, 2<|<m-2, we obtain

m-2
u(t)_/nl[ s ((1_S)q_p_1_ leéj( '—s)q—l)— (t—s)q_l} (s)ds
~Jo Lr(2—-Ar@2-p\ r(q—p r(q) N r(q) Yl
m-2
o1 20 N
A-9"P S gat)yqogert (290
* Z/ AI’ 2 p)( ra—p T (j =) )+(1 s) @ }y(S)dS
m-2
o1 20 B
t r—pt 1-9% Pt & ) (t—9%!
" npl{F(Z)—AF(Z—p)( r(a-mp) I (q) (nj—s) ) ) }y(s)ds
m-—2
SR el )L [/m ((1_S)q 1 61( . s)qfl)} (s)ds
I'(2)—AI'(2—p) t I_(q_p) o (q) ni— y
m-2
> O
1 Sq M = RS 1 y(s)
" %1/H - - T(q) (n; =" 1)y(s)ds—'—l'(q—p) /,,mfz (1—s)L+pa ds
Further, fornm_» <t <1, we have
mi26_
M re-pt @-9rPt &y (-9t
u(t)—/o [I’(Z)—AI’(Z—p)( Fa=p @ (nj —9)° 1)_ =) ]y(s)ds
m-2
o1 2.0 -
Q1-9%Pt S gy (t—9?
+22/ AI‘2 p)( r(q—p) (9 (nj—9)9 ) Fa) }y(s)ds
r2—pt

"ToO-T@rez-pa

vt r@-r2-pa - e 1 1y
[/nm o e U AR AU A 1)y(s)ds”L/'(0|—|0)/t (1-s)1+pfqd‘°‘]

Hence, the solution having homogeneous boundary conditiod non-homogeneous part 8fY) is given as

éfi
@

_ re-p ! .
0= - ar G (Fa-p o (19" W99

1

—Tq)/ot(t—s)qu(s)ds: /OlG(t,s)y(s)ds

Now, consider the homogeneous part of the equafol) (vith non-homogeneous boundary conditiari8) = g(u(&)),

[ -9 ys)ds @5

m-—2
and®DPu(1) — ¥ du(ni) =h(u(n)). Apply 19 on the fractional differential equatidid9u(t) = O, we obtain
i=1
u(t)=co+cat,cp,c3€R (3.6)

Applying u(0) = g(u(&)) givesc, = g(u(&)). Also, the second boundary conditiéBPu(1) — mz gu(ni) = h(u(n))
yields

N G p)
SoFR-re- )+ 3, sl
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Hence, we get

u(t) = 9(u(@)) + 7= re (Zp) T Zid )] 3.7)
Combining B8.5) and @.7), we obtain
0= [ sy ds g(ue) + - P n(u zia )] (3.8

Now, from 3.1), the BVP (L.1) has a solution of the form

r@-p)(h(uim) +'3, ag(u(©)))
r2)—Ar2-p)

ut) =g(u(é)) + t+ /olG(t,s) f(su(s))ds (3.9)

which is an integral representation of the BVR1j. All we need to show that the equatiod.9 has a solution. Define
the following operator§, G, T : X — X as follows:

r(2-ppt s
rore_palhum) + 3 &)

(Gu)(t /Gts (s.u(s))ds andT = F + G

(Fu)(t) =g(u(&)) +

The operatoil is well defined ad is continuous. We write the integral equati@d) as an operator equation
u=Tu=Fu+Gu. (3.10)

The solution of the equatior3(9) will be the fixed point ofT. From now onward, we assume that there exists constants
Kg,Cq, a1, Kn,Ch, g2, andCy¢, gz € [0,1) andu,v € X such that the following holds:

I (2—p)t z &
K
A1) |g(u) —g(v)| < E[lu—vi|, where E= (1+ rm—rpsiz)-

| < Collul*.

o IN
2
c

Lemma 3.2The operator E X — X satisfies the Lipschitz arat-Lipschitz conditions with same constant.WMoreover,
the operator F satisfies
[Full < Cg|lul|*™ 4 Cxllul|*%, for every ue X. (3.11)

ProofFrom (A1) and(A3), and for every, v € X, we obtain
’Fu— Fv‘ <Kg|lu—V|, where Kr=Kg+Kp.

Thus, from propositiond.12), we conclude thak is alsoa-Lipschitz with same constaii: .

- . r(2-p)(iun))+ 5, do(u(e)) .
For growth condition, we considéFu)(t) = g(u(§)) + r(z)fr(zlf;ljm t, and use the assumptio(®2) and

(A4), we get

[IFull = Cg [lull™ + Cp |u*®.

Lemma 3.3The operator G C(J,R) — C(J,R) is continuous. It also satisfies

r=p)(F@+Y+r@=p+1)+r@=p+yr@Q-re=pd.
ra+1r@-p+1)(r2)-r2-pj) f |

IGul| < (3.12)

for every ue X.
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Proof. Let us considen, — u in B, where{u,} is a sequence of bounded $&t= {||u|| < k : u€ X}. To show that
|IGu, — Gu|| — 0 asn — o, we consider the following:

Since f is continuous andi, — u, it follows that f (s,un(s)) — f (s,u(s)) asn — . Now consider the difference
[(Gun)(t) — (Gu)(t)], and by using assumptidAS) and the Lebesgue Dominated Convergence theorem, we get

1(G)(t) = (GU)(t)| =0 as n— oo,
which implies thatG is continuous. Furthermore, we obtain the growth condi(®f2) by using assumptio(A5).
Lemma 3.4The operator G X — X is compact. It further implies that G @-Lipschitz having zero constant.
Proof. Take a bounded sét ¢ BC X and a sequencglp} in 2 C B, then in view of 8.1, it follows that
r2-p(r@+1)+r@-p+1)+r@-p+1)(r2)—-r2-p4a)

Fa+yr@-p+1r@)-r2-p))

which means thaB(2) is bounded irX. Now, we need to show thgGu,} is equicontinuous, For this, considerd; <
t, <T, then

1 2t-t)?  [(2=p)(t—t) 1 i
()~ (@) < | T * i Pio s ()| )

The above relation approaches zero when t;, which implies{Guy} is equicontinuous. From Arzela-Ascoli theorem,
we safely concluded thas (2) is relatively compact irX which in view of the proposition2.11) implies thatG is
a-Lipschitz wtih constant zero.

G| < (Cik®),

Theorem 3.5The equatiorf1.1) has at least one solution& X if (A2), (A4), and (A5) holds. Moreover, the solutions set
of the BVP(1.1) is bounded.

ProofBy proposition 2.10, the operatoll is stricta-contraction. Now setting
S ={ue X: suchthau=ATu, whereA € [0,1]}.
In order to show tha%, is bounded irX, Letu € &, then we have
ul <A ([[Ful[+[IGull),
which in view of 3.11) and @.12), implies that

] < Ao ] + G+ B G222 (G i) . (313)

Hence, the inequality3(13 together withgq; < 1, g2 < 1 andgs < 1 implies thatS, is bounded inX. By theorem 2.13),
we obtain the required result.

Define

H— {F(Z— P(ra+l)+r@-p+1)+r@-p+1{r(2-re- p)A)}
rQ+1r(q-p+1) (@2 -r2-pJ) ’
and assume that
(AB) |f(t,u)—f(t,v)| < 'h—f |[u—v|, whereL; € [0,1).
Theorem 3.6Under the assumptior(#&\1), (A3), and (A6), the BVP(1.1) has unique solution in G, R).
Proof. We use Banach contraction principle. Frognl(0, we have

e Tg A r2-pt 1
L b | (00(E) - 00E)) + e () i) + 269 F ) - Hsvis) .

(TYt)- Tl =

Using the assumption(@®\1), (A3), and(A6), we have
I(Tu)(®) = (TV)(O)] <M lu—v]],

whereM = Kg+Kp 4 Lt < 1. Hence, we get the required result.
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4 Example

Consider the BVP

c o
Du(t) = (1+8cog)’
1 m_2 1 (4.2)
u(0) =g(u(é)) = 7. ‘DPu(1) = Zi Su(mi)+h(u(n)) =¢.
m-2
Here, we takg= 4,1 =0p =03 =3,L1 =C; = 3,Cg=Kg =K, =Ch =%, p= %,A:%andzl& =1,h(u(n)) = £.

=
Then the BVP 4.1) satisfies the assumptiofisl) — (A6). Also, the fixed pointiis bounded as

o< (Z)
—\90/ °
Hence, by TheorenB(5) their exists at least one solution fet.{). Also, it satisfies the condition for uniqueness given in

(3.6).
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