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Abstract: This paper presents an alternative representation of tive wquation in fractional dimensional space, the order ef th
derivative is considered asQy < 2, the fractional space derivative is described in the Gapahse. We obtain the fractional phase
velocity, the fractional dispersion relation, the fraotb group velocity and the fractional skin depth. The resgoexpressions are
written in terms of the Mittag-Leffler function which dedweis physical systems with memory. The markovian natureeo$yistem is
recovered withy = 1.
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1 Introduction

Fractional Calculus (FC) is a field of mathematical analydiere the concepts of integral and derivative operators of
integer order to arbitrary order (real or complex) take plé&®ome fundamental definitions used in the literature are th
Weyl, Hadamard, Caputo, Erdelyi-Kober, Riemann-Liowvdind Grnwald-Letnikov fractional derivatived{3]. This
mathematical representation involves non-local opesatanich can be applied to physical systems yielding new
information about their behavior, for this reason the FC basame an interesting topic of research in science and
engineering 4]-[14], the solutions of the electromagnetic wave equation héivacied much attention of the physicist
since many years ago, for example, in the wo& 16] the Lagrangian and Hamiltonian formulation of dynamicd an
electromagnetic fields have been reported. Fractionalopetator and applications to the electromagnetic probkmms
discussed in17]-[18]. Tarasov in L9-[20 shows the fractional time electromagnetic waves in digleanaterials.
Fractional dimensional space concept can be used in ordeptace the complex anisotropic confining structures in a
media with an effective space of non-integer dimengiowhere the non-integer dimension is the measure of anjgptro
of the complex mediaZ[l]. In [22] a novel generalization of differential electromagnetjciations in fractional space is
provided. These equations provide a basis for applicatidgheoconcept of fractional in practical electromagnetiveva
propagation and scattering problems in fractal media. 28 g generalization of vector calculus for non-integer
dimensional space by using a product measure method isnpeels& he integration over non-integer-dimensional space
is considered and differential operators of first and se@vddrs for fractional space and non-integer dimensioredep
are suggested. More applications of this concept are regpant[24]-[29]. Many times the authors replace the integer
derivative by another of fractional order on a purely mathgoal basis. However, from the physical point of view tisat i
not totally correct, to be consistent with the dimensiagadif the Fractional Differential Equations (FDE) in the Wor
[30]; the authors have proposed a systematic way to construetféixhe physical systems analyzing the dimensionality
of the ordinary derivative operator and trying to bring ietéractional derivative operator consistently.

Following [30], in this work these ideas are applied to the study of thetivaal space wave equation in conductors,
the fractional derivative in Caputo sense is used. The maah of this work is to obtain the analytical solution of the
wave equation in fractional dimensional space applyingesbasic properties of the FC, this representation presémees
physical units of the system for any value taken by the expoofthe fractional derivative.

This article is organized as follows. In Section 2 there iseactiption of the basic tools of fractional calculus. In
Section 3 it is described the fractional space waves in cotodst Finally in Section 4 there are the conclusions.
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2 Basic Tools

In the Caputo definition to solve differential equationstfbolassical and fractional), we need to specify additional
conditions in order to produce a unique solution. For theu@@practional Derivative (CFD), these additional coruit
can be just the traditional conditions, which are akin tcsthof classical differential equations, and are therefamglfar

to ours fl]. The CFD For a functiorf (t) is given by

L 9
CrY _ —

whereé‘ty =CD{ is a CFD with respect tg y € Ris the order of the fractional derivative= 1,2,... € Aandr (-) represents
the Euler's gamma function.
The Mittag-Leffler function plays an important role in thdwtmn of fractional differential equation8]]

z FamiE) (@>0, (B>0), 2)
Some common Mittag-Leffler functiors, (x), are B2
E2(—x?) = cogX), @)
Es(x) = % {exl/s +2eW/2x* Cos(\é_xmﬂ , (5)
1
Ea(x) = 5| cos(x**) +costix ™). (6)
whereEq (X) = Eq1(X)-
3 Fractional Space Wavesin Conductors
In the ohmic conductors we have
J=nE, )

wheren is the conductivityE is the electric field and is the current density.
In a conducting material, Maxwell's equations take the form

0OE =0, (8)
0B =0, 9
B
OXE=—-— 1
X o (10)
DXB:[J&'[Z—E'F[JJ (12)

substituting ) into (11) the wave equation for the electric field in conductors beesm

9E(x,t) IE(x,t) 9%E(x,t)
e HlT o ~HE 52

To be consistent with dimensionality and followir@] we introduce an auxiliary parameterin the following way

=0. (12)

92 1 o2

32 — 2207 3 n—-l<y<n, (13)

wheren is integer andx has dimensions of length (meters) and characterizes thedinal space structure8(], when
y = 1 the expressionl@) becomes a classical operator.
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Considering 13) the fractional representation df?) is

2 2
7] VE(X,t) U aZ(l—V)ﬁE(X’t) _usaz(l_y)ﬁ E(X,t) _

e ot or? (14)
the order of the derivative that is being considered s < 2.
In this case we may consider electric fields of the form
E(x,t) = Eg-€“u(x), (15)

wherew is the angular frequency, the wave propagation is congideraex direction. Substitutingl(5) in (14) we obtain

d?u(x)

5t (nea? —ipnw)a?tYu(x) =0, (16)
where
V2 = (Hew? —iunw), (17)
is the dispersion relation and
U = (e’ —ipnw)a?Y) = y2g?1-v), (18)

is the fractional dispersion relation. From the fractiosiapersion relationl(8), we can expect the fractional wave number
Vy in thex direction to obtain the real and imaginary pasandgy. Let us write

Vx = O — i, (19)
substituting 19) into (18) we have
(Bc—idx)® = 8 — 2i8hx — 9, (20)
where
32 — 28y — px® = (HEW? — ipnw)a? V), (21)
solving for ¢, we obtain
_ WU o1y
b= @, (22)
and fordy
B 1 1 %1% 1,
8= w usbii 1+€2w2} alv, (23)
substituting 23) into (22) we have
pr= 11 L o, (24)

1

— 1
VEE[3:5/1+ 25|

Now the fractional wave number i8; = & — i, whered, andgy is given by @3) and @4) respectively

al™y

zew\/ﬁ{%i% 1+82_;2}%aly—i%\/m{lilj\-/l+7nz}
3%32 £2a?

the equation25) describes the real and imaginary part of the wave numbesring of the frequency, and material
propertiesu, € andn, in presence of fractional space components
Consider 18) the equation6) is

; (25)

NI

d?u(x)
dx2y
the solution of the above equation is given by

+ Vi2u(x) =0, (26)

u(x) = Egy(— V%), (27)

whereE,, 1 is the Mittag-Leffler function defined irJ.
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Therefore the general solution of the equati®6) (s given by
E(x,t) = Eg-€“ - Epy(—Vi>x¥). (28)

The varying fractional electric field described 28f must have a fractional magnetic field associated with iis Tibld
has the same fractional dispersion relatib8) @nd frequency as the electric field, this is the only way thatMaxwell's
equation is satisfied as function of all positions and times

B(x,t) = Bo-€“t - Epy(—Vi>x%). (29)
Using the Maxwell’s equationlQ) which gives
k x Eo = wBy, (30)

or
B()— - E() 31
w * ’ ( )

the equation31) is the relation between the fractional magnetic and akefiglds in a wave in a conductor. In a non-
conducting material, the fractional electric and magniicls are perpendicular to the direction of the motion amy th
are perpendicular to each other, these fields were in plraaednductor, the complex phasekajives a phase difference
between the fractional electric and magnetic fields.

In a bad conductom < ew) and from @5) we have

&~ wy/Heat™, (32)
for ¢« from (25) we have
& _
b~ S Laty, (33)

if ¢x < &, the fractional electric and magnetic components of theevaae approximately in phase ~ 0), from (31)
we have E
0

By~ — 4
0 U7 (3)

where the fractional phase velocityiis= \/%O{V‘l
In a good conductofn > ew), in this case fromZ5) we have

S~y | e, (35)
w,
b [ P a Y~ g, (36)

if ¢y = &, the real and imaginary part of the fractional wave numienecome equal. The decay of the wave is very
fast, the ternr~Y represents the fractional space structures of the wave Mioanalyze the case wh@rtakes different
values. )

First case. Wheny = 2, we havej,® = %

2 41
\7X=w,/us[}i}\/ljtn—}za*l—iﬂ ! ~a L. (37)
272 e2w? 2 ue[lil\/ﬁ]é
% 2+2 £2a72

the equation¥7) represents the fractional wave number. From equai@nwe have

for ¢y from (25) we have

E(x,t) = Eg- €. E4(—V,>x%), (38)
whereE, is given by 6) _
Aot
E(x,t) = Eo 2e' - | cog —Vi*/2x) + cosi— v Y/ ZX)] (39)
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Second case. Wheny = 3/2, we havel,? = o‘,’f/zz

- 1 1 n? 1z —1/2 _HN 1 ~1/2
Vx—w~/l1€[§i§ 1+m} a —|7 “8{111 7 }%a . (40)
Vv 2+2V 202

the equation40) represents the fractional wave number. From equafi8hwe have

E(x,t) = Eg- €. E3(—V, >3, (41)
whereEs is given by 6)
gt 5 Wy2/3 ~
E(xt) = % : [e“’XZ/BXJr 2e 7 % cos( — ?vxmx)} . (42)

Third case. Wheny = 1, we havely = vy
ﬁ—w\/_e[lily/1+—nz}% i1 1 43)
x= OVHE|5 %5 w2l 2 11 bl
va{ziz\/Hm}

the equation43) represents the classical wave number. From equa2i®me have

E(xt) = Eg- €. Ex(— ), (44)
whereE; is given by @) . .
E(xt) = O[Eg-“. e ", (45)
wherel] indicates the real part ang = & — i¢x is the wave numbedR)

E(x,t) = O[Eq- €@ . g9, (46)

The equation46) represents the classical case for the wave equation iructors. The first exponentigl“—%% gives
the usual plane-wave variation of the field with positicand timet. The second exponentiat #* gives and exponential
decay in the amplitude of the wave.

To find the physical field we have to take the real par#®).(From equation the4) to obtain

E(x,t) = O[Eq- d®t-vE&)] (47)

where for a bad conductdn < we) we take the real part o#4Q), O(vx) =~ w,/HE andv = Vﬂx = \/% is the phase
velocity (there is no dispersion due to its independenteftaquency). In this case the medium is considered traaspar

dispersive and the decay of the wave is very slow in termsehtimber of wavelengths.
For a good conductain > we) and for @3) we haved, ~ |/ 3£ and ¢x ~ |/ 23X ~ &,, the real and imaginary

parts of the wave numbex, become equal. The phase velocity is giventby: £ ~ \/%, /% (there is dispersion that

depends on the frequency). This means that the decay of treeig/gery fast in terms of the number of wavelengths.
Fourth case. Wheny = % from equation 28) we have

E(xt) = Eg-€“. Ey(—ViX), (48)

wherekE; is given by @) andvy is

N 1.1 n? %1/2 -Hn 1 1/2
vx_wvug[iiivl+£2w2] ar o us[lil /14 nz_}%a ' (49)
A% 2+72 202

The equation 49) describes the reald)) and imaginary ¢y) part of the fractional wave number with fractional
componentsr in terms of the frequency, and material properties, € andn. From the fractional dispersion relation
(18), the solution for the equatiod) is

E(x,t) =0 [EO . @ @(t+npax) _e—uawZax]’ (50)
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whereld indicates the real part. To find the fractional physical fiald have to take the real part of the fractional dispersion
(18). From equationg0) we have

E(x,t) = O[Eq- g%t @PHeax)), (51)

For a bad conductdqn < we) we take the real part o#9), vy ~ w,/fica*/? andi = 9= ﬁ is the fractional

phase velocity (there is no dispersion due to its indepenadfethe frequency). In this case the medium is considered
fractional transparent dispersive and the decay of the vgavery slow in terms of the number of wavelengths.

For a good conductdmn > we) and for the real part 0#4©) and the imaginary part o#9) results,ox ~ %al/z
and ¢y ~ /ﬂz“al/2 ~ 0§, the real and imaginary parts of the fractional wave numkdrecomes equal. The fractional

phase velocity is given by = g ~ ﬁ, /% (there is dispersion due that depends on the frequencyd.nibans

that the decay of the wave is very fast in terms of the numbwiaeklengths.
The fractional dispersion relatignfor an electromagnetic wave in a good conductor is

X= o6 (52)

wheredy is the real part of the fractional wave numbégy.
The fractional group velocity is then

B 2 2we
- JHEAYZ \[ n

the fractional group velocity, of a fractional electromagnetic wave in a good conductorpisreximately twice the
fractional phase velocity.

From (49), the real pard, of the fractional wave numbael, in a conductor gives the wavelength, measures the
distance that the wave travels before its amplitude fai% itoa distanced,l—x, we define the fractional skin depth as

¢ (53)

~ 1
Q= (54)

For a good conductdn > ew), from (49) the fractional skin depth is given by

~ [ 2 1
Q= w—un'ma (55)

in a good conductody = ¢, the fractional phase difference between the electric aagimetic fields in a good conductor
is given by
b _

tang = 5 1, (56)

so the difference phase is approximately 45.
In this case exists a physical relation between the auyiparameteo and the wave numbek given by the ordey
of the fractional differential equation

A

whereA is the wavelength. We can use this relation in order to wateguation 28) and @0) for the fractional electric
and magnetic fields respectively as

E(%t) = Eo-d* . Ezy( - y2<1—V>>22V), (58)
B(X,t) = Bo- " - By — 21 V5), (59)

where,X= ¥, is a dimensionless parameter @nd to. The Figurel shows the simulation of the equatidsgf and 69)
for 0 < y < 2 respectivelyy values were arbitrarily chosen.
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Electric and Magnetic Field
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Fig. 1. Simulation of the equation$®) and §9) for 0 < y < 2.

4 Conclusions

In this manuscript was presented the analysis of the fragtispace waves in conductors from the point of view of the
FC. The fractional Caputo derivative is used and the ordehefderivative is O< y < 2. In particular, a model one-
dimensional fractional wave equation was considered iaidén this alternative representation an auxiliary pagtena

is introduced, this parameter is related to the equati@sslt in a fractal space geometry representation and dieaizzes
the existence of the fractional space components presantedtire new family of solutions for the electric and magnet
field, see equation$8) and 69). These equations just depend on the ogdefthe fractional differential equation due to
the physical relationH7) preserving the physical units of the system.

In the case whe is in the range 6 y < 1/2 the electric or magnetic field exhibits an exponential behand in
the range 12 < y < 1 the displacement represented a fractional oscillatorijanpsee Figurd. In the case whewis in
the range k y < 2 the oscillations of the electric field or magnetic field e@ses with increasing order of derivative and
the vibrational frequency increases, this frequency isddmg on the properties of the system itself, see Figuvghen
integer dimensioly = 1 is considered, we recovered the classical cases.

Since the solutions are given in terms of the Mittag-Lefflendtions depending only on a small number of
parameters, the universality concept (when the class advi@hdoes not depend on the details of the physical system)
can be considered through this methodology since the amalgtutions presented only need a few parameters to
describe their behavior. The methodology proposed in thloskwean be applied in the critical phenomena theory,
self-similarity, scale-invariance, transient effectd dansulation in the electrical systems, electromagnetistémgsis,
wave propagation in transmission lines, scattering in oamdnedia, renormalization group and the description of
anomalous complex processes.
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Among problems for further research, we mention two- anddfdimensional fractional wave equations consider
fractional variational calculus (se83] and the references therein) with different initial or/admalindary conditions, of
course, it would be interesting to consider the fractionavevequations with fractional derivatives defined in défer
ways.
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