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Abstract: In this article, the following fractional order multi-point boundary value problem

−cDqu(t) = f (t,u(t)) ; t ∈ J = [0,1],1< q≤ 2,

u(0) = g(u(ξ )) , cDpu(1)−
m−2

∑
i=1

δiu(ηi) = h(u(η)) , 0< p≤ 1,

is considered, whereξ ,η,δi ,ηi ∈ (0,1) g,h ∈ C(J,R) are given functions and
m−2
∑

i=1
δiηi < 1; f : J×R → R is a continuous function

andcDq is the Caputo derivative of fractional orderq. The notationcDpu(1) means the value ofcDpu(t) at t = 1. We use topological
degree theory approach to establish sufficient conditions for existence and uniqueness of solutions. We provide an example to show the
usefulness of our results.

Keywords: Fractional differential equations, boundary value problems, Caputo fractional derivative, Green’s function, topological
degree theory.

1 Introduction

The rapidly growing applications of fractional order differential equations in various fields of sciences have attracted the
attentions of many researchers. This can be attributed largely due to rapid advances in the theory of fractional calculus
and its wide range of applications in real life problems. These applications can be found in various scientific and
engineering disciplines, for details, see [1,2,3,4]. Furthermore, its applicability in modeling real world phenomena have
led the researchers to show great concern about the existence and uniqueness results. For details, the readers are referred
to [5,6,7,8].

The existence and uniqueness of solutions of multi-point boundary value problems are studied quite recently by means
of classical fixed point theorems such as Banach contractionprinciple, Schauder fixed point theorem, and Leray-Schauder
degree etc. in [7,9,10,11,12,13,14,15]. The application of the above mentioned fixed point theorems require strong
condition such as compactness of the corresponding operator. The non compact cases can not be covered under these
results. For the generalization of the theory of existence and uniqueness to cover the case of non compact operators as
well, the approach of coincidence degree theory for condensing maps has already been used, we refer to the recent work
studied in [16,17,18,19,20].

Wang et al [18], considered some classes of nonlocal Cauchy problems via topological degree method and develop its
existence and data dependence results. Chen et al [19] studied sufficient conditions for existence results via coincidence
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degree theory approach for the following p-Laplacian operator problem

cDα φp

(

cDβ u(t)
)

= f
(

t,u(t),cDβ u(t)
)

cDβ u(0) = 0, cDβ u(1) = 0,

wherecDα andcDβ represents caputo derivatives, 0<α, β ≤ 1, 1<α +β ≤ 2. Tang et al [20] applied coincidence theory
and established existence results for

cDα φp

(

cDβ u(t)
)

= f
(

t,u(t),cDβ u(t)
)

u(0) = 0, cDβ u(0) =c Dβ u(1),

wherecDα andcDβ are caputo derivatives, 0< α, β ≤ 1, 1< α +β ≤ 2.
The present article is a motivation from the above mentionedwork. Here, we used the approach of the coincidence

degree theory for condensing maps and carry out the investigations for the following BVP

−cDqu(t) = f (t,u(t)) ; t ∈ J,1< q≤ 2,

u(0) = g(u(ξ )) , cDpu(1)−
m−2

∑
i=1

δiu(ηi) = h(u(η)) , 0< p≤ 1,
(1.1)

whereg,h are given functions and
m−2
∑

i=1
δiηi < 1; f is a continuous function,ξ ,η ,δi ,ηi ∈ (0,1) and the notationcDpu(1)

stands for the value ofcDpu(t) at t = 1. Finally, the results have been demonstrated with the helpof an example.

2 Background Materials

Here, we represent the Banach spaces byX and the family of all its bounded sets will be denoted byB ∈ P(X). We state
some important definitions and lemmas. For details, we referto [2,3,4,21,22].

Definition 2.1 Let y∈ L1 ([a,b]), then the integral of fractional order is defined by

Iqy(t) =
1

Γ (q)

∫ t

a

y(s)
(t − s)1−q ds, where q∈ R+.

Definition 2.2 Let y∈Cn[a,b] be a function, then its Caputo derivative is represented by

cDqy(t) =
1

Γ (n−q)

∫ t

a

y(s)
(t − s)q−n+1 ds, where n= [q]+1,

and[q] represents the integer part of q.

Lemma 2.3Let q> 0, then
y(t) = c0+ c1t + c2t

2+ ...+ cn−1t
n−1

,

is the solution ofcDqy(t) = 0 for some ci ∈ R, i = 0,1,2, ...,n−1.

Lemma 2.4For a fractional derivative and integral of order q, we have

Iq(cDq)y(t) = y(t)+ c0+ c1t + c2t
2+ ...+ cn−1t

n−1
,

where ci ∈ R, i= 0,1,2, ...,n−1.

We recall some important definitions, propositions and theorems from [22].

Definition 2.5 We define the functionα : B→ R+ as

α(B) = in f {d > 0} ,

where B∈ B admits a finite cover by sets of diameter≤ d andα is Kuratowski measure of noncompactness.
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Proposition 2.6The functionα satisfy the following properties:

(i) α(B) = 0, (if and only if B is relatively compact).
(ii) α (B1)+α (B2)≥ α (B1+B2).
(iii ) I f B1 ⊂ B2 thenα (B2)≥ α (B1).
(iv) α (convB) = α (B).
(v) α (B) = α (B̄).

Recall that forK > 0, the condition for the functionF : Ω → X to be Lipschitz is

‖F(x)−F(y)‖ ≤ K‖x− y‖,

and ifK < 1, thenF is a strict contraction.

Definition 2.7Let the function F: Ω → X be a continuous bounded map, whereΩ ⊂ X. Then for F to beα-Lipschitz, we
have

α (F(B))≤ Kα(B), where K≥ 0.

Further, F will be strictα-contraction if K< 1.

Definition 2.8 Let α(B)> 0, then for F to beα-condensing, we need

α (F(B))< α(B).

Moreover,α (B) = 0, if α(B)≤ α (F(B)).

Here, we consider the following:
Let ΘCα (Ω) be the class of all strictα-contractionsF andCα (Ω) be the class of allα-condensing mapsF , where
F : Ω → X.

Remark 2.9For constant K= 1, every F∈Cα (Ω) is α-Lipschitz andΘCα (Ω)⊂Cα (Ω).

Proposition 2.10Let for constants K and K
′
, F and G areα-Lipschitz maps respectively, then F+G are alsoα-Lipschitz

with constant K+K
′
.

Proposition 2.11if function F is compact, then F will beα-Lipschitz having constant K= 0 .

Proposition 2.12The function F will beα-Lipschitz having same constant K provided F is a Lipschitz function with
constant K.

Theorem 2.13[23] ConsiderΘ = {x∈ X : such that x= λFx whereλ ∈ [0,1]} where F: X → X isα-condensing, such
thatΘ ⊂ Br (0), where r> 0 andΘ is a bounded set in X, then the degree is defined as

D(I −λF,Br(0),0) = 1, ∀λ ∈ [0,1].

This implies that F has at least one fixed point and the set of these fixed points of F lies in Br(0).

3 Main Results

To obtain the main results for BVP (1.1), we define∆ =
m−2
∑

i=1
δiηi and assume throughout the paper that∆ < 1.

Lemma 3.1For y∈ L1 (J,R), the BVP

cDqu(t)+ y(t) = 0; t ∈ J = [0,1],1< q≤ 2,

u(0) = g(u(ξ )) , cDpu(1)−
m−2

∑
i=1

δiu(ηi) = h(u(η)) , 0< p≤ 1,
(3.1)
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has a solution u(t) = g(u(ξ ))+
Γ (2−p)

(

h(u(η))+
m−2
∑

i=1
δig(u(ξ ))

)

Γ (2)−Γ (2−p)∆ t +
∫ 1

0
G(t,s)y(s)ds, where

G(t,s) =























































Γ (2−p)t
Γ (2)−Γ (2−p)∆







(1−s)q−p−1

Γ (q−p) −

m−2
∑
j=i

δ j

Γ (q) (η j − s)q−1






− 1

Γ (q)(t − s)q−1; s≤ t, ηi−1 < s≤ ηi ,

i = 1,2, ...,m−1,

Γ (2−p)t
Γ (2)−Γ (2−p)∆







(1−s)q−p−1

Γ (q−p) −

m−2
∑
j=i

δ j

Γ (q) (η j − s)q−1






; t ≤ s, ηi−1 < s≤ ηi ,

i = 1,2, ...,m−1.

(3.2)

Proof. We divide the boundary value problem (3.1) into two parts:(i) Non-homogeneous part of the equation with
homogeneous conditions, and(ii) Homogeneous equation having non-homogeneous boundary conditions. Consider the
first case, applyIq on the fractional differential equation−cDqu(t) = y(t) and from (2.4), we have

u(t) =−Iqy(t)+ c0+ c1t, c0,c1 ∈ R. (3.3)

Hence, it follows that

cDpu(t) =−Iq−py(t)+ c1
Γ (2)

Γ (2− p)
t1−p

.

Applying u(0) = 0 givesc0 = 0 and the boundary conditioncDpu(1)−
m−2
∑

i=1
δiu(ηi) = 0, implies

−Iq−py(1)+ c1
Γ (2)

Γ (2− p)
=

m−2

∑
i=1

δi

[

− Iqy(ηi)+ c0+ c1ηi

]

,

from which it follows thatc1 =
Γ (2−p)

Γ (2)−∆Γ (2−p)

[

Iq−py(1)−
m−2
∑

i=1
δi Iqy(ηi)

]

. Hence, we obtain

u(t) =−Iqy(t)+
Γ (2− p)t

Γ (2)−∆Γ (2− p)

[

Iq−py(1)−
m−2

∑
i=1

δi I
qy(ηi)

]

. (3.4)

For 0≤ t ≤ η1, equation (3.4) can be rewritten as

u(t) =
∫ t

0

[ Γ (2− p)t
Γ (2)−∆Γ (2− p)

( (1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=1

δ j

Γ (q)
(η j − s)q−1

)

−
(t − s)q−1

Γ (q)

]

y(s)ds

+
Γ (2− p)t

Γ (2)−∆Γ (2− p)

∫ η1

t

( (1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=1

δ j

Γ (q)
(η j − s)q−1

)

y(s)ds

+
m−2

∑
i=2

∫ ηi

ηi−1

( (1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=1

δ j

Γ (q)
(η j − s)q−1

)

y(s)ds+
1

Γ (q− p)

∫ 1

ηm−2

y(s)
(1− s)1+p−q ds,

c© 2015 NSP
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for ηl−1 ≤ t ≤ ηl , 2≤ l ≤ m−2, we obtain

u(t) =
∫ η1

0

[ Γ (2− p)t
Γ (2)−∆Γ (2− p)

( (1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=1

δ j

Γ (q)
(η j − s)q−1

)

−
(t − s)q−1

Γ (q)

]

y(s)ds

+
m−2

∑
i=2

∫ ηi

ηi−1

[ Γ (2− p)t
Γ (2)−∆Γ (2− p)

((1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=i

δ j

Γ (q)
(η j − s)q−1

)

+(1− s)q−p−1−
(t − s)q−p−1

Γ (q)

]

y(s)ds

+

∫ t

ηl−1

[ Γ (2− p)t
Γ (2)−∆Γ (2− p)

( (1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=l

δ j

Γ (q)
(η j − s)q−1

)

−
(t − s)q−1

Γ (q)

]

y(s)ds

+
Γ (2− p)t

Γ (2)−∆Γ (2− p)

[

∫ ηl

t

((1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=l

δ j

Γ (q)
(η j − s)q−1

)]

y(s)ds

+
m−2

∑
i=l+1

∫ ηi

ηi−1

((1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=i

δ j

Γ (q)
(η j − s)q−1

)

y(s)ds+
1

Γ (q− p)

∫ 1

ηm−2

y(s)
(1− s)1+p−q ds.

Further, forηm−2 ≤ t ≤ 1, we have

u(t) =
∫ η1

0

[ Γ (2− p)t
Γ (2)−∆Γ (2− p)

( (1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=1

δ j

Γ (q)
(η j − s)q−1

)

−
(t − s)q−1

Γ (q)

]

y(s)ds

+
m−2

∑
i=2

∫ ηi

ηi−1

[ Γ (2− p)t
Γ (2)−∆Γ (2− p)

( (1− s)q−p−1

Γ (q− p)
−

m−2
∑
j=i

δ j

Γ (q)
(η j − s)q−1

)

−
(t − s)q−1

Γ (q)

]

y(s)ds

+
Γ (2− p)t

Γ (2)−Γ (q)Γ (2− p)∆
×

[

∫ t

ηm−2

(Γ (2)−Γ (2− p)∆
Γ (2− p)t

(t − s)q−1+Γ (q)(1− s)q−p−1)y(s)ds+
1

Γ (q− p)

∫ 1

t

y(s)
(1− s)1+p−q ds

]

.

Hence, the solution having homogeneous boundary conditions and non-homogeneous part of (3.1) is given as

u(t) =
Γ (2− p)t

Γ (2)−∆Γ (2− p)

[ 1
Γ (q− p)

∫ 1

0
(1− s)q−p−1y(s)ds−

m−2
∑
j=i

δi

Γ (q)

∫ η j

0
(η j − s)q−1y(s)ds

]

−
1

Γ (q)

∫ t

0
(t − s)q−1y(s)ds=

∫ 1

0
G(t,s)y(s)ds.

(3.5)

Now, consider the homogeneous part of the equation (3.1) with non-homogeneous boundary conditionsu(0) = g(u(ξ )),

andcDpu(1)−
m−2
∑

i=1
δiu(ηi) = h(u(η)). Apply Iq on the fractional differential equationcDqu(t) = 0, we obtain

u(t) = c2+ c3t, c2,c3 ∈ R. (3.6)

Applying u(0) = g
(

u(ξ )
)

givesc2 = g
(

u(ξ )
)

. Also, the second boundary conditioncDpu(1)−
m−2
∑

i=1
δiu(ηi) = h

(

u(η)
)

yields

c3 =
Γ (2− p)

Γ (2)−Γ (2− p)∆
[

h
(

u(η)
)

+
m−2

∑
i=1

δig
(

u(ξ )
)]

.
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Hence, we get

u(t) = g
(

u(ξ )
)

+
Γ (2− p)t

Γ (2)−Γ (2− p)∆
[

h
(

u(η)
)

+
m−2

∑
i=1

δi
(

u(ξ )
)

]

. (3.7)

Combining (3.5) and (3.7), we obtain

u(t) =
∫ 1

0
G(t,s)y(s)ds+g

(

u(ξ )
)

+
Γ (2− p)t

Γ (2)−Γ (2− p)∆

[

h
(

u(η)
)

+
m−2

∑
i=1

δi
(

u(ξ )
)

]

. (3.8)

Now, from (3.1), the BVP (1.1) has a solution of the form

u(t) = g
(

u(ξ )
)

+

Γ (2− p)
(

h
(

u(η)
)

+
m−2
∑

i=1
δig

(

u(ξ )
))

Γ (2)−∆Γ (2− p)
t +

∫ 1

0
G(t,s) f

(

s,u(s)
)

ds (3.9)

which is an integral representation of the BVP (1.1). All we need to show that the equation (3.9) has a solution. Define
the following operatorsF, G, T : X → X as follows:

(Fu)(t) = g(u(ξ ))+
Γ (2− p)t

Γ (2)−Γ (2− p)∆
[

h
(

u(η)
)

+
m−2

∑
i=1

δi
(

u(ξ )
)

]

(Gu)(t) =
∫ 1

0
G(t,s) f (s,u(s))ds, andT = F +G

The operatorT is well defined asf is continuous. We write the integral equation (3.9) as an operator equation

u= Tu= Fu+Gu. (3.10)

The solution of the equation (3.9) will be the fixed point ofT. From now onward, we assume that there exists constants
Kg,Cg,q1,Kh,Ch,q2, andCf ,q3 ∈ [0,1) andu,v∈ X such that the following holds:

(A1) |g(u)−g(v)| ≤ Kg
E ‖u− v‖, where E =

(

1+
Γ (2−p)t

m−2
∑

i=1
δi

Γ (2)−Γ (2−p)∆
)

.

(A2) |g(u)| ≤Cg‖u‖q1 .

(A3) |h(u)−h(v)| ≤ Kh‖u− v‖ .
(A4) |h(u)| ≤Ch‖u‖q2 .

(A5) | f (t,u(s))| ≤Cf ‖u‖q3 .

Lemma 3.2The operator F: X → X satisfies the Lipschitz andα-Lipschitz conditions with same constant KF . Moreover,
the operator F satisfies

‖Fu‖ ≤Cg‖u‖q1 +Ch‖u‖q2 , for every u∈ X. (3.11)

Proof.From(A1) and(A3), and for everyu, v∈ X, we obtain
∣

∣

∣Fu−Fv
∣

∣

∣≤ KF ‖u− v‖ , where KF = Kg+Kh.

Thus, from proposition (2.12), we conclude thatF is alsoα-Lipschitz with same constantKF .

For growth condition, we consider(Fu)(t) = g(u(ξ ))+
Γ (2−p)

(

h(u(η))+
m−2
∑

i=1
δi g(u(ξ ))

)

Γ (2)−Γ (2−p)∆ t, and use the assumptions(A2) and

(A4), we get
‖Fu‖=Cg‖u‖q1 +Ch‖u‖q2 .

Lemma 3.3The operator G: C(J,R)→C(J,R) is continuous. It also satisfies

‖Gu‖ ≤
Γ (2− p)(Γ (q+1)+Γ (q− p+1))+Γ (q− p+1)(Γ (2)−Γ (2− p)∆)

Γ (q+1)Γ (q− p+1)(Γ (2)−Γ (2− p)∆)
Cf ‖u‖q3 , (3.12)

for every u∈ X.
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Proof. Let us considerun → u in B̄, where{un} is a sequence of bounded setB̄ = {‖u‖ ≤ κ : u∈ X}. To show that
‖Gun−Gu‖→ 0 asn→ ∞, we consider the following:
Since f is continuous andun → u, it follows that f (s,un(s)) → f (s,u(s)) as n → ∞. Now consider the difference
|(Gun)(t)− (Gu)(t)|, and by using assumption(A5) and the Lebesgue Dominated Convergence theorem, we get

‖(Gun)(t)− (Gu)(t)‖→ 0 as n→ ∞,

which implies thatG is continuous. Furthermore, we obtain the growth condition(3.12) by using assumption(A5).

Lemma 3.4The operator G: X → X is compact. It further implies that G isα-Lipschitz having zero constant.

Proof.Take a bounded setD ⊂ B̄⊆ X and a sequence{un} in D ⊂ B̄, then in view of (3.12), it follows that

‖Gun‖ ≤
Γ (2− p)(Γ (q+1)+Γ (q− p+1))+Γ (q− p+1)(Γ (2)−Γ (2− p)∆)

Γ (q+1)Γ (q− p+1)(Γ (2)−Γ (2− p)∆)

(

Cf κq3
)

,

which means thatG(D) is bounded inX. Now, we need to show that{Gun} is equicontinuous, For this, consider 0≤ t1 <
t2 ≤ T, then

|(Gun)(t1)− (Gu)(t2)| ≤

[

1
Γ (q+1)

+
2(t2− t1)q

Γ (q+1)
+

Γ (2− p)(t2− t1)
Γ (2)−Γ (2− p)∆

(

1
Γ (q− p+1)

)]

(

Cf κq3
)

.

The above relation approaches zero whent2 → t1, which implies{Gun} is equicontinuous. From Arzela-Ascoli theorem,
we safely concluded thatG(D) is relatively compact inX which in view of the proposition (2.11) implies thatG is
α-Lipschitz wtih constant zero.

Theorem 3.5The equation(1.1) has at least one solution u∈ X if (A2),(A4), and(A5) holds. Moreover, the solutions set
of the BVP(1.1) is bounded.

Proof.By proposition (2.10), the operatorT is strictα-contraction. Now setting

S0 = {u∈ X : such thatu= λTu, whereλ ∈ [0,1]} .

In order to show thatS0 is bounded inX, Let u∈ S0, then we have

|u| ≤ λ (‖Fu‖+ ‖Gu‖) ,

which in view of (3.11) and (3.12), implies that

‖u‖ ≤ λ
[

Cg‖u‖q1 +Ch‖u‖q2 + Γ (2−p)(Γ (q+1)+Γ (q−p+1))+Γ (q−p+1)(Γ (2)−Γ (2−p)∆ )
Γ (q+1)Γ (q−p+1)(Γ (2)−Γ (2−p)∆ )

(

Cf ‖u‖q3
)

]

. (3.13)

Hence, the inequality (3.13) together withq1 < 1, q2 < 1 andq3 < 1 implies thatS0 is bounded inX. By theorem (2.13),
we obtain the required result.

Define

H =

{

Γ (2− p)(Γ (q+1)+Γ (q− p+1))+Γ (q− p+1)(Γ (2)−Γ (2− p)∆)

Γ (q+1)Γ (q− p+1)(Γ (2)−Γ (2− p)∆)

}

,

and assume that

(A6) | f (t,u)− f (t,v)| ≤
L f
H |u− v| , whereL f ∈ [0,1).

Theorem 3.6Under the assumptions(A1),(A3), and(A6), the BVP(1.1) has unique solution in C(J,R).

Proof.We use Banach contraction principle. From (3.10), we have

|(Tu)(t)− (Tv)(t)|=

∣

∣

∣

∣

∣

∣



1+
Γ (2−p)t

m−2
∑

i=1
δi

Γ (2)−Γ (2−p)∆



(g(u(ξ ))−g(v(ξ )))+ Γ (2−p)t
Γ (2)−Γ (2−p)∆ (h(u(η))−h(v(η)))+

∫ 1
0 G(t,s)( f (s,u(s))− f (s,v(s)))ds

∣

∣

∣

∣

∣

∣

.

Using the assumptions(A1), (A3), and(A6), we have

|(Tu)(t)− (Tv)(t)| ≤ M ‖u− v‖ ,

whereM = Kg+Kh+L f < 1. Hence, we get the required result.
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4 Example

Consider the BVP

cDqu(t) =
u(t)

(1+8cost)
,

u(0) = g(u(ξ )) =
1
4
,

cDpu(1) =
m−2

∑
i=1

δiu(ηi)+h(u(η)) =
1
5
.

(4.1)

Here, we takeq= 2
3, q1 = q2 = q3 =

1
2, L f =Cf =

1
9,Cg =Kg =Kh =Ch =

1
5, p= 1

3, ∆ = 1
3 and

m−2
∑

i=1
δi =

1
3, h(u(η)) = −2

15 .

Then the BVP (4.1) satisfies the assumptions(A1)− (A6). Also, the fixed pointu is bounded as

‖u‖ ≤

(

23
90

)2

.

Hence, by Theorem (3.5) their exists at least one solution for (4.1). Also, it satisfies the condition for uniqueness given in
(3.6).
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