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Abstract: This paper presents an alternative representation of the wave equation in fractional dimensional space, the order of the
derivative is considered as 0< γ ≤ 2, the fractional space derivative is described in the Caputo sense. We obtain the fractional phase
velocity, the fractional dispersion relation, the fractional group velocity and the fractional skin depth. The response expressions are
written in terms of the Mittag-Leffler function which describes physical systems with memory. The markovian nature of the system is
recovered withγ = 1.
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1 Introduction

Fractional Calculus (FC) is a field of mathematical analysiswhere the concepts of integral and derivative operators of
integer order to arbitrary order (real or complex) take place. Some fundamental definitions used in the literature are the
Weyl, Hadamard, Caputo, Erdelyi-Kober, Riemann-Liouville and Grnwald-Letnikov fractional derivatives [1]-[3]. This
mathematical representation involves non-local operators which can be applied to physical systems yielding new
information about their behavior, for this reason the FC hasbecame an interesting topic of research in science and
engineering [4]-[14], the solutions of the electromagnetic wave equation have attracted much attention of the physicist
since many years ago, for example, in the works [15]-[16] the Lagrangian and Hamiltonian formulation of dynamics and
electromagnetic fields have been reported. Fractional curloperator and applications to the electromagnetic problemsare
discussed in [17]-[18]. Tarasov in [19]-[20] shows the fractional time electromagnetic waves in dielectric materials.
Fractional dimensional space concept can be used in order toreplace the complex anisotropic confining structures in a
media with an effective space of non-integer dimensionγ, where the non-integer dimension is the measure of anisotropy
of the complex media [21]. In [22] a novel generalization of differential electromagnetic equations in fractional space is
provided. These equations provide a basis for application of the concept of fractional in practical electromagnetic wave
propagation and scattering problems in fractal media. In [23] a generalization of vector calculus for non-integer
dimensional space by using a product measure method is presented. The integration over non-integer-dimensional spaces
is considered and differential operators of first and secondorders for fractional space and non-integer dimensional space
are suggested. More applications of this concept are reported in [24]-[29]. Many times the authors replace the integer
derivative by another of fractional order on a purely mathematical basis. However, from the physical point of view that is
not totally correct, to be consistent with the dimensionality of the Fractional Differential Equations (FDE) in the work
[30]; the authors have proposed a systematic way to construct FDE for the physical systems analyzing the dimensionality
of the ordinary derivative operator and trying to bring it toa fractional derivative operator consistently.

Following [30], in this work these ideas are applied to the study of the fractional space wave equation in conductors,
the fractional derivative in Caputo sense is used. The main goal of this work is to obtain the analytical solution of the
wave equation in fractional dimensional space applying some basic properties of the FC, this representation preservesthe
physical units of the system for any value taken by the exponent of the fractional derivative.

This article is organized as follows. In Section 2 there is a description of the basic tools of fractional calculus. In
Section 3 it is described the fractional space waves in conductors. Finally in Section 4 there are the conclusions.
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2 Basic Tools

In the Caputo definition to solve differential equations (both classical and fractional), we need to specify additional
conditions in order to produce a unique solution. For the Caputo Fractional Derivative (CFD), these additional conditions
can be just the traditional conditions, which are akin to those of classical differential equations, and are therefore familiar
to ours [1]. The CFD For a functionf (t) is given by

C
0Dγ

t f (t) =
1

Γ (a− γ)

∫ t

0

f (a)(η)
(t −η)γ−a+1dη , a−1< γ ≤ a (1)

where dγ

dtγ =C
aDγ

t is a CFD with respect tot, γ ε R is the order of the fractional derivative,a= 1,2, . . .∈A andΓ (·) represents
the Euler’s gamma function.

The Mittag-Leffler function plays an important role in the solution of fractional differential equations [31]

Eα ,β (t) =
∞

∑
m=0

tm

Γ (αm+β )
, (α > 0), (β > 0), (2)

Some common Mittag-Leffler functionsEα(χ), are [32]

E1(χ) = eχ , (3)

E2(−χ2) = cos(χ), (4)

E3(χ) =
1
2

[

eχ1/3
+2e−(1/2)χ1/3

cos
(

√
3

2
χ1/3

)]

, (5)

E4(χ) =
1
2

[

cos(χ1/4)+ cosh(χ1/4)
]

, (6)

whereEα(χ) = Eα ,1(χ).

3 Fractional Space Waves in Conductors

In the ohmic conductors we have
J = ηE, (7)

whereη is the conductivity,E is the electric field andJ is the current density.
In a conducting material, Maxwell’s equations take the form

∇E = 0, (8)

∇B = 0, (9)

∇×E =−
∂B
∂ t

, (10)

∇×B = µε
∂E
∂ t

+ µJ (11)

substituting (7) into (11) the wave equation for the electric field in conductors becomes

∂ 2E(x, t)
∂x2 − µη

∂E(x, t)
∂ t

− µε
∂ 2E(x, t)

∂ t2 = 0. (12)

To be consistent with dimensionality and following [30] we introduce an auxiliary parameterα in the following way

∂ 2

∂x2 →
1

α2(1−γ) ·
∂ 2γ

∂x2γ , n−1< γ ≤ n, (13)

wheren is integer andα has dimensions of length (meters) and characterizes the fractional space structures [30], when
γ = 1 the expression (13) becomes a classical operator.
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Considering (13) the fractional representation of (12) is

∂ 2γ E(x, t)
∂x2γ − µηα2(1−γ)∂E(x, t)

∂ t
− µεα2(1−γ) ∂ 2E(x, t)

∂ t2 = 0. (14)

the order of the derivative that is being considered is 0< γ ≤ 2.
In this case we may consider electric fields of the form

E(x, t) = E0 ·eiωtu(x), (15)

whereω is the angular frequency, the wave propagation is considered in thex direction. Substituting (15) in (14) we obtain

d2γu(x)
dx2γ +(µεω2− iµηω)α2(1−γ)u(x) = 0, (16)

where
ν2

x = (µεω2− iµηω), (17)

is the dispersion relation and
ν̃x

2 = (µεω2− iµηω)α2(1−γ) = ν2
x α2(1−γ), (18)

is the fractional dispersion relation. From the fractionaldispersion relation (18), we can expect the fractional wave number
ν̃x in thex direction to obtain the real and imaginary parts,δx andϕx. Let us write

ν̃x = δx− iϕx, (19)

substituting (19) into (18) we have
(δx− iϕx)

2 = δx
2−2iδxϕx−ϕx

2, (20)

where
δx

2−2iδxϕx−ϕx
2 = (µεω2− iµηω)α2(1−γ), (21)

solving forϕx we obtain

ϕx =
ωµη
2δx

α2(1−γ), (22)

and forδx

δx = ω
√

µε
[1

2
±

1
2

√

1+
η2

ε2ω2

]
1
2 α1−γ , (23)

substituting (23) into (22) we have

ϕx =
µη
2

·
1

√µε
[

1
2 ±

1
2

√

1+ η2

ε2ω2

]
1
2

α1−γ . (24)

Now the fractional wave number is,̃νx = δx− iϕx, whereδx andϕx is given by (23) and (24) respectively

ν̃x = ω
√

µε
[1

2
±

1
2

√

1+
η2

ε2ω2

]
1
2 α1−γ − i

µη
2

1

√µε
[

1
2 ±

1
2

√

1+ η2

ε2ω2

]
1
2

α1−γ , (25)

the equation (25) describes the real and imaginary part of the wave number in terms of the frequencyω , and material
propertiesµ , ε andη , in presence of fractional space componentsα.

Consider (18) the equation (16) is
d2γu(x)

dx2γ + ν̃x
2u(x) = 0, (26)

the solution of the above equation is given by

u(x) = E2γ(−ν̃x
2x2γ ), (27)

whereE2γ,1 is the Mittag-Leffler function defined in (2).
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Therefore the general solution of the equation (16) is given by

E(x, t) = E0 ·eiωt ·E2γ(−ν̃x
2x2γ). (28)

The varying fractional electric field described in (28) must have a fractional magnetic field associated with it. This field
has the same fractional dispersion relation (18) and frequency as the electric field, this is the only way thatthe Maxwell’s
equation is satisfied as function of all positions and times

B(x, t) = B0 ·eiωt ·E2γ(−ν̃x
2x2γ). (29)

Using the Maxwell’s equation (10) which gives

k×E0 = ωB0, (30)

or

B0 =
k
ω

×E0, (31)

the equation (31) is the relation between the fractional magnetic and electric fields in a wave in a conductor. In a non-
conducting material, the fractional electric and magneticfields are perpendicular to the direction of the motion and they
are perpendicular to each other, these fields were in phase, in a conductor, the complex phase ofk gives a phase difference
between the fractional electric and magnetic fields.

In a bad conductor(η ≪ εω) and from (25) we have

δx ≈ ω
√

µεα1−γ , (32)

for ϕx from (25) we have

ϕx ≈
δx

2
·

η
ωε

α1−γ , (33)

if ϕx ≪ δx, the fractional electric and magnetic components of the wave are approximately in phase(φ ≈ 0), from (31)
we have

B0 ≈
E0

υ̃
, (34)

where the fractional phase velocity isυ̃ = 1√µε αγ−1

In a good conductor(η ≫ εω), in this case from (25) we have

δx ≈
√

ωµη
2

α1−γ , (35)

for ϕx from (25) we have

ϕx ≈
√

ωµη
2

α1−γ ≈ δx, (36)

if ϕx = δx, the real and imaginary part of the fractional wave numberν̃x become equal. The decay of the wave is very
fast, the termα1−γ represents the fractional space structures of the wave. Nowwe analyze the case whenβ takes different
values.

First case. Whenγ = 2, we haveν̃x
2 = νx

2

α

ν̃x = ω
√

µε
[1

2
±

1
2

√

1+
η2

ε2ω2

]
1
2 α−1− i

µη
2

1

√µε
[

1
2 ±

1
2

√

1+ η2

ε2ω2

]
1
2

α−1. (37)

the equation (37) represents the fractional wave number. From equation (28) we have

E(x, t) = E0 ·eiωt ·E4(−ν̃x
2x4), (38)

whereE4 is given by (6)

E(x, t) =
E0 ·eiωt

2
·
[

cos(−ν̃x
1/2x)+ cosh(−ν̃x

1/2x)
]

. (39)
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Second case. Whenγ = 3/2, we haveν̃x
2 = νx

2

α1/2

ν̃x = ω
√

µε
[1

2
±

1
2

√

1+
η2

ε2ω2

]
1
2 α−1/2− i

µη
2

1

√µε
[

1
2 ±

1
2

√

1+ η2

ε2ω2

]
1
2

α−1/2. (40)

the equation (40) represents the fractional wave number. From equation (28) we have

E(x, t) = E0 ·eiωt ·E3(−ν̃x
2x3), (41)

whereE3 is given by (5)

E(x, t) =
E0 ·eiωt

2
·
[

e−ν̃x
2/3x+2e

ν̃x2/3
2 x ·cos

(

−
√

3
2

ν̃x
2/3x

)]

. (42)

Third case. Whenγ = 1, we haveν̃x = νx

ν̃x = ω
√

µε
[1

2
±

1
2

√

1+
η2

ε2ω2

]
1
2 − i

µη
2

1

√µε
[

1
2 ±

1
2

√

1+ η2

ε2ω2

] 1
2

. (43)

the equation (43) represents the classical wave number. From equation (28) we have

E(x, t) = E0 ·eiωt ·E2(−νxx
2), (44)

whereE2 is given by (4)
E(x, t) = ℜ[E0 ·eiωt ·e−iνxx], (45)

whereℜ indicates the real part andνx = δx− iϕx is the wave number (43)

E(x, t) = ℜ[E0 ·ei(ωt−δxx) ·e−ϕxx]. (46)

The equation (46) represents the classical case for the wave equation in conductors. The first exponentialei(ωt−δxx) gives
the usual plane-wave variation of the field with positionx and timet. The second exponentiale−ϕxx gives and exponential
decay in the amplitude of the wave.

To find the physical field we have to take the real part to (43). From equation the (46) to obtain

E(x, t) = ℜ[E0 ·eiω(t−√µεx)], (47)

where for a bad conductor(η ≪ ωε) we take the real part of (43), ℜ(νx) ≈ ω√µε andυ = ω
νx

= 1√µε is the phase
velocity (there is no dispersion due to its independent of the frequency). In this case the medium is considered transparent
dispersive and the decay of the wave is very slow in terms of the number of wavelengths.

For a good conductor(η ≫ ωε) and for (43) we haveδx ≈
√

ωηµ
2 andϕx ≈

√

ωηµ
2 ≈ δx, the real and imaginary

parts of the wave numberνx become equal. The phase velocity is given byυ = ω
δx

≈ 1√µε

√

2ωε
η (there is dispersion that

depends on the frequency). This means that the decay of the wave is very fast in terms of the number of wavelengths.
Fourth case. Whenγ = 1

2, from equation (28) we have

E(x, t) = E0 ·eiωt ·E1(−ν̃x
2x), (48)

whereE1 is given by (3) andν̃x is

ν̃x = ω
√

µε
[1

2
±

1
2

√

1+
η2

ε2ω2

] 1
2 α1/2− i

µη
2

1

√µε
[

1
2 ±

1
2

√

1+ η2

ε2ω2

]
1
2

α1/2. (49)

The equation (49) describes the real (δx) and imaginary (ϕx) part of the fractional wave number with fractional
componentsα in terms of the frequencyω , and material propertiesµ , ε andη . From the fractional dispersion relation
(18), the solution for the equation (48) is

E(x, t) = ℜ[E0 ·eiω(t+ηµαx) ·e−µεω2αx], (50)
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whereℜ indicates the real part. To find the fractional physical field, we have to take the real part of the fractional dispersion
(18). From equation (50) we have

E(x, t) = ℜ[E0 ·eiωte−ω2µεαx)]. (51)

For a bad conductor(η ≪ ωε) we take the real part of (49), ν̃x ≈ ω√µεα1/2 andυ̃ = ω
ν̃x

= 1√µεα1/2 is the fractional

phase velocity (there is no dispersion due to its independent of the frequency). In this case the medium is considered
fractional transparent dispersive and the decay of the waveis very slow in terms of the number of wavelengths.

For a good conductor(η ≫ ωε) and for the real part of (49) and the imaginary part of (49) results,δx ≈
√

ωηµ
2 α1/2

andϕx ≈
√

ωηµ
2 α1/2 ≈ δ , the real and imaginary parts of the fractional wave numberν̃x becomes equal. The fractional

phase velocity is given bỹυ = ω
δx

≈ 1√µεα1/2

√

2ωε
η (there is dispersion due that depends on the frequency). This means

that the decay of the wave is very fast in terms of the number ofwavelengths.
The fractional dispersion relationχ for an electromagnetic wave in a good conductor is

χ =
2

µη
δx

2, (52)

whereδx is the real part of the fractional wave number (49).
The fractional group velocityζ is then

ζ =
2

√µεα1/2
·

√

2ωε
η

, (53)

the fractional group velocityζ of a fractional electromagnetic wave in a good conductor is approximately twice the
fractional phase velocitỹυ.

From (49), the real partδx of the fractional wave number̃νx in a conductor gives the wavelength,ψ measures the
distance that the wave travels before its amplitude fails to1

e in a distance1
ϕx

, we define the fractional skin depth̃Ω as

Ω̃ =
1
ϕx

. (54)

For a good conductor(η ≫ εω), from (49) the fractional skin depth is given by

Ω̃ =

√

2
ωµη

·
1

α1/2
, (55)

in a good conductorδx = ϕx, the fractional phase difference between the electric and magnetic fields in a good conductor
is given by

tanφ =
ϕx

δx
= 1, (56)

so the difference phase is approximately 45.
In this case exists a physical relation between the auxiliary parameterα and the wave numberνx given by the orderγ

of the fractional differential equation

β = νxα =
α
λ
, 0< α ≤ λ , (57)

whereλ is the wavelength. We can use this relation in order to write to equation (28) and (20) for the fractional electric
and magnetic fields respectively as

E(x̃, t) = E0 ·eiωt ·E2γ

(

− γ2(1−γ)x̃2γ
)

, (58)

B(x̃, t) = B0 ·eiωt ·E2γ

(

− γ2(1−γ)x̃2γ
)

, (59)

where, ˜x= x
λ , is a dimensionless parameter andt = t0. The Figure1 shows the simulation of the equation (58) and (59)

for 0< γ ≤ 2 respectively,γ values were arbitrarily chosen.
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Fig. 1: Simulation of the equations (58) and (59) for 0< γ ≤ 2.

4 Conclusions

In this manuscript was presented the analysis of the fractional space waves in conductors from the point of view of the
FC. The fractional Caputo derivative is used and the order ofthe derivative is 0< γ ≤ 2. In particular, a model one-
dimensional fractional wave equation was considered in detail. In this alternative representation an auxiliary parameterα
is introduced, this parameter is related to the equation’s result in a fractal space geometry representation and characterizes
the existence of the fractional space components presentedan entire new family of solutions for the electric and magnetic
field, see equations (58) and (59). These equations just depend on the orderγ of the fractional differential equation due to
the physical relation (57) preserving the physical units of the system.

In the case whenγ is in the range 0< γ ≤ 1/2 the electric or magnetic field exhibits an exponential behavior and in
the range 1/2< γ ≤ 1 the displacement represented a fractional oscillatory motion, see Figure1. In the case whenγ is in
the range 1< γ ≤ 2 the oscillations of the electric field or magnetic field increases with increasing order of derivative and
the vibrational frequency increases, this frequency is depending on the properties of the system itself, see Figure1. When
integer dimensionγ = 1 is considered, we recovered the classical cases.

Since the solutions are given in terms of the Mittag-Leffler functions depending only on a small number of
parameters, the universality concept (when the class of behavior does not depend on the details of the physical system)
can be considered through this methodology since the analytic solutions presented only need a few parameters to
describe their behavior. The methodology proposed in this work can be applied in the critical phenomena theory,
self-similarity, scale-invariance, transient effects and insulation in the electrical systems, electromagnetic hysteresis,
wave propagation in transmission lines, scattering in random media, renormalization group and the description of
anomalous complex processes.
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Among problems for further research, we mention two- and three-dimensional fractional wave equations consider
fractional variational calculus (see [33] and the references therein) with different initial or/andboundary conditions, of
course, it would be interesting to consider the fractional wave equations with fractional derivatives defined in different
ways.
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