# $T_{\chi}$-Fibrations in Homotopy Theory for Topological Semigroups 

Amin Saifil,* and Adem Kılıçman ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, Faculty of Applied Sciences, Taiz University, Taiz, Yemen<br>${ }^{2}$ Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Received: 10 Jun. 2015, Revised: 21 Oct. 2015, Accepted: 29 Oct. 2015
Published online: 1 May 2016


#### Abstract

The concept of $T_{\chi}$-fibration map is introduced which generalized the notion of $S_{\chi}$-fibrations in homotopy theory for topological semigroups. The composition property, pullback maps, and covering homotopy theorem are discussed for $T_{\chi}$-fibrations. Furthermore, we extended the notion of approximate fibrations to topological semigroups and showed its relation with $T_{\chi}$-fibrations.


Keywords: Topological semigroup, Fibration, Homotopy relation.

## 1 Introduction

The homotopy theory of topological spaces attempts to classify weak homotopy types of spaces and homotopy classes of maps. The classification of maps within a homotopy is a central problem in topology and several authors contributed in this area, see for example the related works in [6]. The concepts of Hurewicz fibrations, [7], in this theory have played very important roles for investigating the mutual relations of among the objects. For this purpose Coram and Duvall [3] introduced an approximate fibration as a map having the approximate homotopy lifting property for every space, which is a generalization of a Hurewicz fibration having valuable properties similar to the Hurewicz fibration and is widely applicable to the maps whose fibers are nontrivial shapes. A map $f: S \rightarrow B$ of compact metrizable spaces $S$ and $O$ is called an approximate fibration if for every space $Z$ and for given $\varepsilon>0$, there exists $\delta>0$ such that whenever $g: Z \rightarrow S$ and $G: Z \times I \rightarrow O$ are maps with $d[G(z, 0),(f \circ g)(z)]<\delta$, then there exists a homotopy $H: Z \times I \rightarrow S$ of $Z \times I$ into $S$ such that $H_{0}=g$ and $d[G(z, t),(f \circ H)(z, t)]<\varepsilon$ for all $z \in Z, t \in I$.

The concept of homotopy theory for topological semigroups and most of the backgrounds for this paper have been worked out previously by Zvonko in 2002, [8]. He introduced the concepts of $S$-homotopy relation, pathwise $S$-connectedness, $S$-homotopy domination, $S$-contractibility and $S_{\chi}$-fibration.

This paper is organized as follows: It consists of seven sections. Section 2 is devoted to some preliminaries. In Section 3, we start by giving the concepts of st-spaces and st-maps in homotopy theory for topological semigroups. Some properties for their are proved. In Section 4, we define an $T_{\chi}$-fibration and study some its basic properties. In Section 5 we prove that the pullbacks of $T_{\chi}$-fibrations are $T_{\chi}$-fibrations. In Section 6, we give and prove the covering homotopy theorem for st-maps into $T_{\chi}$-fibrations. In Section 7, we first define the $S_{\chi}$-approximate fibration property in homotopy theory for topological semigroups. Next we give and prove the relation between $S_{\chi}$-approximate fibrations and $T_{\chi}$-fibrations.

## 2 Preliminaries

Every topological space in this paper will be assumed Hausdorff space and most of the backgrounds here have been worked out previously by Zvonko, [8].

A topological semigroup or an $S$-space is a pair $(S, a)$ consisting a topological space $S$ and a map (i.e., a continuous function) $a: S \times S \rightarrow S$ from the product space $S \times S$ into $S$ such that $a(x, a(y, z))=a(a(x, y), z)$ for all $x, y, z \in S$. That is, an $S$-space is a topological space with a continuous associative multiplication. We denote the class of all S-spaces by $\chi$.

[^0]An S-space $(A, c)$ is called an $S$-subspace of $(S, a)$ if $A$ is a subspace of $S$ and the map $a$ takes the product $A \times A$ into $A$ and $c(x, y)=a(x, y)$ for all $x, y \in A$. It is natural to denote the multiplication of an S -subspace with the same symbol used for the multiplication on the $S$-space under consideration.

For every space $S$, the natural $S$-space is an $S$-space $\left(S, \pi_{i}\right)$, where $\pi_{i}$ is a continuous associative multiplication on $S$ given by $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$ for all $x, y \in S$. We denote the class of all natural S-spaces $(S, \pi)$ by $\mathscr{N}_{\pi}$, where $\pi=\pi_{1}, \pi_{2}$.

Let $(S, a)$ and $(O, e)$ be $S$-spaces. The function $f:(S, a) \rightarrow(O, e)$ is called a homomorphism or an S-map if $f$ is a map of a space $S$ into $O$ and $f(a(x, y))=e(f(x), f(y))$ for all $x, y \in S$. Recall [8] that the usual composition and the usual product of two S-maps are S-maps and that the function $f: S \rightarrow O$ of a natural S-space $(S, \pi)$ into $(O, \pi)$ is an S-map if and only if it is continuous.

For every a space $S$, by $P(S)$ we mean the space of all paths from the unit closed interval $I=[0,1]$ into $S$ with the compact-open topology. Recall [8] that for every an S-space $(S, a), \quad(P(S), \underline{a})$ is an $S$-space where $\underline{a}: P(S) \times P(S) \rightarrow P(S)$ is a map defined by $\underline{a}(\alpha, \beta)](t)=a(\alpha(t), \beta(t))$ for all $\alpha, \beta \in P(S), t \in I$. The shorter notion for this $S$-space will be $P(S, a)$.

Definition 2.1. The S-maps $f, g:(S, a) \rightarrow(O, e)$ are called $S$-homotopic and write $f \simeq_{s} g$ provided there is an S-map $H:(S, a) \rightarrow P(O, e)$ called an $S$-homotopy such that $H(s)(0)=f(s)$ and $H(s)(1)=g(s)$ for all $s \in S$.

Throughout this paper, for every an S-homotopy $H:(S, a) \rightarrow P(O, e)$ and for every $t \in I$, by $H_{t}\left(\right.$ or $\left.[H]_{t}\right)$ we mean the S-map, [8], $H_{t}:(S, a) \rightarrow(O, e)$ which given by $H_{t}(s)=H(s)(t)$ for all $s \in S$. Also for every an S-homotopy $H:(S, a) \rightarrow P[P(O), \underline{e}]$ and for every $r, t \in I$, by $H_{r t}$ (or $[H]_{r t}$ ) we mean the S-map $H_{r t}:(S, a) \rightarrow(O, e)$ which given by $H_{r t}(s)=[H(s)(r)](t)$ for all $s \in S$.
Theorem 2.2. The relation of $S$-homotopy $\simeq_{s}$ is an equivalence relation on the set of all S-maps of $(S, a)$ into $(O, e)$.
Theorem 2.3. If the S-maps $f, g:(S, a) \rightarrow(O, e)$ are Shomotopic then the relations $f \circ h \simeq_{s} g \circ h$ and $k \circ f \simeq_{s} k \circ g$ hold for all S-maps $h$ into $(S, a)$ and $k$ from $(O, e)$.
Theorem 2.4. If the S-maps $f, g:(S, a) \rightarrow(O, e)$ are Shomotopic then the maps $f, g: S \rightarrow O$ are homotopic.
Theorem 2.5. The S-maps $f, g:(S, \pi) \rightarrow(O, \pi)$ are S-homotopic if and only if the maps $f, g: S \rightarrow O$ are homotopic.
Definition 2.6. An $S-$ map $f:(S, a) \rightarrow(O, e)$ is called an $S_{\chi}$-fibration if for every an-space $(Z, u) \in \chi$, an $S$-map $g:(Z, u) \rightarrow(S, a)$ and an $S$-homotopy $G:(Z, u) \rightarrow P(O, e)$ with $G_{0}=f \circ g$, there is an $S$-homotopy $H:(Z, u) \rightarrow P(S, a)$ such that $H_{0}=g$ and $f \circ H_{t}=G_{t}$ for all $t \in I$.

Theorem 2.7. The map $f: S \rightarrow O$ is a Hurewicz fibration if and only if the $S$-map $f:(S, \pi) \rightarrow(O, \pi)$ is an $S_{\mathcal{N}_{\pi}}$-fibration.
Theorem 2.8. The composition of $S_{\chi}$-fibrations is an $S_{\chi^{-}}$ fibration.

## 3 The st-spaces and st-maps

By a pair of two $S$-spaces or an st-space we mean a triple $\left\{\left(S_{1}, a\right),\left(S_{2}, c\right), \gamma\right\}$ consisting of two $S$-spaces $\left(S_{1}, a\right)$, $\left(S_{2}, c\right)$ and an S-map $\gamma:\left(S_{2}, c\right) \rightarrow\left(S_{1}, a\right)$. The shorter notion for this st-space will be $S(a c \gamma)$.

There are many ways in which an $S$-space can be regarded as an st-space. In our work, we use an S-space $(S, a)$ as $\{(S, a),(S, a), i d\}$ where id is the identity S-map on $S$.

For any two S-spaces $(S, a)$ and $(O, e)$, one can easily to check that the product space $S \times O$ is an $S$-space with the usual multiplication product $a \times e$ of $a$ and $e$. The product st-space $S(a c \gamma) \times Q(u v \mu)$ of two st-spaces

$$
S(a c \gamma)=\left\{\left(S_{1}, a\right),\left(S_{2}, c\right), \gamma\right\}
$$

and $Q(u v \mu)=\left\{\left(Q_{1}, u\right),\left(Q_{2}, v\right), \mu\right\}$ can be defined by

$$
\begin{aligned}
& S(a c \gamma) \times Q(u v \mu)=\left\{\left(S_{1} \times Q_{1}, a \times u\right),\left(S_{2} \times Q_{2}, c \times v\right),\right. \\
& \gamma \times \mu\}
\end{aligned}
$$

For every an S-map $f:(S, a) \rightarrow(O, e)$, A function $g: P(S, a) \rightarrow P(O, e)$ which is defined by $g(\alpha)=f \circ \alpha$ for all $\alpha \in P(S, a)$ is an S-map, [8]. An S-map $g$ will be called an $S$-map induced by $f$ and denoted by $\widehat{f}$. Then for an st-space $S(a c \gamma)$, the triple $\left\{P\left(S_{1}, a\right), P\left(S_{2}, c\right), \widehat{\gamma}\right\}$ is an st-space denoted by $P S(a c \widehat{\gamma})$.
Definition 3.1. An st-map from an st-space $S(a c \gamma)$ into an st-space $Q(u v \mu)$ is a pair

$$
\underline{h}=\left\{h_{a u}, h_{c v}\right\}: S(a c \gamma) \rightarrow Q(u v \mu)
$$

of two S-maps $h_{a u}:\left(S_{1}, a\right) \rightarrow\left(Q_{1}, u\right)$ and $h_{c v}:\left(S_{2}, c\right) \rightarrow$ $\left(Q_{2}, v\right)$ such that $h_{a u} \circ \gamma \simeq_{s} \mu \circ h_{c v}$.

In the last definition, if $h_{a u} \circ \gamma=\mu \circ h_{c v}$, then $\underline{h}$ will be called an t-map. Trivially, if $\underline{f}=\left\{f_{a e}, f_{c e}\right\}: S(a c \gamma) \rightarrow$ $(O, e)$ is an t-map then $f_{a e} \circ \gamma=\bar{f}_{c e}$.

We say that the st-maps $\underline{h}, \underline{g}: S(a c \gamma) \rightarrow Q(u \nu \mu)$ are equivalent st-maps, we write $\underline{\underline{h}} \equiv \underline{g}$, if $h_{a u} \circ \gamma=g_{a u} \circ \gamma$ and $\mu \circ h_{c v}=\mu \circ g_{c v}$. By $\underline{h}=\underline{g}$ we mean that $h_{a u}=g_{a u}$ and $h_{c v}=g_{c v}$. Trivially, if $\underline{\bar{h}}=\underline{g}$ then $\underline{h} \equiv \underline{g}$.
Proposition 3.2. The product

$$
\underline{h} \times \underline{g}: S(a c \gamma) \times Q(u v \mu) \rightarrow S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right) \times Q^{\prime}\left(u^{\prime} v^{\prime} \mu^{\prime}\right)
$$

of two st-maps $\underline{h}: S(a c \gamma) \rightarrow S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right)$ and $\underline{g}: Q(u v \mu) \rightarrow$ $Q^{\prime}\left(u^{\prime} v^{\prime} \mu^{\prime}\right)$ which is given by

$$
\underline{h} \times \underline{g}=\left\{h_{a a^{\prime}} \times g_{u u^{\prime}}, h_{c c^{\prime}} \times g_{v v^{\prime}}\right\}
$$

is an st-map.

Proof. It's clear that $h_{a a^{\prime}} \times g_{u u^{\prime}}$ and $h_{c c^{\prime}} \times g_{v v^{\prime}}$ are S-maps. Since $\underline{h}$ and $\underline{g}$ are st-maps, then $h_{a a^{\prime}} \circ \gamma \simeq_{s} \gamma^{\prime} \circ h_{c c^{\prime}}$ and $g_{u u^{\prime}} \circ \mu \simeq_{s} \mu^{\prime} \circ g_{v v^{\prime}}$. Hence

$$
\begin{aligned}
\left(h_{a a^{\prime}} \times g_{u u^{\prime}}\right) \circ(\gamma \times \mu) & =\left(h_{a a^{\prime}} \circ \gamma\right) \times\left(g_{u u^{\prime}} \circ \mu^{\prime}\right) \\
& \simeq_{s}\left(\gamma^{\prime} \circ h_{c c^{\prime}}\right) \times\left(\mu^{\prime} \circ g_{v v^{\prime}}\right) \\
& =\left(\gamma^{\prime} \times \mu^{\prime}\right) \circ\left(h_{c c^{\prime}} \times g_{v v^{\prime}}\right) .
\end{aligned}
$$

That is, $\underline{h} \times \underline{g}$ is an st-map.
Easily to check that the composition

$$
\underline{g} \circ \underline{h}=\left\{g_{a^{\prime} u} \circ h_{a a^{\prime}}, g_{c^{\prime} v} \circ h_{c c^{\prime}}\right\}: S(a c \gamma) \rightarrow Q(u v \mu)
$$

of two st-maps $\underline{h}: S(a c \gamma) \rightarrow S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right)$ and $\underline{g}: S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right) \rightarrow$ $Q(u v \mu)$ is an st-map. For every an st-space, the pair $\underline{i d}=$ $\left\{i d_{a a}, i d_{c c}\right\}: S(a c \gamma) \rightarrow S(a c \gamma)$ of the identity S-maps $i d_{a a}$ and $i d_{c c}$ is an st-map, will be called the identity st-map on $S(a c \gamma)$.

For every an st-map $\underline{h}: S(a c \gamma) \rightarrow Q(u v \mu)$, the pair

$$
\left\{\widehat{h}_{a u}: P\left(S_{1}, a\right) \rightarrow P\left(Q_{1}, u\right), \widehat{h}_{c v}: P\left(S_{2}, c\right) \rightarrow P\left(Q_{2}, v\right)\right\}
$$

is an st-map from $P S(a c \widehat{\gamma})$ into $P Q(u v \widehat{\mu})$. The shorter notion for this st-map will be $\hat{h}$.
Proposition 3.3. Let $S(a c \gamma)$ and $Q(u \nu \mu)$ be two st-spaces and $\underline{h}: S(a c \gamma) \rightarrow P Q(u v \widehat{\mu})$ be an st-map. Then for every $t \in \bar{I}$, the pair

$$
[\underline{h}]_{t}=\left\{\left[h_{a \underline{u}}\right]_{t},\left[h_{c \underline{v}}\right]_{t}\right\}: S(a c \gamma) \rightarrow Q(u v \mu)
$$

is an st-map.
Proof. Consider an S-map $h_{a \underline{u}}:\left(S_{1}, a\right) \rightarrow P\left(Q_{1}, u\right)$. Recall [8] that for every $t \in I$, there is a natural evaluation S-map $\mathscr{E}_{t}: P\left(Q_{1}, u\right) \rightarrow\left(Q_{1}, u\right)$ given by $\mathscr{E}_{t}(\alpha)=\alpha(t)$ for all $\alpha \in$ $P\left(Q_{1}\right)$. Then for every $t \in I$, the the composition $\mathscr{E}_{t} \circ h_{a \underline{u}}$ is an S-map; thus

$$
\left[h_{a \underline{u}}\right]_{t}(x)=h_{u \underline{a}}(x)(t)=\left(\mathscr{E}_{t} \circ h_{u \underline{a}}\right)(x)
$$

for every $x \in Q_{1}$, that is, $\left[h_{a \underline{u}}\right]_{t}$ is an S-map. Similarly, for every $t \in I,\left[h_{c \underline{v}}\right]_{t}$ is an S-map.

Now since $h_{a \underline{u}} \circ \gamma \simeq_{s} \widehat{\mu} \circ h_{c v}$, then for every $t \in I$,

$$
\left[h_{a \underline{u}}\right]_{t} \circ \gamma=\left(\mathscr{E}_{t} \circ h_{u \underline{a}}\right) \circ \gamma=\mathscr{E}_{t} \circ\left(h_{u \underline{a}} \circ \gamma\right) \simeq_{s} \mathscr{E}_{t} \circ\left(\widehat{\mu} \circ h_{c \underline{v}}\right)
$$

$$
=\mu \circ\left[h_{c \underline{v}}\right]_{t}
$$

That is, for every $t \in I,[\underline{h}]_{t}$ is an st-map. $\square$
We shall say that an st-space $S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right)$ is an st-subspace of an st-space $S(a c \gamma)$ provided $\left(S_{1}^{\prime}, a^{\prime}\right)$ is an S-subspace of $\left(S_{1}, a\right),\left(S_{2}^{\prime}, c^{\prime}\right)$ is an $S$-subspace of $\left(S_{2}, c\right)$, and $\gamma^{\prime}=\gamma \mid S_{2}^{\prime}$ where $\gamma \mid S_{2}^{\prime}$ the restriction S-map $\gamma$ on an S-subspace $\left(S_{2}^{\prime}, c^{\prime}\right)$.

Let $\underline{h}: S(a c \gamma) \rightarrow Q(u v \mu)$ be an st-map. One easily to check that for an st-subspace $S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right)$ of $S(a c \gamma)$, the pair

$$
\left\{h_{a u}\left|S_{1}^{\prime}:\left(S_{1}^{\prime}, a^{\prime}\right) \rightarrow\left(Q_{1}, u\right), h_{c v}\right| S_{2}^{\prime}:\left(S_{2}^{\prime}, c^{\prime}\right) \rightarrow\left(Q_{2}, v\right)\right\}
$$

is an st-map from $S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right)$ into $Q(u v \mu)$. This pair is called the restriction st-map of $\underline{h}$ on $S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right)$, denoted by $\underline{h} \mid S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right)$.

Theorem 3.4. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an t-map and $(E, e)$ be an S-subspace of $(O, e)$. Then the triple

$$
\underline{f}^{-1}(E)=\left\{\left(f_{a e}^{-1}(E), a\right),\left(f_{c e}^{-1}(E), c\right), \gamma \mid f_{c e}^{-1}(E)\right\}
$$

is an st-subspace of $S(a c \gamma)$ and $\underline{f} \mid \underline{f}^{-1}(E)$ is an t-map from $\underline{f}^{-1}(E)$ into $(E, e)$.
Proof. Note that for

$$
x, y \in f_{a e}^{-1}(E), f_{a e}(x a y)=f_{a e}(x) e f_{a e}(y) \in E
$$

thus $x a y \in f_{a e}^{-1}(E)$. Hence $\left(f_{a e}^{-1}(E), a\right)$ is an S-subspace of $\left(S_{1}, a\right)$. Similarly, $\left(f_{c e}^{-1}(E), c\right)$ is an S-subspace of $\left(S_{2}, c\right)$. Since $\underline{f}$ is an t-map then for $x \in f_{c e}^{-1}(E)$,
$f_{a e}\left[\gamma \mid f_{c e}^{-1}(E)(x)\right]=f_{a e}[\gamma(x)]=f_{c e}(x) \in f_{c e}\left[f_{c e}^{-1}(E)\right] \subseteq E$.
That is, $\gamma \mid f_{c e}^{-1}(E)(x) \in f_{a e}^{-1}(E)$. Then $\gamma \mid f_{c e}^{-1}(E)$ takes $f_{c e}^{-1}(E)$ into $f_{a e}^{-1}(E)$ and sice $\gamma$ is an S-map, then $\gamma \mid f_{c e}^{-1}(E)$ is also an S-map. Hence The triple $\underline{f}^{-1}(E)$ is an st-space.

Similarly, $f_{a a} \mid f_{a e}^{-1}(E)$ and $f_{c e} \mid f_{c e}^{-1}(E)$ are S-maps take $f_{a e}^{-1}(E)$ and $f_{c e}^{-1}(E)$ into $E$, respectively. Since $f_{a e} \circ \gamma=$ $f_{c e}$, then
$f_{a e}\left|f_{a e}^{-1}(E) \circ \gamma\right| f_{c e}^{-1}(E)=\left(f_{a e} \circ \gamma\right)\left|f_{c e}^{-1}(E)=f_{c e}\right| f_{c e}^{-1}(E)$.
That is, $\left.\underline{f} \mid \underline{f}^{-1}(E)\right\}$ is an t-map from $\underline{f}^{-1}(E)$ into $(E, e)$.

## $4 T_{\chi}$-fibrations

In this section, we introduce the concept of $T_{\chi}$-fibration and study some its basic properties.
Definition 4.1. An t-map $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ is called an $T_{\chi}$-fibration if for every an S-space $(Z, u) \in \chi$, an S-map $g:(Z, u) \rightarrow\left(S_{2}, c\right)$ and an S-homotopy $G:(Z, u) \rightarrow P(O, e)$ with $G_{0}=f_{c e} \circ g$, there exists an S-homotopy $H:(Z, u) \rightarrow$ $P\left(S_{1}, a\right)$ such that $H_{0}=\gamma \circ g$ and $f_{a e} \circ H_{t}=G_{t}$ for all $t \in I$.

For every two S -spaces $(S, a)$ and $(O, e)$, throughout this paper by $\mathscr{P}_{1}$ we mean the usual first projection map of $S \times O$ onto $S$ which is also S-map of $(S \times O, a \times e)$ onto $(S, a)$. Similarly, we mean by $\mathscr{P}_{2}$ the usual second projection map of $S \times O$ onto $O$.
Example 4.2. For every an st-space $S(a c \gamma)$ and an S-space $(O, e)$, the t-map $\underline{f}: S(a c \gamma) \times(O, e) \rightarrow(O, e)$ which is given by

$$
\begin{aligned}
& \underline{f}=\left\{f_{1}:\left(S_{1} \times O, a \times e\right) \rightarrow(O, e),\right. \\
& \left.f_{2}:\left(S_{2} \times O, c \times e\right) \rightarrow(O, e)\right\}
\end{aligned}
$$

is an $T_{\chi}$-fibration, where $f_{1}(x, r)=r$ and $f_{2}(y, r)=r$ for all $x \in S_{1}, y \in S_{2}, r \in O$. Note that If $(Z, u) \in \chi$, $g:(Z, u) \rightarrow\left(S_{2} \times O, c \times e\right)$ is an S-map, and $G:(Z, u) \rightarrow P(O, e)$ is an S-homotopy with $G_{0}=f_{2} \circ g$, define the desired S-homotopy $H$ from $(Z, u)$ into $P\left(S_{1} \times O, a \times e\right)$ by

$$
H(z)(t)=\left[\gamma\left[\mathscr{P}_{1}(g(z))\right], G(z)(t)\right]
$$

for all $z \in Z, t \in I$.
The following result shows that the the composition of an $T_{\chi}$-fibration and $S_{\chi}$-fibration will be an $T_{\chi}$-fibration.
Theorem 4.3. The composition t-map $f \circ \underline{f}$ of an $T_{\chi}$-fibration $f: S(a c \gamma) \rightarrow(O, e)$ and an $S_{\chi}$-fibration $f:(O, e) \rightarrow\left(\bar{O}^{\prime}, e^{\prime}\right)$ is an $T_{\chi}$-fibration.
Proof. Let $(Z, u) \in \chi, g:(Z, u) \rightarrow\left(S_{2}, c\right)$ be an S-map and $G:(Z, u) \rightarrow P\left(O^{\prime}, e^{\prime}\right)$ be an S-homotopy with $G_{0}=\left(f \circ f_{c e}\right) \circ g=f \circ\left(f_{c e} \circ g\right)$. Since $f_{c e} \circ g$ is an S-map and $f$ is an $S_{\chi}$-fibration, then there is an S-homotopy $F:(Z, u) \rightarrow P(O, e)$ such that $F_{0}=f_{c e} \circ g$ and $f \circ F_{t}=G_{t}$ for all $t \in I$. Now since $\underline{f}$ is an $T_{\chi}$-fibration, then there is an S-homotopy $H:(Z, u) \rightarrow P\left(S_{1}, a\right)$ such that $H_{0}=\gamma \circ g$ and $f_{a e} \circ H_{t}=F_{t}$ for all $t \in I$. Then $\left(f \circ f_{a e}\right) \circ H_{t}=f \circ\left(f_{a e} \circ H_{t}\right)=f \circ F_{t}=G_{t}$ for all $t \in I$. Hence $f \circ \underline{f}: S(a c \gamma) \rightarrow\left(O^{\prime}, e^{\prime}\right)$ is an $T_{\chi}$-fibration.
Theorem 4.4. The product

$$
\underline{f} \times \underline{f^{\prime}}: S(a c \gamma) \times S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right) \rightarrow\left(O \times O^{\prime}, e \times e^{\prime}\right)
$$

of two $T_{\chi}$-fibrations $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ and $\underline{f^{\prime}}: S^{\prime}\left(a^{\prime} c^{\prime} \gamma^{\prime}\right) \rightarrow\left(O^{\prime}, e^{\prime}\right)$ is an $T_{\chi}$-fibration.
Proof. Let $(Z, u) \in \chi, g:(Z, u) \rightarrow\left(S_{2} \times S_{2}^{\prime}, c \times c^{\prime}\right)$ be an S-map, and $G:(Z, u) \rightarrow P\left(O \times O^{\prime}, e \times e^{\prime}\right)$ be an S-homotopy with $G_{0}=\left(f_{c e} \times f_{c^{\prime} e^{\prime}}^{\prime}\right) \circ g$. Define S-homotopies $\quad G^{1}:(Z, u) \rightarrow P(O, e) \quad$ and $G^{2}:(Z, u) \rightarrow P\left(O^{\prime}, e^{\prime}\right)$ by $G_{t}^{1}=\mathscr{P}_{1} \circ G_{t}$ and $G_{t}^{2}=\mathscr{P}_{2} \circ G_{t}$ for all $t \in I$, respectively.

For an $T_{\chi}$-fibration $\underline{f}$, consider an S-map $\mathscr{P}_{1} \circ g:(Z, u) \rightarrow\left(S_{2}, c\right)$ and an S-homotopy $G^{1}$ with

$$
G_{0}^{1}=\mathscr{P}_{1} \circ G_{0}=\mathscr{P}_{1} \circ\left[\left(f_{c e} \times f_{c^{\prime} e^{\prime}}^{\prime}\right) \circ g\right]=f_{c e} \circ\left(\mathscr{P}_{1} \circ g\right) .
$$

Then there is an S-homotopy $F:(Z, u) \rightarrow P\left(S_{1}, a\right)$ such that $F_{0}=\gamma \circ\left(\mathscr{P}_{1} \circ g\right)$ and $f_{a e} \circ F_{t}=G_{t}^{1}$ for all $t \in I$. For an $T_{\chi}$-fibration $f^{\prime}$, similarly, there is an S-homotopy $F^{\prime}$ : $(Z, u) \rightarrow P\left(S_{1}^{\prime}, a^{\prime}\right)$ such that $F_{0}^{\prime}=\gamma \circ\left(\mathscr{P}_{2} \circ g\right)$ and $f_{a e}^{\prime} \circ F_{t}^{\prime}=$ $G_{t}^{2}$ for all $t \in I$.

Define an S-homotopy $H:(Z, u) \rightarrow P\left(S_{1} \times S_{1}^{\prime}, a \times a^{\prime}\right)$ by $H_{t}=F_{t} \times F_{t}^{\prime}$ for all $t \in I$. Note that

$$
\begin{aligned}
H_{0} & =\left[\gamma \circ\left(\mathscr{P}_{1} \circ g\right)\right] \times\left[\gamma \circ\left(\mathscr{P}_{2} \circ g\right)\right] \\
& =\gamma \circ\left[\left(\mathscr{P}_{1} \circ g\right) \times\left(\mathscr{P}_{2} \circ g\right)\right]=\gamma \circ g
\end{aligned}
$$

and

$$
\begin{aligned}
\left.f_{a e} \times f_{a^{\prime} e^{\prime}}^{\prime}\right) \circ H_{t} & =\left(f_{a e} \times f_{a^{\prime} e^{\prime}}^{\prime}\right) \circ\left(F_{t} \times F_{t}^{\prime}\right) \\
& =\left(f_{a e} \circ F_{t}\right) \times\left(f_{a^{\prime} e^{\prime}}^{\prime} \circ F_{t}^{\prime}\right) \\
& =G_{t}^{1} \times G_{t}^{2}=G_{t}
\end{aligned}
$$

for all $t \in I$. Hence $\underline{f} \times \underline{f^{\prime}}$ is an $T_{\chi}$-fibration.
In the following theorem, we show that the restriction t-map $\underline{f} \mid \underline{f}^{-1}(E)$ of any $T_{\chi}$-fibration $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ on $f^{-1}(E)$ is an $T_{\chi}$-fibration, for every $S$-subspace $(E, e)$ of $\overline{( } O, e)$.

Theorem 4.5. Let $f: S(a c \gamma) \rightarrow(O, e)$ be an $T_{\chi}$-fibration and let $(E, e)$ be an S-subspace of $(O, e)$. Then the restriction t-map $\underline{f} \mid \underline{f}^{-1}(E): \underline{f}^{-1}(E) \rightarrow(E, e)$ is an $T_{\chi}$-fibration.
Proof. Let $(Z, u) \in \chi, g:(Z, u) \rightarrow\left(f_{c e}^{-1}(E), c\right)$ be an $S$ map and $G:(Z, u) \rightarrow P(E, e)$ be an S-homotopy with $G_{0}=$ $f_{c e} \circ g$. Let $i:\left(f_{c e}^{-1}(E), c\right) \rightarrow\left(S_{2}, c\right)$ and $j:(E, e) \rightarrow(O, e)$ be inclusion S-maps. Then $[\widehat{j} \circ G]_{0}=f_{c e} \circ(i \circ g)$. Since $f$ is an $T_{\chi}$-fibration, then there is an S-homotopy $H:(Z, u) \rightarrow$ $P\left(S_{1}, a\right)$ such that $H_{0}=\gamma \circ(i \circ g)=\gamma \mid f_{c e}^{-1}(E) \circ g$ and $f_{a e} \circ$ $H_{t}=[\widehat{j} \circ G]_{t}=j \circ G_{t}=G_{t}$ for all $t \in I$. By the last part, note that $H(z)(t) \in f_{a e}^{-1}(E)$ for all $z \in Z, t \in I$. That is, we can consider $H$ as S-homotopy : $(Z, u) \rightarrow P\left(f_{a e}^{-1}(E), a\right)$. Hence $\underline{f} \mid \underline{f}^{-1}(E)$ is an $T_{\chi}$-fibration.
Theorem 4.6. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an t-map. If at least one of the S-maps $f_{a e}$ and $f_{c e}$ is an $S_{\chi}$-fibration then $\underline{f}$ is an $T_{\chi}$-fibration.
Proof. Firstly, let $f_{a e}:\left(S_{1}, a\right) \rightarrow(O, e)$ be an $S_{\chi}$-fibration. Let $(Z, u) \in \chi, g:(Z, u) \rightarrow\left(S_{2}, c\right)$ be an S-map and $G:$ $(Z, u) \rightarrow P(O, e)$ is an S-homotopy with $G_{0}=f_{c e} \circ g$. Then $G_{0}=f_{c e} \circ g=f_{a e} \circ(\gamma \circ g)$. Since $\gamma \circ g$ is an S-map from $(Z, u)$ into $\left(S_{1}, a\right)$ and $f_{a e}$ is an $S_{\chi}$-fibration, then there is an S-homotopy $H:(Z, u) \rightarrow P\left(S_{1}, a\right)$ such that $H_{0}=\gamma \circ g$ and $f_{a e} \circ H_{t}=G_{t}$ for all $t \in I$. That is $\underline{f}$ is an $T_{\chi}$-fibration.

The other case, let $f_{c e}:\left(S_{2}, a\right) \rightarrow(O, e)$ be an $S_{\chi}$-fibration. Let $(Z, u) \in \chi, g:(Z, u) \rightarrow\left(S_{2}, c\right)$ be an S-map and $G:(Z, u) \rightarrow P(O, e)$ be an S-homotopy with $G_{0}=f_{c e} \circ g$. Then there is an S-homotopy $F:(Z, u) \rightarrow P\left(S_{2}, c\right)$ such that $F_{0}=g$ and $f_{c e} \circ F_{t}=G_{t}$ for all $t \in I$. Define an S-homotopy $H:(Z, u) \rightarrow P\left(S_{1}, a\right)$ by $H=\widehat{\gamma} \circ F$. Then $H_{0}=\gamma \circ F_{0}=\gamma \circ g$ and

$$
f_{a e} \circ H_{t}=f_{a e} \circ\left(\gamma \circ F_{t}\right)=f_{c e} \circ F_{t}=G_{t}
$$

for all $t \in I$.That is $\underline{f}$ is an $T_{\chi}$-fibration.
Let $S(a c \gamma)$ be an st-space. If there exists an S-map $\gamma^{\prime}$ : $\left(S_{1}, a\right) \rightarrow\left(S_{2}, c\right)$ such that $\gamma \circ \gamma^{\prime}=i d$ then $S(a c \gamma)$ will be called an extendable by an S-map $\gamma^{\prime}$.
Theorem 4.7. Let $S(a c \gamma)$ be an extendable by an S-map $\gamma^{\prime}$. Then for every $T_{\chi}$-fibration $\underline{f}: S(a c \gamma) \rightarrow(O, e), f_{a e}$ is an $S_{\chi}$-fibration.
Proof. Let $(Z, u) \in \chi, g:(Z, u) \rightarrow\left(S_{1}, a\right)$ be an S-map and $G:(Z, u) \rightarrow P(O, e)$ be an S-homotopy with $G_{0}=f_{a e} \circ g$. Then $G_{0}=f_{a e} \circ g=f_{c e} \circ\left(\gamma^{\prime} \circ g\right)$. Since $\gamma^{\prime} \circ g$ is an S-map from $(Z, u)$ into $\left(S_{2}, c\right)$ and $\underline{f}$ is an $T_{\chi}$-fibration, then there is an S-homotopy $H:(Z, \bar{u}) \rightarrow P\left(S_{1}, a\right)$ such that $H_{0}=$ $\gamma \circ\left(\gamma^{\prime} \circ g\right)=g$ and $f_{a e} \circ H_{t}=G_{t}$ for all $t \in I$. That is $f_{a e}$ is an $S_{\chi}$-fibration.

## 5 Pullback t-maps

One notable exception is that the pullback of approximate fibration need not be an approximate fibration. In this
section, we show that the pullbacks of $T_{\chi}$-fibrations are $T_{\chi}$-fibrations.
Proposition 5.1 Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an t-map and $k:\left(O^{\prime}, e^{\prime}\right) \rightarrow(O, e)$ be an S-map. Then the triple $S(a c \gamma)_{k}=$ $\left\{\left(S_{k 1}, e^{\prime} \times a\right),\left(S_{k 2}, e^{\prime} \times c\right), \gamma^{k}\right\}$ is an st-space such that

$$
\begin{aligned}
& S_{k 1}=\left\{(x, s) \in O^{\prime} \times S_{1} \mid k(x)=f_{a e}(s)\right\} \\
& S_{k 2}=\left\{(x, s) \in O^{\prime} \times S_{2} \mid k(x)=f_{c e}(s)\right\}
\end{aligned}
$$

and $\gamma^{k}(x, s)=(x, \gamma(s))$ for all $(x, s) \in S_{k 2}$.
Proof. Since the maps $k$ and $f_{a e}$ are S-maps, then for all $(x, s),\left(x^{\prime}, s^{\prime}\right) \in S_{k 1}$,

$$
k\left(x e^{\prime} x^{\prime}\right)=k(x) e k\left(x^{\prime}\right)=f_{a e}(s) e f_{a e}\left(s^{\prime}\right)=f_{a e}\left(s a s^{\prime}\right)
$$

Hence $(x, s)\left(e^{\prime} \times a\right)\left(x^{\prime}, s^{\prime}\right)=\left(x e^{\prime} x^{\prime}, s a s^{\prime}\right) \in S_{k 1}$. That is, $\left(S_{k 1}, e^{\prime} \times a\right)$ is an S-subspace of ( $\left.O^{\prime} \times S_{1}, e^{\prime} \times a\right)$. Similarly, $\left(S_{k 2}, e^{\prime} \times c\right)$ is an $S$-subspace of $\left(O^{\prime} \times S_{2}, e^{\prime} \times c\right)$.

Note that for all $(x, s) \in S_{k 2}, f_{a e}(\gamma(s))=f_{c e}(s)=k(x)$, that is, $(x, \gamma(s)) \in S_{k 1}$. Hence $\gamma^{k}$ is a function takes $S_{k 2}$ into $S_{k 1}$. Since $\gamma^{k}=i d \times \gamma \mid S_{k 2}$, then $\gamma^{k}$ is an S-map. Hence the triple $S(a c \gamma)_{k}$ is an st-space.

In the last proposition, the st-space $S(a c \gamma)_{k}$ is called a pullback st-space of $S(a c \gamma)$ induced from $\underline{f}$ by $k$.

Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an t-map and $k:\left(O^{\prime}, \overline{e^{\prime}}\right) \rightarrow(O, e)$ be an S-map. The t-map $\underline{f}^{k}: S(a c \gamma)_{k} \rightarrow\left(O^{\prime}, e^{\prime}\right)$ which is given by $\underline{f}^{k}=\left\{f_{a}^{k}, f_{c}^{k}\right\}$ is called a pullback t-map of $\underline{f}$ induced by $k$, where $f_{a}^{k}(x, s)=x$ and $f_{c}^{k}\left(x, s^{\prime}\right)=x$ for all $(x, s) \in S_{k 1}$, $\left(x, s^{\prime}\right) \in S_{k 2}$.
Theorem 5.2. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an $T_{\chi}$-fibration and $\left.k:\left(O^{\prime}, e^{\prime}\right) \rightarrow \overline{(O}, e\right)$ be an S-map. Then the pullback $\underline{f}^{k}$ of $\underline{f}$ induced by $k$ is an $T_{\chi}$-fibration.
Proof. Let $(Z, u) \in \chi, g^{\prime}:(Z, u) \rightarrow\left(S_{k 2}, e^{\prime} \times c\right)$ be an S-map and $G^{\prime}:(Z, u) \rightarrow P\left(O^{\prime}, e^{\prime}\right)$ be an S-homotopy with $G_{0}^{\prime}=f_{c}^{k} \circ g^{\prime}$. Define an S-map $g:(Z, u) \rightarrow\left(S_{2}, c\right)$ by $g(z)=\mathscr{P}_{2}\left(g^{\prime}(z)\right)$ and an S-homotopy $G:(Z, u) \rightarrow P(O, e)$ by $G(z)=k \circ G^{\prime}(z)$ for all $z \in Z$. Note that

$$
\begin{aligned}
G(z)(0) & =\left(k \circ G^{\prime}(z)\right)(0)=k\left(G^{\prime}(z)(0)\right)=k\left[f_{c}^{k}\left(g^{\prime}(z)\right)\right] \\
& =k\left(\mathscr{P}_{1}\left(g^{\prime}(z)\right)\right)=f_{c e}\left(\mathscr{P}_{2}\left(g^{\prime}(z)\right)\right)=f_{c e}(g(z))
\end{aligned}
$$

for all $z \in Z$. That is, $G_{0}=f_{c e} \circ g$. Since $\underline{f}$ is an $T_{\chi}$-fibration, then there is an S-homotopy $H:(Z, u) \rightarrow P\left(S_{1}, a\right)$ such that $H_{0}=\gamma \circ g$ and $f_{a e} \circ H_{t}=G_{t}$ for all $t \in I$.

Define an S-homotopy $H^{\prime}:(Z, u) \rightarrow P\left(S_{k 1}, e^{\prime} \times a\right)$ by $H^{\prime}(z)(t)=\left[G^{\prime}(z)(t), H(z)(t)\right]$ for all $z \in Z, t \in I$. Note that $f_{a}^{k} \circ H^{\prime}=G^{\prime}$ and

$$
\begin{aligned}
H^{\prime}(z)(0) & =\left[G^{\prime}(z)(0), H(z)(0)\right]=\left[f_{c}^{k}\left(g^{\prime}(z)\right), \gamma(g(z))\right] \\
& =\left[\mathscr{P}_{1}\left(g^{\prime}(z)\right), \gamma\left(\mathscr{P}_{2}\left(g^{\prime}(z)\right)\right)\right] \\
& =\gamma^{k}\left[\mathscr{P}_{1}\left(g^{\prime}(z)\right), \mathscr{P}_{2}\left(g^{\prime}(z)\right)\right] \\
& =\gamma^{k}\left(g^{\prime}(z)\right)=\left(\gamma^{k} \circ g^{\prime}\right)(z)
\end{aligned}
$$

for all $z \in Z$. That is, $H_{0}^{\prime}=\gamma^{k} \circ g^{\prime}$. Hence $\underline{f}^{k}$ is an $T_{\chi}$-fibration.

## 6 Covering homotopy theorem

The main result of this section is a covering homotopy theorem for st-maps into $T_{\chi}$-fibrations. We first have need of the following two results which are the corresponding results for a covering homotopy theorem in Hurewicz fibrations [7].

Theorem 6.1. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an $T_{\chi}$-fibration and let $k, k^{\prime}:(Z, u) \xrightarrow{\rightarrow} P\left(S_{2}, c\right)$ be two S-maps. Let $k_{0} \simeq_{s} k_{0}^{\prime}$ and $\widehat{f_{c e}} \circ k \simeq_{s} \widehat{f_{c e}} \circ k^{\prime}$ by S-homotopies $G:(Z, u) \rightarrow P\left(S_{2}, c\right)$ and $R:(Z, u) \rightarrow P[P(O), \underline{e}]$, respectively. If $R_{0 t}=f_{c e} \circ G_{t}$ for all $t \in I$, then there exists an S-homotopy $F:(Z, u) \rightarrow$ $P\left[P\left(S_{1}\right), \underline{a}\right]$ between $\widehat{\gamma} \circ k$ and $\widehat{\gamma} \circ k^{\prime}$ such that $F_{0 t}=\gamma \circ G_{t}$ and $f_{a e} \circ F_{r t}=R_{r t}$ for all $r, t \in I$.

## Proof. Let

$$
A=(I \times\{0\}) \cup(\{0\} \times I) \cup(I \times\{1\}) \subset I \times I
$$

For every $(r, t) \in A$, define an S-map $\ll(r, t) \gg:(Z, u) \rightarrow$ $\left(S_{2}, c\right)$ by

$$
\ll(r, t) \gg(z)=\left\{\begin{array}{l}
k(z)(r), \quad t=0 \\
G(z)(t), r=0 \\
k^{\prime}(z)(z), t=1
\end{array}\right.
$$

for all $z \in Z$. Recall ([4], P. 100) that there is a homeomorphism $m: I \times I \rightarrow I \times I$ taking $A$ onto $I \times\{0\}$. By hypothesis, note that for every $(r, t) \in A$,

$$
\left(f_{c e} \circ \ll(r, t) \gg\right)(z)=R_{r t}(z)=(R(z)(r))(t)
$$

for all $z \in Z$. For every $r \in I$, define an S-map $g^{r}:(Z, u) \rightarrow\left(S_{2}, c\right)$ and an S-homotopy $R^{r}:(Z, u) \rightarrow P(O, e)$ by $g^{r}(z)=\ll m^{-1}(r, 0) \gg(z)$ and

$$
R^{r}(z)(t)=\left(R(z)\left(\mathscr{P}_{1}\left[m^{-1}(r, t)\right]\right)\right)\left(\mathscr{P}_{2}\left[m^{-1}(r, t)\right]\right)
$$

for all $z \in Z, t \in I$. Note that for every $r \in I$,

$$
\begin{aligned}
R^{r}(z)(0)= & \left(R(z)\left(\mathscr{P}_{1}\left[m^{-1}(r, 0)\right]\right)\right)\left(\mathscr{P}_{2}\left[m^{-1}(r, 0)\right]\right) \\
= & \left(f _ { c e } \circ \ll \left(\mathscr{P}_{1}\left[m^{-1}(r, 0)\right]\right.\right. \\
& \left.\left.\mathscr{P}_{2}\left[m^{-1}(r, 0)\right]\right) \gg\right)(z) \\
= & \left(f_{c e} \circ \ll m^{-1}(r, 0) \gg\right)(z)=\left(f_{c e} \circ g^{r}\right)(z)
\end{aligned}
$$

That is, $R_{0}^{r}=f_{c e} \circ g^{r}$. Then for every $r \in I$, since $\underline{f}$ is an $T_{\chi^{-}}$ fibration, there exists an S-homotopy $F^{r}:(Z, u) \xrightarrow{\rightarrow} P\left(S_{1}, a\right)$ such that $F_{0}^{r}=\gamma \circ g^{r}$ and $f_{a e} \circ F_{t}^{r}=R_{t}^{r}$ for all $t \in I$. Define an S-homotopy $F:(Z, u)) \rightarrow P\left[P\left(S_{1}\right), \underline{a}\right]$ by

$$
(F(z)(r))(t)=F^{\mathscr{P}_{1}[m(r, t)]}(z)\left(\mathscr{P}_{2}[m(r, t)]\right)
$$

for all $z \in Z, r, t \in I$. Note that

$$
\begin{aligned}
(F(z)(r))(0)= & F^{\mathscr{P}_{1}[m(r, 0)]}(z)\left(\mathscr{P}_{2}[m(r, 0)]\right) \\
= & F^{\mathscr{P}_{1}[m(r, 0)]}(z)(0) \\
= & \left(\gamma \circ g^{\mathscr{P}_{1}[m(r, 0)]}\right)(z) \\
= & \left(\gamma \circ \ll m ^ { - 1 } \left(\mathscr{P}_{1}[m(r, 0)],\right.\right. \\
& 0) \gg)(z) \\
= & \left(\gamma \circ \ll m ^ { - 1 } \left(\mathscr{P}_{1}[m(r, 0)],\right.\right. \\
& \left.\left.\mathscr{P}_{2}[m(r, 0)]\right) \gg\right)(z) \\
= & \left(\gamma \circ \ll m^{-1}(m(r, 0)) \gg\right)(z) \\
= & (\gamma \circ \ll(r, 0) \gg)(z) \\
= & (\gamma \circ k(z))(r) \\
= & ((\widehat{\gamma} \circ k)(z))(r)
\end{aligned}
$$

and similarly, $(F(z)(r))(1)=\left(\left(\widehat{\gamma} \circ k^{\prime}\right)(z)\right)(r)$ for all $r \in$ $I, z \in Z$. That is, $F$ is an S-homotopy between $\widehat{\gamma} \circ k$ and $\widehat{\gamma} \circ k^{\prime}$. Also note that

$$
\begin{aligned}
F_{o t}(z) & =(F(z)(0))(t)=F^{\mathscr{P}_{1}[m(0, t)]}(z)\left(\mathscr{P}_{2}[m(0, t)]\right) \\
& =F^{\mathscr{P}_{1}[m(r, 0)]}(z)(0)=\left(\gamma \circ g^{\mathscr{P}_{1}[m(0, t)]}\right)(z) \\
& =\left(\gamma \circ \ll m^{-1}\left(\mathscr{P}_{1}[m(0, t)], 0\right) \gg\right)(z) \\
& =\left(\gamma \circ \ll m^{-1}\left(\mathscr{P}_{1}[m(0, t)], \mathscr{P}_{2}[m(0, t)]\right) \gg\right)(z) \\
& =\left(\gamma \circ \ll m^{-1}(m(0, t)) \gg\right)(z) \\
& =(\gamma \circ \ll(0, t) \gg)(z)=\left(\gamma \circ G_{t}\right)(z)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(f_{a e} \circ F_{r t}\right)(z)= & \left(f_{a e} \circ F_{r}(z)\right)(t)=\left(f_{a e} \circ F^{\mathscr{P}_{1}[m(r, t)]}(z)\right) \\
& \left(\mathscr{P}_{2}[m(r, t)]\right) \\
= & R^{\mathscr{P}_{1}[m(r, t)]}(z)\left(\mathscr{P}_{2}[m(r, t)]\right) \\
= & \left\{R ( z ) \left(\mathscr { P } _ { 1 } \left[m ^ { - 1 } \left\{\mathscr{P}_{1}[m(r, t)],\right.\right.\right.\right. \\
& \left.\left.\left.\left.\mathscr{P}_{2}[m(r, t)]\right\}\right]\right)\right\} \\
& \left(\mathscr{P}_{2}\left[m^{-1}\left\{\mathscr{P}_{1}[m(r, t)], \mathscr{P}_{2}[m(r, t)]\right\}\right]\right) \\
= & \left\{R(z)\left(\mathscr{P}_{1}\left[m^{-1}\{m(r, t)\}\right]\right)\right\} \\
& \left(\mathscr{P}_{2}\left[m^{-1}\{m(r, t)\}\right]\right) \\
= & \left\{R(z)\left(\mathscr{P}_{1}[r, t]\right)\right\}\left(\mathscr{P}_{2}[r, t]\right) \\
= & (R(z)(r))(t)=R_{r t}(z)
\end{aligned}
$$

for all $r, t \in I, z \in Z$. That is, $F_{0 t}=\gamma \circ G_{t}$ and $f_{a e} \circ F_{r t}=R_{r t}$ for all $r, t \in I$.
Corollary 6.2. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an $T_{\chi}$-fibration. Let $\left.k, k^{\prime}:(Z, u) \rightarrow \overline{P( } S_{2}, c\right)$ be S-maps such that $k_{0}=k_{0}^{\prime}$ and $\widehat{f_{c e}} \circ k=\widehat{f_{c e}} \circ k^{\prime}$. Then there exists S-homotopy $F:(Z, u) \rightarrow$ $P\left[P\left(S_{1}\right), \underline{a}\right]$ between $\widehat{\gamma} \circ k$ and $\widehat{\gamma} \circ k^{\prime}$ such that $F_{0 t}=\gamma \circ k_{0}=$ $\gamma \circ k_{0}^{\prime}$ and $f_{a e} \circ F_{r t}=f_{c e} \circ k_{r}$ for all $r, t \in I$.
Proof. Define an S-homotopy $G:(Z, u) \rightarrow P\left(S_{2}, c\right)$ by $G(z)(t)=k_{0}(z)$ and define an S-homotopy $R:(Z, u)) \rightarrow P[P(O), \underline{e}]$ by $\left((R(z)(r))(t)=\left(f_{c e} \circ k_{r}\right)(z)\right.$ for all $r, t \in I, z \in Z$. Then by using the above theorem, one can get the desired S-homotopy.

Definition 6.3. Let $f: S(a c \gamma) \rightarrow(O, e)$ and $f^{\prime}: Q(u v \mu) \rightarrow$ $(O, e)$ be two t-maps. An st-map $\underline{d}: Q(u v \bar{\mu}) \rightarrow S(a c \gamma)$ is called an $\left(f, f^{\prime}\right)$-preserving if $f_{a e} \circ d_{u a}=f_{u e}^{\prime}$ and the $S$ homotopy in the definition of $\underline{d}$ between $d_{u a} \circ \mu$ and $\gamma \circ d_{v c}$, say $M$, can be chosen such that $f_{a e} \circ M_{t}=f_{v e}^{\prime}$ for all $t \in I$.
Theorem 6.4. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an $T_{\chi}$-fibration and $S(a c \gamma)$ be an extendable by an S-map $\gamma^{\prime}$. Let $\underline{d}: Q(u \nu \mu) \rightarrow S(a c \gamma)$ be an st-map and $\underline{D}: Q(u v \mu) \rightarrow P(O, e)$ be an t-map such that $\underline{d}$ is an $\left(f,[\underline{D}]_{0}\right)$-preserving. Then there exists an st-map $\underline{\bar{H}}: Q(u \nu \mu) \rightarrow P S(a c \widehat{\gamma})$ such that $[\underline{H}]_{0} \equiv \underline{d}$, $\underline{f} \circ[\underline{H}]_{r}=[\underline{D}]_{r}$, for all $r \in I$, and $\underline{H}$ is an $(\underline{f}, \underline{D})$-preserving.
Proof. Let $M:\left(Q_{2}, v\right) \rightarrow P\left(S_{1}, a\right)$ be an S-homotopy between S-maps $M_{0}=\gamma \circ d_{v c}$ and $M_{1}=d_{u a} \circ \mu$. Since $\underline{d}$ is an $\left(\underline{f},[\underline{D}]_{0}\right)$-preserving, then $f_{a e} \circ d_{u a}=\left[D_{u \underline{e}}\right]_{0}$ and $f_{a e} \circ \bar{M}_{t}=\left[D_{v \underline{e}}\right]_{0}$ for all $t \in I$. Then

$$
f_{c e} \circ d_{v c}=f_{a e} \circ\left(\gamma \circ d_{v c}\right)=f_{a e} \circ M_{0}=\left[D_{v e}\right]_{0}
$$

and

$$
f_{c e} \circ\left(\gamma^{\prime} \circ d_{u a}\right)=f_{a e} \circ d_{u a}=\left[D_{u e}\right]_{0}
$$

Since $\underline{f}$ is an $T_{\chi}$-fibration, then, for the part $\left[D_{u u}\right]_{0}=f_{c e} \circ\left(\gamma^{\prime} \circ d_{u a}\right)$, there exists an S-homotopy $H^{\prime}:\left(Q_{1}, u\right) \rightarrow P\left(S_{1}, a\right)$ such that $H_{0}^{\prime}=\gamma \circ\left(\gamma^{\prime} \circ d_{u a}\right)=d_{u a}$ and $f_{a e} \circ H_{r}^{\prime}=\left[D_{u e}\right]_{r}$ for all $r \in I$. For the part $\left[D_{v e}\right]_{0}=f_{c e} \circ d_{v c}$, similarly, there exists an S-homotopy $H^{\prime \prime}:\left(Q_{2}, v\right) \rightarrow P\left(S_{1}, a\right)$ such that $H_{0}^{\prime \prime}=\gamma \circ d_{v c}$ and $f_{a e} \circ H_{r}^{\prime \prime}=\left[D_{v e}\right]_{r}$ for all $r \in I$.

First we show that the pair

$$
\underline{H}=\left\{H_{u \underline{a}}=H^{\prime}, H_{v \underline{c}}=\widehat{\gamma^{\prime}} \circ H^{\prime \prime}\right\}: Q(u v \mu) \rightarrow P S(a c \widehat{\gamma})
$$

is an st-map. Consider the two S-homotopies $\widehat{\gamma^{\prime}} \circ\left(H_{u \underline{a}} \circ \mu\right)$, $H_{v \underline{c}}:\left(Q_{2}, v\right) \rightarrow P\left(S_{2}, c\right)$. We get that

$$
\begin{aligned}
{\left[\widehat{\gamma^{\prime}} \circ\left(H_{u \underline{a}} \circ \mu\right)\right]_{0} } & =\left[\widehat{\gamma^{\prime}} \circ\left(H^{\prime} \circ \mu\right)\right]_{0}=\gamma^{\prime} \circ\left(H_{0}^{\prime} \circ \mu\right) \\
& =\gamma^{\prime} \circ\left(d_{u a} \circ \mu\right) \\
& \simeq_{s} \gamma^{\prime} \circ\left(\gamma \circ d_{v c}\right) \\
& =\gamma^{\prime} \circ H_{0}^{\prime \prime}=\left[H_{v \underline{c}}\right]_{0}
\end{aligned}
$$

$$
\begin{aligned}
f_{c e} \circ\left[\widehat{\gamma^{\prime}} \circ\left(H_{u \underline{u}} \circ \mu\right)\right]_{r} & =f_{c e} \circ\left(\gamma^{\prime} \circ\left(H_{r}^{\prime} \circ \mu\right)\right) \\
& =\left(f_{a e} \circ H_{r}^{\prime}\right) \circ \mu \\
& =\left[D_{u \underline{e}}\right]_{r} \circ \mu=\left[D_{v \underline{e}}\right]_{r} \\
& =f_{a e} \circ H_{r}^{\prime \prime} \\
& =\left(f_{a e} \circ \gamma\right) \circ\left(\gamma^{\prime} \circ H_{r}^{\prime \prime}\right) \\
& =f_{c e} \circ\left[\widehat{\gamma^{\prime}} \circ H^{\prime \prime}\right]_{r} \\
& =f_{c e} \circ\left[H_{v \underline{c}}\right]_{r}
\end{aligned}
$$

for all $r \in I$. Then we can apply Theorem (6.1), take $Z=Q_{2}, k=\widehat{\gamma^{\prime}} \circ\left(H_{u \underline{a}} \circ \mu\right)$ and $k^{\prime}=H_{v \underline{c}}$. Note that $k_{0} \simeq_{s} k_{0}^{\prime}$ by an S-homotopy $\bar{G}=\widehat{\gamma^{\prime}} \circ M$ and $\widehat{f_{c e}} \circ k=\widehat{f_{c e}} \circ k^{\prime}$, here
we can define an S-homotopy $R:\left(Q_{2}, v\right) \rightarrow P\left[P\left(S_{1}\right), \underline{a}\right]$ by $(R(q)(r))(t)=\left(f_{c e} \circ k_{r}^{\prime}\right)(q)$ for all $q \in Q_{2}, r, t \in I$. Since

$$
\begin{aligned}
R_{0 t}(q) & =(R(q)(0))(t)=\left(f_{c e} \circ k_{0}^{\prime}\right)(q)=\left(f_{c e} \circ\left[H_{u \underline{a}}\right]_{0}\right)(q) \\
& =\left(f_{c e} \circ\left(\gamma^{\prime} \circ H_{0}^{\prime \prime}\right)\right)(q)=\left(f_{a e} \circ H_{0}^{\prime \prime}\right)(q) \\
& =\left[D_{v e}\right]_{0}(q)=\left(f_{a e} \circ M_{t}\right)(g) \\
& =\left(f_{c e} \circ\left(\gamma^{\prime} \circ M_{t}\right)\right)(q)=\left(f_{c e} \circ G_{t}\right)(q)
\end{aligned}
$$

for all $q \in Q_{2}, t \in I$, then there is an S-homotopy $F:\left(Q_{2}, v\right) \rightarrow P\left[P\left(S_{1}\right), \underline{a}\right]$ between $\widehat{\gamma} \circ k$ and $\widehat{\gamma} \circ k^{\prime}$ such that $F_{0 t}=\gamma \circ G_{t}$ and $f_{a e} \circ F_{r t}=R_{r t}$ for all $r \in I$. Then

$$
H_{u \underline{a}} \circ \mu=\widehat{\gamma} \circ\left(\widehat{\gamma^{\prime}} \circ\left(H_{u \underline{a}} \circ \mu\right)\right) \simeq_{s} \widehat{\gamma} \circ H_{v \underline{c}} .
$$

That is, $\underline{H}=\left\{H_{u \underline{a}}, H_{v \underline{C}}\right\}: Q(u v \mu) \rightarrow P S(a c \widehat{\gamma})$ is an st-map. Note that $\left[H_{u \underline{a}}\right]_{0} \circ \mu=d_{u a} \circ \mu$,

$$
\gamma \circ\left[H_{v \underline{c}}\right]_{0}=\gamma \circ d_{v c}, f_{a e} \circ\left[H_{u \underline{u}}\right]_{r}=\left[D_{u \underline{e}}\right]_{r}
$$

and $f_{c e} \circ\left[H_{v \underline{c}}\right]_{r}=\left[D_{v \underline{e}}\right]_{r}$. That is, $[\underline{H}]_{0} \equiv \underline{d}$ and $\underline{f} \circ[\underline{H}]_{r}=$ $[\underline{D}]_{r}$ for all $r \in I$. For a preserving property, we get that $f_{a e} \circ\left[H_{u a}\right]_{r}=\left[D_{u e}\right]_{r}$ and

$$
\begin{aligned}
\left(f_{a e} \circ F_{r t}\right)(q) & =\left(f_{a e} \circ F_{r t}\right)(q)=\left(f_{c e} \circ k_{r}^{\prime}\right)(q) \\
& =\left(f_{c e} \circ\left[H_{v \underline{c}}\right]_{r}\right)(q) \\
& =\left(f_{c e} \circ\left(\gamma^{\prime} \circ H_{r}^{\prime \prime}\right)(q)\right. \\
& =\left(f_{a e} \circ H_{r}^{\prime \prime}\right)(q)=\left[D_{v e}\right]_{r}(q)
\end{aligned}
$$

for all $q \in Q_{2}, r, t \in I$. That is, $\underline{H}$ is an $(\underline{f}, \underline{D})$-preserving. $\square$
Theorem 6.5. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an $T_{\chi}$-fibration and $S(a c \gamma)$ be an extendable by an S-map $\gamma^{\prime}$. Let $\underline{d}, \underline{d^{\prime}}$ : $Q(u v \mu) \rightarrow P S(a c \widehat{\gamma})$ be two st-maps such that there exist an st-map $\underline{g}: Q(u \nu \mu) \rightarrow P S(a c \widehat{\gamma})$ and an t-map $\underline{R}: Q(u \nu \mu) \rightarrow$ $P[P(O), \underline{e}]$ with
$[\underline{g}]_{0} \equiv[\underline{d}]_{0},[\underline{g}]_{1} \equiv\left[\underline{d}^{\prime}\right]_{0},[\underline{R}]_{r 0}=\underline{f} \circ[\underline{d}]_{r},[\underline{R}]_{r 1}=\underline{f} \circ\left[\underline{d}^{\prime}\right]_{r}$, and $[\underline{g}]_{t}$ is an $\left(\underline{f},[\underline{R}]_{0 t}\right)$-preserving for all $r, t \in I$. Then there exists an st-map $\underline{H}: Q(u v \mu) \rightarrow P P S(\underline{a c} \widehat{\gamma})$ such that

$$
[\underline{H}]_{0 t} \equiv[\underline{g}]_{t},[\underline{H}]_{r 0} \equiv[\underline{d}]_{r},[\underline{H}]_{r 1} \equiv\left[\underline{d}^{\prime}\right]_{r}
$$

for all $r, t \in I$, and $\underline{H}$ is an $(\underline{f}, \underline{R})$-preserving.
Proof. Since for every $t \in I,[\underline{g}]_{t}$ is an $\left(f,[\underline{R}]_{0 t}\right)$-preserving, then there exists an S-homotopy $\left.E^{t}:\left(Q_{2}, v\right) \rightarrow P\left(S_{1}\right), a\right)$ between two S-maps $E_{0}^{t}=\left[g_{u a}\right]_{t} \circ \mu$ and $E_{1}^{t}=\gamma \circ\left[g_{v c}\right]_{t}$ such that $f_{a e} \circ E_{s}^{t}=\left[R_{v e}^{\underline{\underline{e}}}\right]_{0 t}$ and $f_{a e} \circ\left[g_{u a}\right]_{t}=\left[R_{u \underline{\underline{e}}}\right]_{0 t}$ for all $s, t \in I$.

First we show that for every $r \in I,[\underline{d}]_{r}$ is an $\left(\underline{f},[\underline{R}]_{r 0}\right)$ preserving and $\left[\underline{d}^{\prime}\right]_{r}$ is an $\left(\underline{f},[\underline{R}]_{r 1}\right)$-preserving. For an stmap $[\underline{d}]$, in Theorem (6.1), consider $k=\widehat{\gamma^{\prime}} \circ\left(\left[d_{u a}\right] \circ \mu\right)$,

$$
k^{\prime}=\left(\widehat{\gamma^{\prime}} \circ \widehat{\gamma}\right) \circ\left[d_{v \underline{c}}\right], G(q)(s)=\left(\gamma^{\prime} \circ E_{s}^{0}\right)(q)
$$

and $(R(q)(r))(s)=\left(\left[R_{u e}\right]_{r 0} \circ \mu\right)(q)$ for all $s, r \in I, q \in Q_{2}$. Note that

$$
G_{0}=\gamma^{\prime} \circ E_{0}^{0}=\gamma^{\prime} \circ\left(\left[g_{u \underline{a}}\right]_{0} \circ \mu\right)=\gamma^{\prime} \circ\left(\left[d_{u \underline{a}}\right]_{0} \circ \mu\right)=k_{0}
$$

$$
\begin{gathered}
G_{1}=\gamma^{\prime} \circ E_{1}^{0}=\gamma^{\prime} \circ\left(\gamma \circ\left[g_{v \underline{c}}\right]_{0}\right)=\gamma^{\prime} \circ\left(\gamma \circ\left[d_{v \underline{c}}\right]_{0}\right)=k_{0}^{\prime}, \\
R_{r 0}=\left[R_{u \underline{e}}\right]_{r 0} \circ \mu=\left(f_{c e} \circ \gamma^{\prime}\right) \circ\left(\left[d_{u a}\right]_{r} \circ \mu\right)=f_{c e} \circ k_{r}, \\
R_{r 1}=\left[R_{u e}\right]_{r 0} \circ \mu=\left(f_{c e} \circ \gamma^{\prime}\right) \circ\left(\gamma \circ\left[d_{v \underline{c}}\right]_{r}\right)=f_{c e} \circ k_{r}^{\prime},
\end{gathered}
$$

and

$$
R_{0 s}=\left[R_{u \underline{e}}\right]_{00} \circ \mu=f_{a e} \circ E_{s}^{0}=\left(f_{c e} \circ \gamma\right) \circ E_{s}^{0}=f_{c e} \circ G_{s}
$$

for all $s, r \in I$. Then there exists an $S$-homotopy $F:\left(Q_{2}, v\right) \rightarrow P\left[P\left(S_{1}\right), \underline{a}\right]$ between $\widehat{\gamma} \circ k=\left[d_{u \underline{a}}\right] \circ \mu$ and $\widehat{\gamma} \circ k^{\prime}=\widehat{\gamma} \circ\left[d_{v \underline{c}}\right]$ such that $F_{0 s}=\gamma \circ G_{s}=E_{s}^{0}$ and

$$
f_{a e} \circ F_{r s}=R_{r s}=\left[R_{u \underline{e}}\right]_{r 0} \circ \mu=\left[R_{v \underline{e}}\right]_{r 0}
$$

for all $r, s \in I$. For every $r \in I$, define $\left.K^{r}:\left(Q_{2}, v\right) \rightarrow P\left(S_{1}\right), a\right)$ by $K^{r}(q)(s)=F_{r t}(q)$ for all $s, r \in I, q \in Q_{2}$; note that $K^{r}$ is homotopy between two S-maps $K_{0}^{r}=\left[d_{u \underline{a}}\right]_{r} \circ \mu$ and $K_{1}^{r}=\gamma \circ\left[d_{v \underline{c}}\right]_{r}$ such that $K_{s}^{0}=E_{s}^{0}, f_{a e} \circ K_{s}^{r}=\left[R_{v e}\right]_{r 0}$, and $f_{a e} \circ\left[d_{u \underline{a}}\right]_{r}=\left[R_{u e}\right]_{r 0}$ for all $s \in I$.

For an st-map [ $\left.\underline{d}^{\prime}\right]$, similarly, for every $r \in I$, there exists an S-homotopy $\left.K^{\prime r}:\left(Q_{2}, v\right) \rightarrow P\left(S_{1}\right), a\right)$ between two S-maps $K_{0}^{\prime r}=\left[d_{u \underline{a}}^{\prime}\right]_{r} \circ \mu$ and $K_{1}^{\prime r}=\gamma \circ\left[d_{v \underline{c}}^{\prime}\right]_{r}$ such that $K_{s}^{\prime 0}=E_{s}^{0}, f_{a e} \circ K_{s}^{\prime r}=\left[R_{v \underline{\underline{e}}}\right]_{r 1}$, and $f_{a e} \circ\left[d_{u \underline{a}}^{\prime}\right]_{r}=\left[R_{u \underline{\underline{e}}}\right]_{r 1}$ for all $s \in I$.

Let $A=(I \times\{0\}) \cup(\{0\} \times I) \cup(I \times\{1\}) \subset I \times I$. For every $(r, t) \in A$, define an st-map $[\underline{h}]_{(r, t)}: Q(u \nu \mu) \rightarrow S(a c \gamma)$ and an S-homotopy $M^{(r, t)}:\left(Q_{2}, v\right) \rightarrow P\left(S_{1}, a\right)$ by

$$
[\underline{h}]_{(r, t)}=\left\{\begin{array}{l}
{[\underline{d}]_{r} \quad t=0 ;} \\
{[\underline{g}]_{t} \quad r=0 ;} \\
{\left[\bar{d}^{\prime}\right]_{r} \quad t=1}
\end{array} \quad \text { and } \quad M^{(r, t)}=\left\{\begin{array}{l}
K^{r} \quad t=0 \\
E^{t} \quad r=0 \\
K^{\prime r} \quad t=1
\end{array}\right.\right.
$$

respectively. Note that for every $(r, t) \in A$,

$$
f_{a e} \circ\left[h_{u \underline{a}}\right]_{(r, t)}=\left[R_{u e}\right]_{r t}, f_{a e} \circ M_{s}^{(r, t)}=\left[R_{v e}\right]_{r t}
$$

for all $s \in I$, and $M_{0}^{(r, t)}$ is S-homotopy between $M_{0}^{(r, t)}=$ $\left[h_{u \underline{a}}\right]_{(r, t)} \circ \mu$ and $M_{1}^{(r, t)}=\gamma \circ\left[h_{v \underline{c}}\right]_{(r, t)}$.

Recall ([4], P. 100) that there is a homeomorphism $m$ : $I \times I \rightarrow I \times I$ taking $A$ onto $I \times\{0\}$. For every $r \in I$, define an st-map $\underline{D^{r}}: Q(u v \mu) \rightarrow P(O, e)$ by $\left[\underline{D^{r}}\right]_{t}=\left\{\left[D_{u \underline{e}}^{r}\right],\left[D_{v \underline{e}}^{r}\right]\right\}$ where

$$
\left[D_{u \underline{e}}^{r}\right]_{t}=\left[R_{u \underline{e}}\right]_{\mathscr{P}_{1}\left[m^{-1}(r, t)\right] \mathscr{P}_{2}\left[m^{-1}(r, t)\right]}
$$

and

$$
\left[D_{\underline{v e}}^{r}\right]_{t}=\left[R_{v \underline{\underline{e}}}\right]_{\mathscr{P}_{1}\left[m^{-1}(r, t)\right] \mathscr{P}_{2}\left[m^{-1}(r, t)\right]}
$$

for all $t \in I$. Consider an st-map $\underline{h^{r}}=[\underline{h}]_{m^{-1}(r, 0)}$ and an S-homotopy $N^{r}=M^{m^{-1}(r, 0)}$, we get that $f_{a e} \circ N_{s}^{r}=\left[D_{v e}^{r e}\right]_{r 0}$ for all $s \in I, f_{a e} \circ\left[h_{u \underline{u}}\right]_{m^{-1}(r, 0)}=\left[D_{u \underline{e}}^{r}\right]_{0}$, and $N^{r}$ is an S-homotopy between $N_{0}^{r}=\left[h_{u a}\right]_{m^{-1}(r, 0)}^{=} \circ \mu$ and $N_{1}^{r}=\gamma \circ\left[h_{v \underline{c}}\right]_{m^{-1}(r, 0)}$. That is, for every $r \in I$, an st-map $\underline{h}^{r}$ is an $\left(\underline{f},\left[\underline{D^{r}}\right]_{0}\right)$-preserving. Then by the Theorem (6.4), there exist an st-map $\underline{H^{r}}: Q(u v \mu) \rightarrow P S(a c \widehat{\gamma})$ such that
$\left[\underline{H^{r}}\right]_{0} \equiv \underline{h^{r}}, f \circ\left[\underline{H^{r}}\right]_{t}=\left[\underline{D^{r}}\right]_{t}$ for all $t \in I$, and $\underline{H^{r}}$ is an $\left(\underline{f}, \underline{D^{r}}\right)$-preserving.

Hence the desired an st-map $\underline{H}: Q(u \nu \mu) \rightarrow P P S(\underline{a c} \widehat{\widehat{\gamma}})$ is given by

$$
[\underline{H}]_{r t}=\left[\underline{H}^{\mathscr{P}_{1}[m(r, t)]}\right]_{\mathscr{P}_{2}[m(r, t)]}
$$

for all $r, t \in I$.
Corollary 6.6. Let $\underline{f}: S(a c \gamma) \rightarrow(O, e)$ be an $T_{\chi}$-fibration and $S(a c \gamma)$ be an extendable by an S-map $\gamma^{\prime}$. Let $\underline{d}, \underline{d^{\prime}}$ : $Q(u v \mu) \rightarrow P S(a c \widehat{\gamma})$ be two st-maps such that there exists an st-map $\underline{g}: Q(u \nu \mu) \rightarrow P S(a c \widehat{\gamma})$ with $[\underline{g}]_{0} \equiv[\underline{d}]_{0},[\underline{g}]_{1} \equiv$ $\left[\underline{d^{\prime}}\right]_{0}, \underline{f} \circ[\underline{\underline{d}}]_{r}=\underline{f} \circ\left[\underline{d}^{\prime}\right]_{r}$ for all $r \in I$, and $\underline{g}$ is an $(\underline{f}, \underline{f} \circ$ $\underline{d})$-preserving. Then there exists an st-map $\underline{H}: Q(u \nu \bar{\mu}) \rightarrow$ $\operatorname{PPS}(\underline{a c} \widehat{\widehat{\gamma}})$ such that

$$
[\underline{H}]_{0 t} \equiv[\underline{g}]_{t},[\underline{H}]_{r 0} \equiv[\underline{d}]_{r},[\underline{H}]_{r 1} \equiv\left[\underline{d}^{\prime}\right]_{r}
$$

for all $r, t \in I$, and $\underline{H}$ is an $(\underline{f}, \underline{f} \circ \underline{d})$-preserving.
Proof. Define an t-map $\underline{R}: Q(u v \mu) \rightarrow P[P(O), \underline{e}]$ by $[\underline{H}]_{r t}=\underline{f} \circ[\underline{d}]_{r}$ for all $r, t \in I$. Then by using the above theorem, one can get the desired st-map $H$.

## $7 S_{\chi}$-approximate fibrations

In this section, we first give the notion of an approximate fibration in homotopy theory for topological semigroups. Next, we give the relation between the $T_{\mathscr{N}_{\pi}}$-fibration and $S_{\mathcal{N}_{\pi}}$-approximate fibration.
Definition 7.1. Let $(S, a)$ and $(O, e)$ be S-spaces with compact metrizable spaces $S$ and $O$. An S-map $f:(S, a) \rightarrow(O, e)$ is called an $S_{\chi}$-approximate fibration if for every $S$-space $(Z, u) \in \chi$ and given $\varepsilon>0$, there exists $\delta>0$ such that whenever $g:(Z, u) \rightarrow(S, a)$ and $G:(Z, u) \rightarrow P(O, e) \quad$ are $\quad \rightarrow$-maps with $d[G(z)(0),(f \circ g)(z)]<\delta$, then there is an S-homotopy $H:(Z, u) \rightarrow P(S, a)$ such that $H_{0}=g$ and $d[G(z)(t),(f \circ H(z))(t)]<\varepsilon$ for all $z \in Z, t \in I$.

One easily check that the map $f: S \rightarrow O$ is an approximate fibration if and only if the $S$-map $f:(S, \pi) \rightarrow(O, \pi)$ is an $S_{\mathcal{N}_{\pi}}$-approximate fibration.
Theorem 7.2. The composition of $S_{\chi}$-approximate fibrations is an $S_{\chi}$-approximate fibration.
Proof. Let $f:(S, a) \rightarrow(O, e)$ and $f^{\prime}:(O, e) \rightarrow\left(O^{\prime}, e^{\prime}\right)$ be $S_{\chi}$-approximate fibrations. Let $d$ and $d^{\prime}$ denote the metrics on $O$ and $O^{\prime}$, respectively. Let $(Z, u) \in \chi$ and let $\varepsilon>0$ be given. Let $g:(Z, u) \rightarrow(S, a)$ and $G:(Z, u) \rightarrow P\left(O^{\prime}, e^{\prime}\right)$ be S-maps. Since $f \circ g:(Z, u) \rightarrow(O, e)$ is an S-map and $f^{\prime}$ is an $S_{\chi}$-approximate fibration, then there exists $\delta>0$ such that whenever

$$
d^{\prime}\left[G(z)(0),\left[f^{\prime} \circ(f \circ g)\right](z)\right]<\delta
$$

for all $z \in Z$, then there exists an S-homotopy $F:(Z, u) \rightarrow$ $P(O, e)$ such that $F_{0}=f \circ g$ and
$d^{\prime}\left[G(z)(t),\left(f^{\prime} \circ F(z)\right)(t)\right]<\varepsilon / 2$
for all $z \in Z, t \in I$. Since $f^{\prime}$ is continuous and $\varepsilon / 2>0$, then there exists $\delta^{\prime}>0$ such that
$d(x, y)<\delta^{\prime} \Longrightarrow d^{\prime}\left(f^{\prime}(x), f^{\prime}(y)\right)<\varepsilon / 2$
for all $x, y \in O$. For $\delta^{\prime}>0$, since $F_{0}=f \circ g$, then $d[F(z)(0),(f \circ g)(z)]=0<\delta$ for all $z \in Z$. And since $f$ is an $S_{\chi}$-approximate fibration, then there is an S-homotopy $H:(Z, u) \rightarrow P(S, a)$ such that $H_{0}=g$ and $d[F(z)(t),(f \circ H(z))(t)]<\delta^{\prime}$ for all $z \in Z, t \in I$. From (2), we get
$d^{\prime}\left[\left(f^{\prime} \circ F\right)(z)(t),\left[\left(f^{\prime} \circ f\right) \circ H(z)\right](t)\right]<\varepsilon / 2$
for all $z \in Z, t \in I$. From (1) and (3), then

$$
\begin{aligned}
& d^{\prime}\left[G(z)(t),\left[\left(f^{\prime} \circ f\right) \circ H(z)\right](t)\right] \\
\leq & d^{\prime}\left[G(z)(t),\left(f^{\prime} \circ F\right)(z)(t)\right] \\
+ & d^{\prime}\left[\left(f^{\prime} \circ F(z)\right)(t),\left[\left(f^{\prime} \circ f\right) \circ H\right](z)(t)\right] \\
< & \varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

for all $z \in Z, t \in I$. Hence $f^{\prime} \circ f:(S, a) \rightarrow\left(O^{\prime}, e^{\prime}\right)$ is an $S_{\chi}$-approximate fibration.

Let $f:(S, \pi) \rightarrow(O, \pi)$ be an S-map with compact metrizable spaces $S$ and $O$. Let $d_{s}$ and $d_{o}$ be metric functions on $S$ and $O$, respectively. Let $(S \times O, \pi)$ be the product $S$-space of $(S, \pi)$ and $(O, \pi)$. Define a metric function $d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{d_{S}\left(x, x^{\prime}\right), d_{o}\left(y, y^{\prime}\right)\right\}$ on $S \times O$. It is clear that $(\mathscr{G}(f), \pi)$ is an S-subspace of $(S \times O, \pi)$, where $\mathscr{G}(f)=\{(s, f(s)): s \in S\}$ is the graph of $f$. For a positive integer $n>0$, let $\left(\mathscr{G}(f)_{n}, \pi\right)$ be an S-subspace of $(S \times O, \pi)$, where $\mathscr{G}(f)_{n}$ denotes the $(1 / n)$-neighborhood of $\mathscr{G}(f)$ in $S \times O$. For every positive integers $m \geq n>0$, define an st-spaces $\mathscr{G}_{f}\left(\gamma_{n m}\right)$ and an t-map $\mathscr{G}_{f n m}: \mathscr{G}_{f}\left(\gamma_{n m}\right) \rightarrow(O, \pi)$ by

$$
\mathscr{G}_{f}\left(\gamma_{n m}\right)=\left\{\left(\mathscr{G}(f)_{n}, \pi\right),\left(\mathscr{G}(f)_{m}, \pi\right), \gamma_{n m}\right\}
$$

and $\mathscr{G}_{f}=$

$$
\left\{f_{n}:\left(\mathscr{G}(f)_{n}, \pi\right) \rightarrow(O, \pi), f_{m}:\left(\mathscr{G}(f)_{m}, \pi\right) \rightarrow(O, \pi)\right\}
$$

where $\gamma_{n m}: \mathscr{G}(f)_{m} \rightarrow \mathscr{G}(f)_{n}$ is an inclusion S-map and $f_{n}$ and $f_{m}$ are S-maps given by $f_{n}(s, x)=x$ and $f_{m}\left(s^{\prime}, x^{\prime}\right)=x^{\prime}$ for all $(s, x) \in \mathscr{G}(f)_{n},\left(s^{\prime}, x^{\prime}\right) \in \mathscr{G}(f)_{m}$.
Theorem 7.3. An S-map $f:(S, \pi) \rightarrow(O, \pi)$ is an $S_{\mathscr{N}_{\pi}}{ }^{-}$ approximate fibration if and only if for every a positive integer $n>0$, there exists a positive integer $m \geq n$ such that the t-map $\mathscr{G}_{f n m}: \mathscr{G}_{f}\left(\gamma_{n m}\right) \rightarrow(O, \pi)$ is an $T_{\mathcal{N}_{\pi}}$-fibration.
Proof. Suppose for every a positive integer $n>0$, there exists a positive integer $m \geq n$ such that the t-map $\mathscr{G}_{f n m}: \mathscr{G}_{f}\left(\gamma_{n m}\right) \rightarrow(O, \pi)$ is an $T_{\mathcal{N}_{\pi}}$-fibration. Let $\varepsilon>0$ be given. Since $f$ is a continuous function, then let $\delta^{\prime}$ be chosen such that if $s, s^{\prime} \in S$ and $d_{s}\left(s, s^{\prime}\right)<\delta^{\prime}$, then $d_{o}\left(f(s), f\left(s^{\prime}\right)\right)<\varepsilon / 2$. Choose a positive integer $n>0$ such that $1 / n \leq \delta^{\prime}, \varepsilon / 2$. By hypothesis, there exists a positive integer $m \geq n$ such that $\mathscr{G}_{f n m}$ is an $T_{\mathcal{N}_{\pi}}$-fibration.

Let $\delta=1 / m$. Let $(Z, \pi) \in \overline{\mathscr{N}_{\pi}}$ be a natural S-space, $g:(Z, \pi) \rightarrow(S, \pi)$ be an S-map, and $G:(Z, \pi) \rightarrow P(O, \pi)$ be an S-homotopy with

$$
d_{o}[G(z)(0),(f \circ g)(z)]<\delta
$$

for all $z \in Z$. Define an S-map $g^{\prime}:(Z, \pi) \rightarrow\left(\mathscr{G}(f)_{m}, \pi\right)$ by $g^{\prime}(z)=(g(z), G(z)(0))$ for all $z \in Z$. Since $G_{0}=f_{m} \circ g^{\prime}$ and $\mathscr{G}_{\text {fnm }}$ is an $T_{\chi}$-fibration, there exists an S-homotopy $F$ : $(Z, \pi) \rightarrow P\left(\mathscr{G}(f)_{n}, \pi\right)$ such that $F_{0}=\gamma_{n m} \circ g^{\prime}=g^{\prime}$ and $f_{n} \circ$ $F_{t}=G_{t}$ for all $t \in I$. By the last part, we can define an Shomotopy $H:(Z, \pi) \rightarrow P(S, \pi))$ by $H(z)(t)=\mathscr{P}_{1}[F(z)(t)]$ for all $z \in Z, t \in I$. We get that $F(z)(t)=(H(z)(t), G(z)(t))$. Since $F(z)(t) \in \mathscr{G}(f)_{n}$, then there exists $s \in S$ such that $d[(s, f(s)), F(z)(t)]<1 / n$. Then
$d_{s}(s, H(z)(t))<1 / n \leqslant \delta^{\prime}, d_{o}(f(s), G(z)(t))<1 / n \leqslant \varepsilon / 2$,
and $d_{o}(f(s), f(H(z)(t)))<1 / n \leqslant \varepsilon / 2$; thus

$$
\begin{aligned}
d_{o}(G(z)(t), f(H(z)(t))) & \leqslant d_{o}(f(H(z)(t)), f(s)) \\
& +d_{o}(f(s), G(z)(t))<\varepsilon
\end{aligned}
$$

for all $z \in Z, t \in I$. Hence $f$ is an $S_{\mathscr{N}_{\pi}}$-approximate fibration.

Conversely, suppose that $f$ is an $S_{\mathscr{N}_{\pi}}$-approximate fibration. Let $n$ be a positive integer. For $\varepsilon=1 / n>0$, let $\delta$ be given in the definition of $S_{\mathcal{N}_{\pi}}$-approximate fibration. Since $\delta / 2>0$ and $f$ is a continuous function, then let $\delta^{\prime}$ be chosen such that if $s, s^{\prime} \in S$ and $d_{s}\left(s, s^{\prime}\right)<\delta^{\prime}$, then $d_{o}\left(f(s), f\left(s^{\prime}\right)\right)<\varepsilon / 2$. Choose a positive integer $m \geqslant n$, such that $1 / m \leq \delta^{\prime}, \delta / 2$.

Now let $(Z, \pi) \in \mathscr{N}_{\pi}$ be a natural $S$-space, $g:(Z, \pi) \rightarrow\left(\mathscr{G}(f)_{m}, \pi\right)$ be an S-map, and $G:(Z, \pi) \rightarrow P(O, \pi)$ be an S-homotopy with $G_{0}=f_{m} \circ g$. Define an S-map $g^{\prime}:(Z, \pi) \rightarrow(S, \pi)$ by $g^{\prime}(z)=\mathscr{P}_{1}[g(z)]$ for all $z \in Z$. We get that $g(z)=\left(g^{\prime}(z), G(z)(0)\right)$ for all $z \in Z$. Since $g(z) \in \mathscr{G}(f)_{m}$, then there exists $s \in S$ such that $d[(s, f(s)), g(z)]<1 / m$. Then

$$
d_{s}\left(s, g^{\prime}(z)\right)<1 / m \leqslant \delta^{\prime}, d_{o}(f(s), G(z)(0))<1 / m \leqslant \delta / 2,
$$

and $d_{o}\left(f(s), f\left(g^{\prime}(z)\right)\right)<1 / m \leqslant \delta / 2$; thus

$$
\begin{aligned}
d_{o}\left(f\left(g^{\prime}(z)\right), G(z)(0)\right) & \leqslant d_{o}\left(f\left(g^{\prime}(z)\right), f(s)\right) \\
& +d_{o}(f(s), G(z)(0))<\varepsilon
\end{aligned}
$$

Hence, since $f$ is an $S_{\mathscr{N}_{\pi}}$-approximate fibration, there exists an S-homotopy $H^{\prime}:(Z, \pi) \rightarrow P(S, \pi)$ such that $H_{0}^{\prime}=g^{\prime}$ and $d_{s}\left(G(z)(t),\left(f \circ H^{\prime}(z)\right)(t)\right)<\varepsilon$ for all $z \in Z$, $t \in I$. Define an S-homotopy $H:(Z, \pi) \rightarrow\left(\mathscr{G}(f)_{n}, \pi\right)$ by $H(z)(t)=\left(H^{\prime}(z)(t), G(z)(t)\right)$ for all $z \in Z, t \in I$. Then we get that for $z \in Z, t \in I$,

$$
\begin{aligned}
H(z)(0) & =\left(H^{\prime}(z)(0), G(z)(0)\right)=\left(g^{\prime}(z), G(z)(0)\right) \\
& =g(z)=\left(\gamma_{n m} \circ g\right)(z)
\end{aligned}
$$

and $f_{n} \circ H_{t}=G_{t}$. Hence $\mathscr{G}_{f n m}$ is an $T_{\chi}$-fibration.

## References

[^1][3] D. Coram and F. Duvall, Approximate fibrations and amovability condition for maps, Pacific J. Math. 72, 41-56 (1977).
[4] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, (1966).
[5] M. Lawson, J. Matthews and T. Porter, The homotopy theory of inverse semigroups, International Journal of Algebra and Computation 12,755-790 (2002).
[6] R. C. Kirby and L. C. Siebenmann, Foundational Essays On Topological Manifolds, Smoothings, And Triangulations. Annals of Math. Studies 88, Princeton University Press, Princeton, NJ, (1977).
[7] W. Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. USA 41, 956-961 (1955).
[8] Z. Cerin, Homotopy theory of topological semigroup, Topology and its Applications 123 57-68 (2002).


Amin Saif is Assistant Professor of Mathematical Sciences at Department of Mathematics, Faculty of Applied Sciences, Taiz University, Taiz, Yemen. He received the PhD degree in Algebraic Topology at (UKM) in Malaysia. His main research interests are: General Topology, Algebraic Topology, Homotopy theory for topological semigroups. He has published research articles in reputed international journals of mathematical.


Adem Kılıçman is Professor of Mathematical Sciences at Department of Mathematics, University Putra Malaysia (UPM) in Malaysia. He is head of the programme of Mathematical Sciences at (UPM). He received the PhD degree in Mathematics and Computer Sciences at University of Leicester in (UK). His main research interests are: Mathematical Analysis, Partial Differential Equations, Integral Equations, Functional Analysis, Numerical Analysis, Real and Complex Analysis, Integral Transform, Homotopy Analysis Method, Fractional Differential Equations, Algebra, Topology, Nonlinear System. He has published many research articles in reputed international journals of mathematical and Computer sciences. He is referee and editor of mathematical journals.


[^0]:    * Corresponding author e-mail: alsanawyamin@yahoo.com

[^1]:    [1] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, (2002).
    [2] D. Coram and F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7, 275-288(1977).

