
Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) 2741

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090560

Probabilistic Dangling References of Imperative and
Object-Oriented Multi-Core Programs

Mohamed A. El-Zawawy1,2,∗

1 College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,
Kingdom of Saudi Arabia.

2 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt.

Received: 4 Feb. 2015, Revised: 13 May 2015, Accepted: 17 May 2015
Published online: 1 Sep. 2015

Abstract: Speculative optimizers of modern compilers are designed on techniques for probabilistic static analyses of
programs. For imperative and object-oriented multi-core programs, this paper focuses on the problem of revealing
probabilistic dangling references. This important problem is treated in this paper via type systems. Besides being
simply structured, the type systems provide suitable frameworks for proof-carrying code applications. One class of such
applications is that of mobile codes having limited resources. Using the proposed technique, each analysis case is supported
by a correctness proof in the form of a type derivation. Most important concurrent constructs such as fork-join constructs,
conditionally spawned cores, and parallel loops are treated in this paper. This is done for both of imperative and object-
oriented parallel programs. The paper proves the soundness of presented techniques using a probabilistic operational
semantics for the language models.

Keywords: Speculative Optimizers, Probabilistic Dangling References, Imperative Multi-Core Programs, Object-Oriented
Multi-Core Programs, Type Systems.

1 Introduction

Multi-core (multithreading) [1] and
object-oriented [2] are among main programming
styles today. The use of multiple cores (threads) has
many advantages; simplifying the process of
structuring huge software systems, hiding the delay
caused by commands waiting for resources, and
boosting the performance of applications executed
on multiprocessors. However the interactions
between different cores complicate the compilation
and analysis of multi-core programs. The
object-oriented programming (OOP) paradigm has
the advantage of combining other approaches like
functional, relational, and imperative programming.
OOP is based on concepts of method, class, and
inheritance. The flexibility of these concepts facilities
varying degrees of dynamic behaviour in different
object-oriented languages implementations.

One of the vital and attractive attributes of
multi-core programs is memory safety (mainly

including dangling-references detection) [3]. A
dangling reference is a reference (pointer) that does
not refer to a valid object of the pertinent type. The
importance that memory safety enjoys is justified by
several facts including the fact that the absence of
memory safety can cause the execution of programs
to abort. This absence can be maliciously used to
cause security breaches like in many recent cases [4].
However low-level parallel programming
languages, used to write most existing
parallel-software applications, scarify safety for the
sake of improving performance. Violating memory
safety takes several forms including memory leaks,
buffer overflows, and dangling pointers. Among
causes for memory safety violations are explicit
allocation and deallocation, pointer arithmetic,
casting, and the interactions between multiple cores
(threads).

Memory safety [3] is a critical compiler analysis
used to decide whether a given piece of code

∗ Corresponding author e-mail: maelzawawy@cu.edu.eg

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090560

2742 M. A. El-Zawawy: Probabilistic Dangling References...

contains memory violations (basically including
dangling references). A conventional memory-safety
analysis deduces whether a given program (i) is
definitely safe (all program execution paths are
safe), (ii) is definitely not safe (all program paths
contain memory violations), or (iii) maybe safe
(some paths are not definitely safe). A probabilistic
memory-safety [5] analysis is a program analysis
that decides for a given program S and a probability
ǫ whether all execution paths with probabilities
greater than or equal to ǫ are definitely
memory-safe. On the one hand most traditional
compiler optimizations count on precise
memory-safety checks, and to ensure correctness
cannot optimize in the ”maybe” case which is the
prevalent case. But on the other hand new
speculative optimizations [6] can aggressively take
advantage of the prevalent ”maybe” case, especially
in the presence of a probabilistic memory-safety
(dangling-references) analysis.

Reference analysis [7] of a program calculates for
each program point a reference (points-to)
relationship that captures information about the
memory addresses that may be referenced by
(pointed-at) by program references (pointers). A
probabilistic reference analysis [6,7] statically
anticipates the likelihood of every reference
relationship at each program point. An absolute
memory-safety analysis follows an absolute
reference analysis i.e. builds on the result of an
absolute reference analysis. It is also the case that
probabilistic memory-safety analysis follows or
builds on the result of a probabilistic reference
analysis.

This paper is an extended and revised version
of [8] which presents an approach for detecting
dangling references in imperative multi-core
programs. The current paper extends the approach
of [8] to cover object-oriented multi-core programs.
Section 3 includes the main extensions of the current
paper over [8]. These extensions include:

1.Generalizing type concepts presented in [8] to
cover object-oriented multi-core programs rather
than imperative multi-core programs.

2.Extending inference rules of type system
presented in [8].

3.Enriching semantics domains used in [8].
4.Generalizing soundness concepts established in

[8].

The proposed techniques of this paper are
probabilistic in its nature. For a given program S,
probability threshold ǫ, and the result pts of a
probabilistic reference analysis for S (like that in [7]),
the proposed techniques decide wether execution
paths of S with probabilities greater than or equal to
ǫ are memory safe (dangling-references free) with

respect to pts. The proposed techniques are
flow-sensitive.

The algorithmic style [9,10], which relies on
data-flow analysis, is typically used to present static
analysis and optimization techniques of multi-core
programs. Another framework for program analyses
and optimizations is provided by type systems [7].
While the type-systems style works directly on the
phrase structure of programs, the algorithmic style
works on control-flow graphs (intermediate forms)
of programs. One advantage of the type-systems
approach over the algorithmic one is that the former
provides communicable justifications (type
derivations) for analysis results. Certified code is an
example of an area where such machine-checkable
justifications are required. Another advantage of
type-systems style is the relative simplicity of its
inference rules. The techniques presented in this
paper for memory safety of multi-core programs
have the form of type systems. The key to the
proposed approaches is to compute a post-type
starting with the trivial type as a pre-type. Then a
program that has this post-type is guaranteed to be
memory safe over all computational paths whose
probabilities greater than or equal to a given
probabilistic threshold.

Figure 1 presents a programming language that
we study. The set Var is a finite set of program
variables. The language is the simple while language
enriched with basic commands for parallel
computations; fork join, conditionally spawned
cores, and parallel loops.

Motivation

Figure 2 presents a motivating example for the
analysis of probabilistic memory-safety. For this
program we suppose that the condition of if
statement in line 1 is true with probability 0.8. This
program has four possible execution paths;

1.The then statement (line 2) followed by the first
core (thread) (line 5) followed by the second core
(line 6).

2.The then statement followed by the second core
followed by the first core.

3.The else statement (line 3) followed by the first
core followed by the second core.

4.The else statement followed by the second core
followed by the first core.

The probability of each of the first two paths is 0.4
and that of each of the last two paths is 0.1. The last
two paths are not memory safe as they contain
dangling pointers (de-referencing of a in line 5).
However the first two paths are memory safe. The
motivation of our work is to design techniques that
for a program like this one and a probabilistic

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) /www.naturalspublishing.com/Journals.asp 2743

n ∈Z, x ∈Var, and ⊕ ∈ {+,−,×}

e ∈Aexprs ::= x | n | e1 ⊕ e2

b ∈ Bexprs ::= true | false | ¬b | e1 = e2 | e1 ≤ e2

| b1 ∧b2 | b1 ∨b2

S ∈ Stmts ::= x := e | x :=&y | ∗x := e | x := ∗y

| skip | S1;S2 | if b then St else S f |

while b do St | par{{S1}, . . . , {Sn}} |

par-if{(b1 ,S1), . . . , (bn,Sn)} | par-for{S}.

Fig. 1: The programming language model

1. if (a > b)
2. then a :=&b
3. else a := 2;
4. par{
5. {b := ∗a}
6. {b :=&c}
7. };

Fig. 2: A motivating example
for a probabilistic dangling-
reference analysis.

threshold (for example 0.4) decides whether the
program paths with probabilities greater than or
equal to 0.4 are memory safe. The desired techniques
are also required to associate their decision with a
correctness proof.

Contributions

Contributions of this paper are the following:

1.An original type system carrying a probabilistic
analysis for memory safety (mainly
dangling-references detection) of imperative
multi-core programs.

2.An original type system carrying a probabilistic
analysis for memory safety (mainly
dangling-references detection) of object-oriented
multi-core programs.

3.A formal proof for the soundness of the
proposed type systems with respect to a
probabilistic operational semantics.

Organization

The rest of the paper is organized as follows.
Sections 2 and 3 present type systems for
probabilistic memory safety of imperative
multi-core programs and object-oriented multi-core
programs, respectively. Section 2 also presents a
formal correctness proof for its type system with
respect to the probabilistic operational semantics
presented in the appendix of this paper. A survey of
related work to memory safety (including the used
of type systems in program analysis, and the
analysis of multi-core programs) is presented in
Section 4.

2 Probabilistic Memory Safety of
Imperative Multi-Core Programs

This section presents a new technique for memory
safety (including dangling-references detection) of
imperative multi-core programs where a dangling
reference is a reference (pointer) that does not refer
to a valid object of the pertinent type. The proposed
technique is both forward and static (to be used
during compilation time). The technique is also
probabilistic in the sense that for a given program S
and a probabilistic threshold (denoted by pms in this
paper) the technique decides whether all
computation paths of S with probability greater or
equal to pms are memory safe. This sort of
information is required and intensively used in
speculative optimizations that are parts of most
modern compilers. Examples of such speculative
approaches are speculative parallelization ([11]),
speculative loop execution([12]), speculative
redundancy elimination, speculative dead store
elimination, speculative code scheduling, and
speculative copy propagation ([13,14], and [15]).

Memory safety of programs is a forward
program analysis that is typically built on the result
of a reference analysis. For probabilistic memory
safety, the underlying reference analysis has to be
probabilistic [6,7] as well. Hence we assume that our
input program S is associated with the probabilistic
threshold pms and the result of a probabilistic

reference analysis1 for S. To be more precise, we
assume that the underlying probabilistic reference
analysis associates each program point with a
reference type pts drawn from a set of probabilistic
reference types PTS. A natural formalization of the
set PTS together with a subtyping relation on its
types is introduced in [7] and reviewed in
Definition 1. To build the memory safety analysis on
robust ground, surely the underlying reference

1 The reference analysis results (reference information)
are typically assigned to program points of S.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2744 M. A. El-Zawawy: Probabilistic Dangling References...

analysis has to be sound with respect to a robust
semantics; in our case the operational semantics in
the appendix of this paper. Suppose that for a
statement S, the reference analysis associates a
pre-reference type pts and a post-reference type pts′,
i.e. S : pts→ pts′. The soundness has the intuition
that if the execution of S from a state (γ,p)
(Definition 6) of type pts ends at a state (γ,p′), then
this final state has to be of type pts′.

The intuitions of terminologies used in
Definition 1 are in order. A reference type (denoted by
pts) is a map from program variables to sets of pairs
of addresses and probabilities. The symbol Addrsp is
an enrichment of the set of symbolic addresses Addrs
(variable addresses) with probabilities. The idea
behind the condition on the elements of Pre-PTS is to
exclude functions mapping a program variable to an
address with two different probabilities. The
probability that a variable x contains an address,
with respect to pts, is denoted by

∑

pts x. The set of

addresses having a non-zero probability to be
contained in x, with respect to pts, is denoted by
Apts(x). The notion γ |= pts denotes that a
computational state γ (Definition 6) is of type pts.

Definition 1. 1.Addrs = {x′ | x ∈ Var} and
Addrsp = Addrs× [0,1].

2.Pre-PTS = {pts | pts : Var →

2Addrsp s.t. (y′,p1), (y′,p2) ∈ pts(x) =⇒ p1 = p2}.
3.For pts ∈ Pre-PTS and x ∈Var,

∑

pts x=
∑

(z′ ,p)∈pts(x) p.

4.For pts ∈ Pre-PTS and x ∈ Var, Apts(x) = {z′ | ∃p >
0. (z′,p) ∈ pts(x)}.

5.PTS = {pts ∈ Pre-PTS | ∀x ∈ Var.
∑

pts x ≤ 1}.

6.pts ≤ pts′
def
⇐⇒ (∀x, y ∈ Var. (y′,p) ∈ pts(x) =⇒

∃p′. p ≥ p′& (y′,p′) ∈ pts′(x)).

7.γ |= pts
def
⇐⇒ (∀x ∈ Var. γ(x) ∈ Addrs =⇒ ∃p >

0. (γ(x),p) ∈ pts(x)).

Note 1.The generality of the language model and the
importance of the based probabilistic reference
analysis explained in this section recommend that a
direct application of the proposed technique is to be
included in the code optimization phases of modern
compilers. As it is clear above our model
model/analysis assumes a general reference analysis.
Now given a certain reference analysis (such as [7]),
the information of the analysis can easily support
our model. This so as most existing models already
produce our assumed form for reference analysis.
The remaining models produce binary relations (for
reference information) that can easily be
transformed to our assumed form.

2.1 Types

Our proposed approach for memory safety has the
form of a type system. The types of this type system

are enrichments of that of the underlying reference
types (PTS). Therefore each memory-safety type is a
triple (pts,v,ps) where v is a set of variables that are
guaranteed to contain addresses at the program point
assigned this type. The symbol ps denotes a lower
bound for probabilities of reaching the program point
assigned this type. The following definition gives a
precise formalization for the set of memory-safety
types (called safety types). The formal interpretation
of assigning a safety type to a state is also introduced
in the following definition.

Definition 2. –A safety type is a triple (pts,v,ps) such
that

–pts ∈ PTS,
–v⊆Var such that for every x ∈ v, there exists a pair

(z′,p) ∈ pts(x) with p > pms, and
–ps ∈ [0,1].

–(pts,v,ps) ≤ (pts′,v′,p′s)
def
⇐⇒ pts ≤ pts′,v ⊇ v′, and

ps ≥ p′s ≥ pms.
–A state (γ,p) has type (pts,v,ps) with respect to the

probability pms, denoted by (γ,p) |=pms (pts,v,ps), if γ |=
pts,∀x ∈ v(γ(x) ∈ Addrs), and pms ≤ ps ≤ p.

The key to our technique for probabilistic
memory safety of multi-core programs is the
following. Suppose that we have a statement S and a
reference analysis for S in the form S : pts → pts′.
Then for a safety pre-type (pts,v,ps)

2, a post-type
derivation is attempted for S in the memory-safety
type system. If such post-type exists then Theorem 1
below guarantees the following. It is memory-safe to
execute S starting from a state (γ,p) that is of type
(pts,v,ps) and that is positive (has no execution paths
with probability less than or equal to pms).

2.2 Inference Rules

Figure 3 presents the inference rules of the type
system for probabilistic memory safety of
imperative multi-core programs. Judgments
produced by the type system have two forms. The
judgment of an arithmetic expression has the form
e : (x,pts,v)→ v′. The existence of such judgment for
an expression e guarantees that calculating e in a
state (γ,p) of type (pts,v,ps) w.r.t. pms, i.e.
(γ,p) |=pms (pts,v,ps), does not fail. The judgment also
guarantees that if the execution of the statement
x := e at the state (γ,p) ends at a state (γ′,p′), then
elements of v′ are guaranteed to contain addresses
w.r.t. γ′. This is formalized in Lemma 1. The
judgment of a statement S has the from
S : (pts,v,p) → (pts′,v′,p′) and assures that if the
execution of S from a pre-state of the pre-type ends

2 Typically (pts,v,ps) = (pts,∅,1).

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) /www.naturalspublishing.com/Journals.asp 2745

y ∈ v
(ym

1
)

y : (x,pts,v)→ v∪{x}

∑

pts

y < pms

(ym
2

)
y : (x,pts,v)→ v\ {x}

(nm)
n : (x,pts,v)→ v\ {x}

∀y ∈ FV(e1 ⊕ e2).
∑

pts

y = 0

(⊕m)
e1 ⊕ e2 : (x,pts,v)→ v\ {x}

x := e : pts→ pts′ e : (x,pts,v)→ v′

(:=m)
x := e : (pts,v,ps)→ (pts′,v′,ps)

x ∈ v pts(x) = {(z′1 ,p1), . . . , (z′n,pn)} ∀z′i ∈ Apts(x). zi := e : (pts,v,ps)→ (ptsi,v
′ ,ps)

(∗ :=m)
∗x := e : (pts,v,ps)→ (Υ(pts,pts1, . . . ,ptsn),v′,ps)

y ∈ v pts(y) = {(z′1,p1), . . . , (z′n,pn)} ∀i. x := zi : (pts,v,ps)→ (ptsi,v
′ ,ps)

(:= ∗m)
x := ∗y : (pts,v,ps)→ (Υ(pts,pts1, . . . ,ptsn),v′ ,ps)

x :=&y : pts→ pts′

(:=&m)
x :=&y : (pts,v,ps)→ (pts′ ,v∪{x},ps) skip : (pts,v,ps)→ (pts,v,ps)

S1 : (pts,v,ps)→ (pts′′ ,v′′,p′′s) S2 : (pts′′ ,v′′,p′′s)→ (pts′,v′ ,p′s)
(seqm)

S1;S2 : (pts,v,ps)→ (pts′,v′,p′s)

∀y ∈ FV(b)(
∑

pts

y = 0)
St : (pts,v,ps)→ (ptst,vt,pt)
S f : (pts,v,ps)→ (pts f ,v f ,p f)

pms ≤ pt ×pi f

pms > ps × (1−pi f)

(ifm
1)

if b then St else S f : (pts,v,ps)→ (Υ(ptst,pts f),vt,pt ×pi f)

∀y ∈ FV(b)(
∑

pts

y = 0)
St : (pts,v,ps)→ (ptst,vt,pt)
S f : (pts,v,ps)→ (pts f ,v f ,p f)

pms > ps ×pi f

pms ≤ p f × (1−pi f)

(ifm2)
if b then St else S f : (pts,v,ps)→ (Υ(ptst,pts f),v f ,p f × (1−pi f))

∀y ∈ FV(b)(
∑

pts

y = 0)
St : (pts,v,ps)→ (ptst,vt,pt)
S f : (pts,v,ps)→ (pts f ,v f ,p f)

pms ≤ pt ×pi f

pms ≤ p f × (1−pi f)

(ifm3)
if b then St else S f : (pts,v,ps)→ (Υ(ptst,pts f),vt ∩v f ,min{pt ×pi f ,p f × (1−pi f)})

Si : (Ψ(pts, . . . ,pts j , . . . | j , i),v∩∩ j,iv j,min{ps,p j | j , i})→ (ptsi ,vi,pi) pms ≤
mini pi

n!
(parm)

par{{S1}, . . . , {Sn}} : (pts,v,ps)→ (Υ(pts1, . . . ,ptsn),∩ivi ,
mini pi

n!
)

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (pts,v,ps)→ (pts′,v′ ,p′s)
(par-ifm)

par-if{(b1,S1), . . . , (bn,Sn)} : (pts,v,ps)→ (pts′,v′ ,p′s)

S : (Ψ(pts,pts′),v∩v′ ,min{ps ,p
′
s})→ (pts′ ,v′,p′s)

(par-form)
par-for{S} : (pts,v,ps)→ (pts′,v′,p′s)

∀i ∈ [1,n],∀y ∈ FV(b)(
∑

ptsi
y = 0)

(pts1,v1,ps1
)

St
→ (pts2,v2,ps2

)
St
→ . . .

St
→ (ptsn+1,vn+1,psn+1

)
(whlm)

while b do St : (pts1,v1,ps1
)→ (Υ(ptsn+1),vn+1,psn+1

)

(pts′
1
,v′

1
,p′s1

) ≤ (pts1,v1,ps1
)

S : (pts1,v1,ps1
)→ (pts2,v2,ps2

)
(pts2,v2,ps2

) ≤ (pts′2,v
′
2,p
′
s1

)
(csqm)

S : (pts′1,v
′
1,p
′
s1

)→ (pts′2,v
′
2,p
′
s2

)

Fig. 3: Inference rules for imperative multi-core programs.

at a post-state, then this post-state is of the
post-type. This is proved in Theorem 1.

Comments on the inference rules of Figure 3 are
in order. The condition

∑

pts y ≥ pms of the rule (ym
1

)

assures that when reaching the program point being
assigned a type along any of the computation paths
whose probabilities greater than or equal to pms, y
will contain an address. The condition

∀y ∈ FV(e1 ⊕ e2)(
∑

pts y = 0) of the rule (⊕m) assures

that all free variables of the expression contain
integers and hence guarantees the success of
calculating the expression e1 ⊕ e2 at any state of the
type (pts,v,ps). In the rules (∗ :=m) and (:= ∗m), the
expression Υ(pts,pts1, . . . ,ptsn) denotes the reference
post-type calculated by the underlying reference

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2746 M. A. El-Zawawy: Probabilistic Dangling References...

analysis3. Υ(pts,pts1, . . . ,ptsn) is naturally a function
in {pts,pts1, . . . ,ptsn} and its precise shape does not
contribute to the calculations of the inference rules
(∗ :=m) and (:= ∗m). The rule (ifm1) treats the case when
the probability of the then path is greater than or
equal to the threshold pms and that of the else path is
strictly less than pms. In this case, it is sensible to
consider the analysis results of St and to neglect that
of S f . The rule (parm) has this shape in order to treat
any possible interactions between the statement
threads. For the rule (whlm),n is an upper bound for
the trip-count of the loop. Therefore the post-type of
the rule is an upper bound for post-types
corresponding to number of iterations bounded by
n. The statistical and probabilistic information
concerning correctness probabilities of if statements
and trip counts of loops can be obtained using
edge-profiling techniques. Heuristics can be used in
absence of edge-profiling methods.

Remark.Concerting the analysis of while loops, our
rule relies on the use of edge profiling for bounds on
the number of iterations a loop can take. However,
there are techniques that can statically or
dynamically evaluate these bounds [16,17]. The
application of any of these methods to get the bound
required by our method is straightforward. This is
so due to the generality of our langauge model.

Remark.As it is common with a probabilistic
reference analysis [7], we assume that our
underlying reference analysis satisfies the following
condition. Suppose that pts is the reference type
assigned to a program point t of a statement S and
∑

pts y = p. Then for all computational paths of S with

probabilities less than p, the variable y contains no
address at the point t.

Lemma 1. 1.Suppose (γ,p) |=pms (pts,v,ps) and
e : (x,pts,v)→ v′. Then ~e�γ ,!, and

x := e : (γ,p)→ (γ′,p′) =⇒∀y ∈ Var. (y ∈ v′ =⇒
γ′(y) ∈ Addrs).

2.(pts,v,ps) ≤ (pts′,v′,p′s) =⇒ (∀(γ,p). (γ,p) |=pms

(pts,v,ps) =⇒ (γ,p) |=pms (pts′,v′,p′s)).

Proof.The first item is proved by induction on the
structure of type derivations:

–The case of the rule (ym
1

): in this case
γ′ = γ[x 7→ γ(y)],p′ = p, and v′ = v∪{x}. Since
y ∈ v, y is guaranteed to contain an address at the
program point before the assignment statement.
Therefore γ′(x) has an address at the program
point after the assignment statement. This
justifies adding x to v.

3 The interested reader can check [7] for the details of
calculating Υ(pts,pts1, . . . ,ptsn).

–The case of the rule (ym
2

): in this case
γ′ = γ[x 7→ γ(y)],p′ = p, and v′ = v \ {x}. Since
∑

pts y < pms and pms ≤ ps ≤ p, by Remark 2.2 y
contains no address at the program point before
the assignment statement. Hence γ′(x) is not
assured to contain an address at the program
point after the assignment statement. This
legitimizes removing x from v.

–The case of the rule (⊕m): in this case
p′ = p,γ′ = γ[x 7→ ~e1⊕ e2�γ], and v′ = v \ {x}. The
condition ∀y ∈ FV(e1⊕ e2) (

∑

pts y = 0) assures that

∀y ∈ FV(e1 ⊕ e2).(γ(y) ∈ Z). Therefore
~e1 ⊕ e2�γ ∈Z. Hence γ′(x) ∈Z which legitimizes
removing x from v.

It is straightforward to prove the second item.

2.3 Soundness

For a statement S that has types in the imperative
type system, S : (pts,v,ps)→ (pts′,v′,p′s), Theorem 1
assures the following fact about S. It is memory safe
to execute S from a positive state (γ,p) of type
(pts,v,ps) w.r.t. pms, i.e. (γ,p) |=pms (pts,v,ps). The
memory safety means that the program does not
abort due to faulty de-referencing (dangling
pointers). A positive state is a state that does not start
any executions paths with probability less than pms.
Theorem 1 also proves soundness of the imperative
type system.

Theorem 1.(Soundness and Probabilistic Memory Safety)
Suppose S : (pts,v,ps)→ (pts′,v′,p′s). Then

1.If (γ,p) |=pms (pts,v,ps) and S is positive at (γ,p) then
S does not abort at (γ,p) i.e. S : (γ,p) 6 abort.

2.If S : (γ,p) (γ′,p′) then (γ,p) |=pms (pts,v,ps) =⇒
(γ′,p′) |=pms (pts′,v′,p′s).

Proof.The proof is by structure induction on the type
derivation. Main cases are shown as follows:

–The case of (:=m): this case follows from Lemma 1
and the soundness of reference analysis.

–The case of (∗ :=m): because x ∈ v, there exists
z ∈ Var such that γ(x) = z′. And because
(γ,p) |=pms (pts,v,ps), we have z′ ∈ Apts(x) . z := e
does not abort at (γ,p) by induction hypothesis
and hence neither does ∗x := e. We also have
z := e : (γ,p) (γ′,p′). By assumption, it is true
that z := e : (pts,v,ps) → (pts′,v′,p′). Hence by
soundness of (:=m), (γ′,p′) |=pms (pts′,v′,p′).

–The case of (ifm1): the condition
∀y ∈ FV(b)(

∑

pts y = 0) guarantees that all free

variables of the condition b have integers (not
addresses) under the state γ. This is so because
(γ,p) |=pms (pts,v,ps). Therefore the semantics of b
with respect to γ is a Boolean value. We have the
following inequalities

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) /www.naturalspublishing.com/Journals.asp 2747

–pt× pi f ≥ pms > ps× (1− pi f), and
–p ≥ ps ≥ pt.

These inequalities imply that p× pi f ≥ pt × pi f ≥
pms > ps× (1−pi f) which implies p×pi f ≥ pms > ps×
(1−pi f). Because S is positive at (γ,p),~b�γ = true.
Now by induction hypothesis St does not abort at
(γ,p) because St : (pts,v,ps)→ (ptst,vt,pt), (γ,p) |=pms

(pts,v,ps), and St is positive at (γ,p) by [8, Lemma
2]. Therefore the if statement does not abort at
(γ,p) which completes the proof of (1) for this case.
(2) In this case, we have (γ′,p′) = (γ′,pi f × p′′)
where St : (γ,p) (γ′,p′′). We also have
(pts′,v′,p′) = (Υ(ptst,pts f),vt,pt × pi f) where

St : (pts,v,ps) → (ptst,vt,pt). By induction
hypothesis on St we have (γ′,p′′) |=pms (ptst,vt,pt).
Therefore p′′ ≥ pt which implies
p′′ × pi f ≥ pt × pi f ≥ pms because pt × pi f ≥ pms.
Hence (γ′,p′) |=pms (ptst,vt,pt × pi f) which implies
(γ′,p′) |=pms (Υ(ptst,pts f),vt,pt × pi f) because

(ptst,vt,pt×pi f) ≤ (Υ(ptst,pts f),vt,pt×pi f). The last

inequality holds because Υ(ptst,pts f) is an upper

bound for ptst.
–The case of (ifm2) is similar to the case of (ifm1).
–The case of (ifm3): the condition ∀y ∈ FV(b)(

∑

pts y =

0) guarantees that ~b�γ is a Boolean value. We
have the following inequalities

–pms ≤ pt× pi f ,
–pms ≤ p f × (1− pi f),
–pt ≤ ps ≤ p, and
–p f ≤ ps ≤ p.

These inequalities imply that

pms ≤ pt× pi f ≤ p× pi f

and
pms ≤ p f × (1− pi f) ≤ p× (1− pi f)

which implies
–pms ≤min{pt× pi f ,p f × (1− pi f)} ≤ p× pi f and
–pms ≤min{pt× pi f ,p f × (1− pi f)} ≤ p× (1− pi f).

Now we consider the case ~b�γ = false. In this
case
S f : (pts,v,ps) → (pts f ,v f ,p f), (γ,p) |=pms (pts,v,ps),

and S f is positive at (γ,p) by [8, Lemma 2]. Hence
by induction hypothesis S f does not abort at
(γ,p). Consequently the if statement does not
abort at (γ,p) which completes the proof of (1) for
this case.
(2) In this case, we have (γ′,p′) = (γ′,pi f × p′′)
where S f : (γ,p) (γ′,p′′). We also have
(pts′,v′,p′) =
(Υ(ptst,pts f),vt ∩ v f ,min{pt × pi f ,p f × (1 − pi f)})

where S f : (pts,v,ps)→ (pts f ,v f ,p f). By induction

hypothesis on S f we have
(γ′,p′′) |=pms (pts f ,v f ,p f). Therefore p′′ ≥ p f which

implies p′′ × (1 − pi f) ≥ p f × (1 − pi f) ≥
min{pt × pi f ,p f × (1 − pi f)} ≥ pms because

min{pt × pi f ,p f × (1 − pi f)} ≥ pms. Hence
(γ′,p′) |=pms (pts f ,v f ,min{pt × pi f ,p f × (1 − pi f)})

which implies (γ′,p′) |=pms

(Υ(ptst,pts f),vt ∩ v f ,min{pt × pi f ,p f × (1 − pi f)})

because (pts f ,v f ,min{pt × pi f ,p f × (1 − pi f)}) ≤

(Υ(ptst,pts f),vt ∩ v f ,min{pt × pi f ,p f × (1 − pi f)}).

The last inequality holds because Υ(ptst,pts f) is

an upper bound for ptst and v f ⊇ (vt∩v f).
–The case of (parm): (1) Suppose that
θ : {1, . . . ,n} → {1, . . . ,n} is a permutation.
(γ,p) |=pms (pts,v,ps) implies
(γ,p) |=pms (Ψ (pts, . . . ,ptsj, . . . | j ,

θ(1)),v ∩ ∩ j,θ(1)v j,min{ps,p j | j , θ(1)}). Recall
that Ψ (pts, . . . ,pts j, . . . | j , θ(1)) is a lower bound

for pts. By Lemma [8, Lemma 2], Sθ(1) is positive
at (γ,p). Therefore Sθ(1) does not abort at γ by
induction hypothesis. Hence either the execution
of Sθ(1) terminates at a state (γ2,p2) such that
(γ2,p2) |=ms (ptsθ(1),vθ(1),pθ(1)) or enters an infinite

loop at (γ,p). Therefore
(γ2,p2) |=ms (Ψ (pts, . . . ,ptsj, . . . | j ,

θ(2)),v∩∩ j,θ(2)v j,min{ps,p j | j , θ(2)}). Therefore,
clearly (1) is proved via a simple induction on n.
(2) In this case the existence of a permutation
θ : {1, . . . ,n} → {1, . . . ,n} and n + 1 states
(γ,p) = (γ1,p1), . . . , (γn+1,pn+1) = (γ′,p′′) such that
for every 1 ≤ i ≤ n, Sθ(i) : (γi,pi) (γi+1,pi+1) is

guaranteed. In this case p′ =
p′′

n! . The fact that
(γ1,p1) |=pms (pts,v,ps) implies the fact that
(γ1,p1) |=pms (Ψ (pts, . . . ,pts j, . . . | j ,

θ(1)),v ∩ ∩ j,θ(1)v j,min{ps,p j | j , θ(1)}). Hence
(γ2,p2) |=pms (ptsθ(1),vθ(1),pθ(1)) by the induction

hypothesis. This implies
(γ2,p2) |=pms (Ψ (pts, . . . ,pts j, . . . | j ,

θ(2)),v ∩ ∩ j,θ(2)v j,min{ps,p j | j , θ(2)}). Hence
Again (γ3,p3) |=pms (ptsθ(2),vθ(2),pθ(2)) by the

induction hypothesis. Therefore a simple
induction on n shows that
(γ′,p′) = (γn+1,pn+1) |=pms (ptsθ(n),vθ(n),pθ(n))

implying
(γ′,p′′) |=pms (Υ(pts1, . . . ,ptsn),∩ivi,mini pi). Hence

because pms ≤
mini pi

n! , we get (γ′,p′) |=pms

(pts′,v′,p′) = (Υ(pts1, . . . ,ptsn),∩ivi,
mini pi

n!) as
required.

–The case of (par− f orm): (1) The proof of this item
is in line with item (1) of the (parm) case.
(2) In this case there exists n such that
par{{S}1, . . . , {S}n} : (γ,p) (γ′,p′). We get
S : (Ψ (pts,pts′),v∩ v′,min{ps,p

′
s})→ (pts′,v′,p′s) by

induction hypothesis. Then by (parm) we infer
that par{{S}1, . . . , {S}n} : (pts,v,ps) → (pts′,v′,p′s).
Consequently by the soundness of (parm),
(γ′,p′) |=pms (pts′,v′,p′s).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2748 M. A. El-Zawawy: Probabilistic Dangling References...

3 Probabilistic Memory Safety for
Multi-Core Object-Oriented Programs

This section generalizes the type system of Section 2
to cover multi-core object-oriented programs. More
specifically, this sections introduces a new model for
multi-core object-oriented programs together with a
new type system for the analysis of their probabilistic
memory safety. The model language (dubbed MC-
OOP) is equipped with basic object-oriented concepts
as inheritance and sub-typing. Figure 4 presents the
syntax of MC-OOP.

Functions host local variables which are alive as
long as their functions are active. Function
parameters are local variables. Instance variables of
a class store the class’s internal state. A set of classes
and a ”main” function are the components of
programs of MC-OOP. A class has function
definitions. A function f consists of a parameter p f ,
a statement S f , and an expression e f which denotes
the returned value by the function. Semantic spaces
and naming conventions used in this section are
presented in Definition 3.

Definition 3.(Semantic spaces and naming conventions)

–C denotes the set of class names with C,D ∈ C.
–LVar denotes the set of local variables with o ∈ LVar.
–IVarC denotes instance variables of C with v ∈ IVarC.
–FunNames denotes the set of function names with f ∈

FunNames.
–FunC denotes functions of C and p ∈ [0,1].
–D =Z∪A∪{⊥} denotes model values with d ∈D.
–A denotes the set of memory addresses with α ∈A.
–S = {s | s : LVar→D} is the set of stacks with s ∈ S.
–O = IVarC → D is the set of objects contents with

I(C,n) ∈ O.
–H =A→p {(C,n, I(C,n))} is the set of heaps with h ∈H .
–States = S×H denotes memory states with (s,h) ∈

States.
–hi(α), i ∈ {1,2,3} denotes the ith component of h(α)).
–this is the current active object.
–FunC → LVar × Stmt × AExpr denotes functions

components with FC ∈ FunC where f 7→ (p f ,S f ,e f).
–C≪D denotes that C is a subclass of a class D.
–≤ is the reflexive transitive closure of≪.
–Loc = LVar ∪ (∪C∈C,v∈IVarC

{(C,v)}) is the set of all
locations with l ∈ Loc.

As clarified earlier, a probabilistic memory safety
is typically built on a probabilistic reference
analysis. We assume an underlying probabilistic
reference analysis that calculates for every program
(of the langauge MC-OOP) point a reference type rt
taken from a set of probabilistic reference types RT.
Definition 4 presents a formalization of the set RT
and a sub-typing relation on its types. The
soundness of the proposed memory safety analysis
relies on that of the underlying reference analysis

with respect to a relevant semantics. For a given
statement S of MC-OOP, the reference analysis
calculates for a given pre-reference type rt a
post-reference type rt′, such that S : rt→ rt′ (in the
underlying reference analysis). The soundness
means that if executing S at a state (s,h,p) of type rt
ends at (s′,h′,p′), then the last state is of type rt′.

A class analysis is also necessary to achieve the
analysis of probabilistic memory safety of the
language MC-OOP. We assume the existence of such
analysis which calculates for every program point a
class type ct taken from a set of class types CT.
Definition 4 presents a formalization of the set CT
and a sub-typing relation on its types. The
soundness of the class analysis is analog to that of
reference analysis. Hence for a given statement and
two pre-types rt and ct, the reference and class
analyses find two post types rt′ and ct′ such that
S : rt → rt′ and S : ct → ct′ (denoted by
S : (rt,ct)→ (rt′,ct′)). For an arthemtic expression e,
the judgment e : (rt,ct)→ Cs denotes that Cs is the set
of classes that e may points to in state of types rt and
ct.

Definition 4. 1.Ap =A× [0,1].

2.Ppst= {rt | rt : Loc→ 2Ap s.t. (α,p1), (α,p2) ∈ rt(l)=⇒
p1 = p2}.

3.
∑

rt l =
∑

(α,p)∈rt(l) p.

4.Art(l) = {α | ∃p > 0. (α,p) ∈ rt(l)}.
5.RT = {rt ∈ Ppst | ∀l ∈ Loc.

∑

rt l ≤ 1}.

6.rt ≤ rt′
def
⇐⇒ (∀l, l′ ∈ Loc. (α,p) ∈ rt(l) =⇒ ∃p′. p ≥

p′& (α,p′) ∈ rt′(l)).

7.(s,h) |= rt
def
⇐⇒ (∀l ∈ Loc. (s(l) ∈ A∨ h(l) ∈ A) =⇒

∃p > 0. ((s(l),p) ∈ rt(l)∨ (h(l),p) ∈ rt(l)).

8.CT = Loc→ 2C.

9.(s,h) |= ct
def
⇐⇒ ∀l ∈

Loc. (s(l)∨h(l) points at a class C =⇒ C ∈ ct(l)).

10.ct ≤ ct′
def
⇐⇒ ∀l ∈ Loc. ct(l) ⊆ ct′(l).

3.1 Types

The new technique proposed in this section is in the
form of a type system. Enrichments of reference and
class types are the types of proposed type system.
Hence, a type for the proposed type system has the
form (rt,ct,V,ps). The symbols V and ps have the same
meanings as in the previous section. Definition 5 gives
the formal description of the set of memory-safety
types. This definition also formalizes the concept of
assigning a safety type to a memory state.

Definition 5. –A safety type is a quadruple (rt,ct,V,ps)
such that

–rt ∈ RT, ct ∈ CT,
–V ⊆ Loc such that for every l ∈V, there exists a pair

(α,p) ∈ rt(l) with p > pms, and

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) /www.naturalspublishing.com/Journals.asp 2749

e ∈AExpr F n | o | e.v | e1iop e2 | this | (C)e

b ∈ BExpr F true | false | e1cop e2 | b1bop b2

S ∈ Stat F o≔ e | e1.v≔ e2 | o1 ≔ o2. f (e) |

o1 ≔ super. f (e) | o≔ new C | S;S |

if b then St else S f | while b do St |

par{{S1}, . . . , {Sn}} | par-for{S} |

par-if{(b1 ,S1), . . . , (bn ,Sn)}

funs ∈ Fun F f(p){S; return(e); }

inhrt ∈ Inherits F ǫ | inherits C

cls ∈Class F class C inhrt {fun∗}

prog ∈ Prog F cls∗ main() {S}

Fig. 4: The programming language MC-OOP.

–ps ∈ [0,1].

–(rt,ct,V,ps) ≤ (rt′,ct′,V′,p′s)
def
⇐⇒ rt ≤ rt′,ct ≤

ct′,V ⊇ V′, and ps ≥ p′s ≥ pms.
–A state (s,h,p) has type (rt,ct,V,ps) with respect to the

probability pms, denoted by (s,h,p) |=pms (rt,ct,V,ps), if
(s,h) |= rt, (s,h) |= ct,∀l ∈ V(s(l) ∈ A∨h(l) ∈ A), and
pms ≤ ps ≤ p.

The idea behind the type system of probabilistic
memory safety of object oriented multi-core
programs presented in this section is the following.
We assume that we are given a program whose main
statement is S and a reference and class analyses for
S in the form S : (rt,ct)→ (rt′,ct′). If a post-type for a
safety pre-type (rt,ct,V,ps) exists (via a post-type
derivation) in the proposed type system then the
following is guaranteed. Running the program in a
positive state (s,h,p) of type (rt,ct,V,ps) is
memory-safe.

3.2 Inference Rules

Figures 5 and 6 present the inference rules of the
type system for probabilistic memory safety of
object oriented multi-core programs. Two forms of
judgments are produced by the type system. The
first of them is for arithmetic expressions and has the
form e : (l,rt,ct,V)→ V′. This judgment guarantees:

–The success of calculating e in a state (s,h,p) of type
(rt,ct,V,ps) w.r.t. pms, i.e. (s,h,p) |=pms (rt,ct,V,ps).

–If the state (s′,h′,p′) resulted from executing o≔ e
in a state of type (rt,ct,V,ps) then elements of V′

are addresses in (s′,h′).

This is presented in Lemma 2. The second form of
judgment is of the form
S : (rt,ct,V,p)→ (rt′,ct′,V′,p′). The semantics of the
judgment is that if the execution of S in a pre-state of

type (rt,ct,V,p) ends at a post-state, then the
post-state is of type (rt′,ct′,V′,p′). Theorem 2
formalizes this semantics.

Comments on the inference rules in the previous
section apply on rules of Figures 5 and 6. However
more comments are in order. In the rule (≔mt

e.v), V′ is
an approximation of all sets of locations resulting by
using different classes that e may evaluate to. The
precondition of the rule (≔mt

o. f
) presumes that Cs is

the set of all classes that o2 may evaluate to. For each
C ∈ Cs, the precondition assumes a common
reference and class analyses for the statement of the
function f of C (S f : (rt,ct) → (rt′,ct′)). Finally the
precondition assumes a set V′ that covers all the
expressions returned by all functions f of classes in
Cs. In the rule (≔mt

super),Cs′ is the set of all potential

active classes and Cs denotes the super classes (of
elements of Cs′) that include a definition for f . The
rules assumes a procedure super, whose inputs are a
function name and a class name. This procedure
finds the first ancestor of the class containing the
function.

Lemma 2. 1.Suppose (s,h,p) |=pms (rt,ct,V,ps) and
e : (l,rt,ct,V)→ V′. Then ~e�(s,h) ,⊥, and

o≔ e : (s,h,p)→ (s′,h′,p′) =⇒∀l ∈ V′ (s(l) ∈
dom(h)∨h(l) ∈ dom(h)).

2.(rt,ct,V,ps) ≤ (rt′,ct′,V′,p′s) =⇒
(∀(s,h,p). (s,h,p) |=pms (rt,ct,V,ps) =⇒ (s,h,p) |=pms

(rt′,ct′,V′,p′s)).

For a typed statement S in the probabilistic
memory-safety type system (i.e.
S : (pts,v,ps) → (pts′,v′,p′s)), Theorem 2 guarantees
the memory safety of executing S from a positive
state (s,h,p) such that (γ,p) |=pms (pts,v,ps).

Theorem 2.Suppose S : (rt,ct,V,ps) → (rt′,ct′,V′,p′s).
Then

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2750 M. A. El-Zawawy: Probabilistic Dangling References...

(nmt)
n : (l,rt,ct,V)→V \ {l}

o ∈V
(omt

1
)

o : (l,rt,ct,V)→ V∪{l}

∑

rt

o < pms

(omt
2

)
o : (l,rt,ct,V)→ V \ {l}

e : (rt,ct)→ Cs ∀C ∈ Cs. (C,v) ∈V
(e.omt

1
)

e.v : (l,rt,ct,V)→V∪{l}

e : (rt,ct)→ Cs ∀C ∈ Cs.
∑

rt

C.v < pms

(e.omt
2

)
e.v : (l,rt,ct,V)→ V \ {l}

∀l ∈ FV(e1 ⊕ e2).
∑

rt

l = 0

(⊕mt)
e1⊕ e2 : (l,rt,ct,V)→V \ {l}

e : (l,rt,ct,V)→ V′

(C(e)mt)
C(e) : (l,rt,ct,V)→V′

o≔ e2 : (rt,ct)→ (rt′,ct′) e : (o,rt,ct,V)→ V′

(≔mt
o)

o≔ e : (rt,ct,V,ps)→ (rt′,ct′,V′ ,ps)

e1.v≔ e2 : (rt,ct)→ (rt′ ,ct′)
e1 : (rt,ct)→ Cs

∀C ∈ Cs. e2 : (C.v,rt,V)→ V′

(≔mt
e.v)

e1.v≔ e2 : (rt,ct,V,ps)→ (rt′ ,ct′,V′,ps)

o2 : (rt,ct)→ Cs
∀C ∈ Cs. FC(f) = (p f ,S f ,e f)∧S f : (rt,ct)→ (rt′,ct′)∧ e f : (o1,rt,V)→V′

(≔mt
o. f

)
o1 ≔ o2. f (e) : (rt,ct,V,ps)→ (rt′,ct′,V′,ps)

this : (rt,ct)→ Cs′ Cs = {C | ∃D ∈ Cs∧ super(D, f) = C}
∀C ∈ Cs. FC(f) = (p f ,S f ,e f)∧S f : (rt,ct)→ (rt′,ct′)∧ e f : (o1,rt,V)→V′

(≔mt
super)

o1 ≔ super. f (e) : (rt,ct,V,ps)→ (rt′,ct′ ,V′,ps)

o≔ new C : (rt,ct)→ (rt′ ,ct′)
(≔mt

new)
o≔ new C : (rt,ct,V,ps)→ (rt′ ,ct′,V∪{o},ps)

S1 : (rt.ct,V,ps)→ (rt′′ ,ct′′,V′′,p′′s)
S2 : (rt′′,ct′′ ,V′′,p′′s)→ (rt′,ct′,V′ ,p′s) (seqmt)
S1 ;S2 : (rt,ct,V,ps)→ (rt′ ,ct′,V′,p′s)

∀l ∈ FV(b)(
∑

rt

l = 0)
St : (rt,ct,V,ps)→ (rtt,ctt,Vt,pt)
S f : (rt,ct,V,ps)→ (rt f ,ct f ,V f ,p f)

pms ≤ pt ×pi f

pms > ps × (1−pi f)
(ifmt

1)
if b then St else S f : (rt,ct,v,ps)→ (Υ(rtt,rt f),Υ(ctt,ct f),Vt ,pt ×pi f)

∀l ∈ FV(b)(
∑

rt

l = 0)
St : (rt,ct,V,ps)→ (rtt,ctt,Vt,pt)
S f : (rt,ct,V,ps)→ (rt f ,ct f ,V f ,p f)

pms > ps ×pi f

pms ≤ p f × (1−pi f)
(ifmt

2)
if b then St else S f : (rt,ct,V,ps)→ (Υ(rtt,rt f),Υ(ctt,ct f),V f ,p f × (1−pi f))

∀l ∈ FV(b)(
∑

rt

l = 0)
St : (rt,ct,V,ps)→ (rtt,ctt,Vt,pt)
S f : (rt,ct,V,ps)→ (rt f ,ct f ,V f ,p f)

pms ≤ pt ×pi f

pms ≤ p f × (1−pi f)
(ifmt

3)
if b then St else S f : (rt,ct,V,ps)→
(Υ(rtt,rt f),Υ(ctt,ct f),Vt ∩V f ,min{pt ×pi f ,p f × (1−pi f)})

Fig. 5: Inference rules for object-oriented multi-core programs 1.

1.If (s,h,p) |=pms (rt,ct,V,ps) and S is positive at (s,h,p)
then S does not abort at (s,h,p).

2.If S : (s,h,p) (s′,h′,p′) then (s,h,p) |=pms

(rt,ct,V,ps) =⇒ (s′,h′,p′) |=pms (rt′,ct′,V′,p′s).

The proof of Lemma 2 and Theorem 2 are inline with
that for Lemma 1 and Theorem 1, respectively. The
proof of Theorem 2 in particular is by induction on
the program structures using the rules of the
proposed type system. The most involved case is
that of (parmt). However is it pretty similar to the the
proof in Theorem 1 for the case of the rule (parm).
The obtained result is quite important for modern
compilers as it is a main object nowadays of such

compilers to guarantee memory safety rather than
just do the basic compilation process.

4 Related Work

Related work includes security vulnerabilities,
memory management, debugging and testing,
garbage collection, failure masking, analysis of
multi-core programs, analysis of object-oriented
programs, and type systems in program analysis.

A classical trend to reduce vulnerabilities of
heaps to security attacks is to use a randomization
approach for both choosing the base address [18] of
the heap and buffering allocation requests [19].

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) /www.naturalspublishing.com/Journals.asp 2751

Si : (Ψ(rt, . . . ,rt j , . . . | j , i), (Ψ(ct, . . . ,ct j , . . . | j , i),V∩∩ j,iV j

,min{ps ,p j | j , i})→ (rti,cti ,Vi ,pi) pms ≤
mini pi

n! (parmt)
par{{S1}, . . . , {Sn}} : (rt,ct,V,ps)→ (Υ(rt1, . . . ,rtn),Υ(ct1, . . . ,ctn),∩iVi ,

mini pi

n!
)

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (rt,ct,V,ps)→ (rt′ ,ct′,V′,p′s)
(par-ifmt)

par-if{(b1 ,S1), . . . , (bn ,Sn)} : (rt,ct,V,ps)→ (rt′,ct′,V′,p′s)

S : (Ψ(rt,rt′),Ψ(rt,rt′),V∩V′,min{ps,p
′
s})→ (rt′ ,ct′,V′,p′s)

(par-formt)
par-for{S} : (rt,ct,V,ps)→ (rt′ ,ct′,V′,p′s)

∀i ∈ [1,n],∀l ∈ FV(b)(
∑

rti
l = 0)

(rt1,ct1,V1,ps1
)

St
→ (rt2,ct2,v2,ps2

)
St
→ . . .

St
→ (rtn+1,ctn+1,Vn+1,psn+1

)
(whlmt)

while b do St : (rt1,ct1,V1,ps1
)→ (Υ(rtn+1),ctn+1),Vn+1,psn+1

)

(rt′
1
,ct′

1
,V′

1
,p′s1

) ≤ (rt1,ct1,V1,ps1
)

S : (rt1,ct1,V1,ps1
)→ (rt2,ct2,V2,ps2

)
(rt2,ct2,V2,ps2

) ≤ (rt′2,ct′2,V
′
2,p
′
s1

)
(csqmt)

S : (rt′1,V
′
1,p
′
s1

)→ (rt′2,V
′
2,p
′
s2

)

Fig. 6: Inference rules for object-oriented multi-core programs 2.

However this classical approach is believed not to be
very effective on 32-bit operating systems [20]. More
recent work [21] hides object layouts from attackers
in any duplicate.

To maintain fast allocation and low
fragmentation, dynamic techniques for memory
management scarify strength. Repeated memory
frees and heap corruption due to buffer overflows
affect most malloc implementations. While some
memory managers [22] prevent heap corruption via
separating metadata from the heap, other
managers [23] just recognize heap corruption.

Via simulation and multiple rewrites on run
time, techniques for debugging and testing [24]
discover memory errors in programs. Drawbacks of
these techniques include increasing space costs and
restrictive runtime overheads. These burdens can
only be tolerated during testing. Other techniques
significantly reduce runtime overhead and discover
memory leaks via using sampling [25].

The drawback of garbage collection [21], a
technique helping avoiding errors caused by
dangling pointers, is that to perform reasonably it
requires an ample amount of space. In particular, the
technique of [21] prevents overwrites via separating
metadata from heap. This technique, which is
probabilistic rather than absolute like most other
related techniques, also neglects multiply and faulty
frees.

Failure masking [26] is a terminology describing
stopping programs from aborting. Pool allocation, a
technique of failure masking, classifies objects into
pools according to their types and hence guarantees
that objects overwrite only dangling pointers of the
same type. The drawback of this technique is the
unpredictability of behavior of the produced

program. Other techniques, failure-oblivious
systems, neglect faulty writes and create values for
reading uninitialized memory.

None of techniques mentioned above that treat
dangling pointers deal with multi-core programs
nor provide proofs for correctness of each individual
test. Sound type systems for reference analysis and
memory safety of Multi-core programs are
presented in [3]. However all techniques mentioned
so far are absolute; not probabilistic like the
technique presented here. Hence our work has the
advantage, over all the related work, of being usable
in speculative-optimizations sections of modern
compilers.

The analysis of multi-core programs is receiving
a growing research interest. The possible
interactions between various cores significantly
complicate analysis of multi-core programs. Work in
this area is typically classified into two main
categories: techniques designed specifically for
optimization or error-detection of multi-core
programs and techniques originally designed for
analysis of sequential programs and successfully
extended to cover multi-core programs.

The work in the first category above includes
dataflow frameworks for bitvector problems [27],
concurrent static single assignment forms [29],
reaching definitions [28], constant propagation [9],
code motion [30]. None of these techniques studies
memory-safety of multi-core programs leaving alone
probabilistic memory safety of these programs. The
work in the other category above includes
synchronization analysis [31], race detection [32],
reference analysis [3], and deadlock analysis [10].

Reference and class escape analysis that is
combined class-modular and that is analyzing class

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2752 M. A. El-Zawawy: Probabilistic Dangling References...

declarations is presented in [33]. In [34], a group of
answer set programming rules to represent the
generation of reference information through paths of
object-oriented programs is introduced.

The use of type systems in program analysis is
becoming a mainstream approach for applications
that require a proof for each individual program
analysis like certified code. General methods for
transforming monotone data-flow analyses (forward
and backward) into type systems are presented
in [35]. Constant folding, common subexpression
elimination, and dead code elimination for while
language as type systems are presented in [36].

Acknowledgement

The authors are grateful to the anonymous referee
for a careful checking of the details and for helpful
comments that improved this paper.

Disclosure

This paper is an extended and revised version of [8].

Appendix: Probabilistic Operational
Semantics

This appendix reviews and augments a probabilistic
operational semantics that we presented in [7] for
the programming language (Figure 1) that we study.
This language is the simple while language extended
with new basic statements for parallel
programming: par{{S1}, . . . , {Sn}} (fork-join),
par-if{(b1,S1), . . . , (bn,Sn)} (conditionally spawned
threads), and par-for{S} (parallel loops). At the begin
of the par command, the basic parallel command, a
main core initiates the run of various concurrent
inner cores. The subsequent statement (to the main
core) can only be executed when the run of all inner
cores are finished. The semantics of conditionally
spawned command is akin to that of fork-join. The
run of par-if{(b1,S1), . . . , (bn,Sn)} includes initiating
the conditionally concurrent runs of the n cores; only
if bi is true, Si is executed. The following command
(to the par-if statement) can only be executed when
the runs of all conditional cores are finished. The
semantics of parallel loop construct par-for{S}
includes running concurrently a statically unknown
number of cores that all are S.

Semantically a computational state is a pair (γ,p):
γ is a mapping from variables to values (integers plus
symbolic addresses) and p ∈ [0,1]. The intuition is that
p is the probability of reachingγ. Definition 6 presents
a formal definition for computational states.

Definition 6. 1.Addrs = {x′ | x ∈ Var} and
Val =Z∪Addrs.

2.γ ∈ Γ = Var −→Val.
3.A state is either an abort or a pair (γ,p) such that

p ∈ [0,1].

We adopt the usual semantics for arithmetic and
Boolean expressions, except that we do not allow
arithmetic and Boolean operations on references
(pointers). Figure 7 presents inference rules of our
probabilistic operational semantics (transition
relation).

Definitions 7 and 8 introduce terminologies that
are used above to discuss and prove soundness of
our proposed type system for probabilistic memory
safety.

Definition 7.For a statement S, a judgement of the form
S : (γ,p)→ (γ′,p′) is described as a computation (or an
execution) path. The quantity p′ is the probability of this
execution path.

Definition 8.Suppose that S : (pts,v,ps)→ (pts′,v′,p′s).
Then S is positive at a state (γ,p) of type (pts,v,ps) if along
any execution path of S that starts at (γ,p) whenever an if
statement, whose condition is true with probability pi f , is
encountered at a state (γ′′,p′′) whose type is (pts′′,v′′,p′′s)
in the proof tree of S : (pts,v,ps)→ (pts′,v′,p′s), i.e.

(γ,p) . . . (γ′′,p′′)
i f b then...
 . . .

the following are true:

–if pi f × p′′ ≥ pms > (1− pi f)× p′′s , then ~b�γ′′ = true.
–if pi f × p′′s < pms ≤ (1− pi f)× p′′, then ~b�γ′′ = false.

A simple structure induction proves lemma 3
which is used in the soundness proof above.

Lemma 3.Suppose that
S : (pts,v,ps)→ (pts′,v′,p′s), (γ,p) |=ms (pts,v,ps), and S
is positive at (γ,p). Suppose also that along an execution
path of S that starts at (γ,p), a sub-statement S′ of S is
encountered at a state (γ′′,p′′), i.e.

(γ,p) . . . (γ′′,p′′)
S′
 . . .

If S′ : (pts1,v1,p1s)→ (pts′2,v
′
2,p
′
2s) in the proof tree of S :

(pts,v,ps)→ (pts′,v′,p′s) and (γ′′,p′′) |=ms (pts1,v1,p1s)
then S′ is positive at (γ′′,p′′).

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) /www.naturalspublishing.com/Journals.asp 2753

~n�γ = n ~&x�γ = x′ ~x�γ = γ(x) ~true�γ = true ~false�γ = false

~∗x�γ =

{

γ(y) if γ(x) = y′,
! otherwise.

~e1 ⊕ e2�γ =

{

~e1�γ⊕~e2�γ if ~e1�γ,~e2�γ ∈Z,
! otherwise.

~¬A�γ =

{

¬(~A�γ) if ~A�γ ∈ {true, false},
! otherwise.

~e1 = e2�γ =















! if ~e1�γ = ! or ~e2�γ = !,
true if ~e1�γ = ~e2�γ , !,
false otherwise.

~e1 ≤ e2�γ =

{

! if ~e1�γ <Z or ~e2�γ <Z,
~e1�γ ≤ ~e2�γ otherwise.

For ⋄ ∈ {∧,∨}, ~b1 ⋄b2�γ =

{

! if ~b1�γ = ! or ~b2�γ = !,
~b1�γ⋄~b2�γ otherwise.

~e�γ = !

x≔ e : (γ,p) abort

~e�γ , !

x≔ e : (γ,p) (γ[x 7→ ~e�γ],p)

γ(x) = z′ z≔ e : (γ,p) state

∗x≔ e : (γ,p) state

γ(x) < Addrs

∗x≔ e : (γ,p) abort x≔&y : (γ,p) (γ[x 7→ y′],p)

γ(y) = z′ x≔ z : (γ,p) (γ′ ,p)

x≔ ∗y : (γ,p) (γ′ ,p)

γ(y) < Addrs

x≔ ∗y : (γ,p) abort skip : (γ,p) (γ,p)

S1 : (γ,p) abort

S1;S2 : (γ,p) abort

S1 : (γ,p) (γ′′ ,p′′) S2 : (γ′′ ,p′′) state

S1;S2 : (γ,p) state

~b�γ = !

if b then St else S f : (γ,p) abort

~b�γ = true St : (γ,p) abort

if b then St else S f : (γ,p) abort

~b�γ = true St : (γ,p) (γ′ ,p′)

if b then St else S f : (γ,p) (γ′,pi f ×p′)

~b�γ = false S f : (γ,p) abort

if b then St else S f : (γ,p) abort

~b�γ = false S f : (γ,p) (γ′ ,p′)

if b then St else S f : (γ,p) (γ′ , (1−pi f)×p′)

~b�γ = !

while b do St : (γ,p) abort

~b�γ = false

while b do St : (γ,p) (γ,p)

~b�γ = true S : (γ,p) abort

while b do St : (γ,p) abort

~b�γ = true S : (γ,p) (γ′′ ,p′′) while b do St : (γ′′ ,p′′) state

while b do St : (γ,p) state

•Fork-join:

†
par{{S1}, . . . , {Sn}} : (γ,p) (γ′,

p′

n!
)

‡
par{{S1}, . . . , {Sn}} : (γ,p) abort

†there exist a permutation θ : {1, . . . ,n} → {1, . . . ,n} and n + 1 states (γ,p) =
(γ1,p1), . . . , (γn+1,pn+1) = (γ′,p′) such that for every 1 ≤ i ≤ n, Sθ(i) : (γi ,pi) (γi+1,pi+1).
‡there exist m such that 1 ≤ m ≤ n, a one-to-one map β : {1, . . . ,m} → {1, . . . ,n}, and m+ 1 states
(γ,p) = (γ1,p1), . . . , (γm+1,pm+1) = abort such that for every 1 ≤ i ≤m, Sβ(i) : (γi,pi) (γi+1,pi+1).

•Conditionally spawned threads:

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (γ,p) (γ′,p′)

par-if{(b1 ,S1), . . . , (bn ,Sn)} : (γ,p) (γ′,p′)

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (γ,p) abort

par-if{(b1,S1), . . . , (bn,Sn)} : (γ,p) abort

•Parallel loops:

∃n. par{{S}1 , . . . , {S}n} : (γ,p) (γ′ ,p′)

par-for{S} : (γ,p) (γ′ ,p′)

∃n. par{{S}1 , . . . , {S}n} : (γ,p) abort

par-for{S} : (γ,p) abort

Fig. 7: Axioms and inference rules for semantics of model in Figure 1.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2754 M. A. El-Zawawy: Probabilistic Dangling References...

References

[1] T. Ungerer, B. Robic, and J. Silc. A survey of processors
with explicit multithreading. ACM Comput. Surv., 35,
29-63 (2003).

[2] P. J. Deitel. C++How to Program. P.J. Deitel, H.M. Deitel.
Pearson Education, 7th edition, 2010.

[3] M. A. El-Zawawy. Flow sensitive-insensitive pointer
analysis based memory safety for multithreaded
programs. In Beniamino Murgante, Osvaldo Gervasi,
Andryes Iglesias, David Taniar, and Bernady O.
Apduhan, editors, ICCSA (5), Lecture Notes in
Computer Science, Springer, 6786, 355-369 (2011).

[4] J. Seibert, H. Okkhravi, E. Sderstrm. Information Leaks
Without Memory Disclosures: Remote Side Channel
Attacks on Diversified Code. ACM Conference on
Computer and Communications Security 54-65 (2014).

[5] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator:
Automatically correcting memory errors with high
probability. Commun.ACM 51, 87-95 (2008).

[6] J. Da Silva and J. G. Steffan. A probabilistic pointer
analysis for speculative optimizations. In John Paul Shen
and Margaret Martonosi, editors, ASPLOS, ACM, 416-
425 (2006).

[7] M. A. El-Zawawy. Probabilistic pointer analysis for
multithreaded programs. ScienceAsia 37(4), 344-354
(2011).

[8] M. A. El-Zawawy. Detection of probabilistic dangling
references in multi-core programs using proof-
supported tools. In Beniamino Murgante, Sanjay Misra,
Maurizio Carlini, Carmelo Mario Torre, Hong-Quang
Nguyen, David Taniar, Bernady O. Apduhan, and
Osvaldo Gervasi, editors, ICCSA (5), Lecture Notes in
Computer Science, Springer 7975, 516-530 (2013).

[9] D. Callahan, K.h D. Cooper, K. Kennedy, and L. Torczon.
Interprocedural constant propagation. SIGPLAN Not.
39, 155-166 (2004).

[10] F. Ahmad, H. Huang, and X. LongWang. Petri
net modeling and deadlock analysis of parallel
manufacturing processes with shared-resources. J. Syst.
Softw. 83, 675-688 (2010).

[11] P. Yiapanis, D. Rosas-Ham, G. Brown, and M. Lujcyan.
Optimizing software runtime systems for speculative
parallelization. TACO 4,39-49 (2013).

[12] L. Gao, L. Li, J. Xue, and P. Yew. Seed: A
statically greedy and dynamically adaptive approach
for speculative loop execution. IEEE Trans. Computers
62(5),1004-1016 (2013).

[13] Xi. Dai, A. Zhai, W. Hsu, and P. Yew. Ageneral compiler
framework for speculative optimizations using data
speculative code motion. In CGO, IEEE Computer Society,
280-290 (2005).

[14] J. Lin, T. Chen, W. Hsu, and P. Yew. Speculative register
promotion using advanced load address table (alat). In
CGO, IEEE Computer Society, 125-134 (2003).

[15] K. Cleereman, M. Cheatham, and K. Thirunarayan.
Runtime support of speculative optimization for offline
escape analysis. In Hamid R. Arabnia and Hassan Reza,
editors, Software Engineering Research and Practice,
CSREA Press, 484-489 (2007).

[16] R. Blanc, T. A. Henzinger, T. Hottelier, L. Kovcs.
ABC: Algebraic Bound Computation for Loops. LPAR
(Dakar), 103-118 (2010).

[17] B. Rieder, P. P. Puschner, I. Wenzel. Using model
checking to derive loop bounds of general loops within
ANSI-C applications for measurement based WCET
analysis. WISES, 1-7 (2008).

[18] S. Antonatos and K. G. Anagnostakis. Tao: Protecting
against hitlist worms using transparent address
obfuscation. In Herbert Leitold and Evangelos P.
Markatos, editors, Communications and Multimedia
Security, volume of Lecture Notes in Computer Science,
Springer 4237, 12-21 (2006).

[19] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory
error exploits. In Proceedings of the 14th conference on
USENIX Security Symposium - Berkeley, CA, USA, 2005.
USENIX Association 14, 17-17 (2005).

[20] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM
conference on Computer and communications security,
CCS04, New York, NY, USA, ACM, 298-307 (2004).

[21] G. Novark and E. D. Berger. Dieharder: securing
the heap. In Ehab Al-Shaer, Angelos D. Keromytis,
and Vitaly Shmatikov, editors, ACM Conference on
Computer and Communications Security, ACM, 573-584
(2010).

[22] Y. Chang and T. Kuo. A management strategy for the
reliability and performance improvement of mlc-based
flash-memory storage systems. IEEE Trans. Computers,
60(3), 305-320 (2011).

[23] W. K. Robertson, C.r K. ugel, D. Mutz, and F. Valeur.
Runtime detection of heap-based overflows. In LISA,
USENIX, 51-60 (2003).

[24] W.m B. Langdon, M. Harman, and Y. Jia. Efficient multi-
objective higher order mutation testing with genetic
programming. J. Syst. Softw. 83, 2416-2430 (2010).

[25] M. Hauswirth and T. M. Chilimbi. Low-overhead
memory leak detection using adaptive statistical
profiling. In Shubu Mukherjee and Kathryn S. McKinley,
editors, ASPLOS, ACM, 156-164 (2004).

[26] S. Sardi .na and L. Padgham. A bdi agent programming
language with failure handling, declarative goals,
and planning. Autonomous Agents and Multi- Agent
Systems, 23(1), 18-70 (2011).

[27] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for
free: efficient and optimal bitvector analyses for parallel
programs. ACM Trans. Program. Lang. Syst., 18, 268-299
(1996).

[28] H. Srinivasan, J. Hook, and M. Wolfe. Static
single assignment for explicitly parallel programs.
In Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
POPL93, New York, NY, USA, ACM, 260-272 (1993).

[29] J. Collard and M. Griebl. A precise fixpoint reaching
definition analysis for arrays. In Proceedings of the 12th
International Workshop on Languages and Compilers
for Parallel Computing, LCPC99, London, UK, Springer-
Verlag, 286-302 (2000). .

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 9, No. 5, 2741-2755 (2015) /www.naturalspublishing.com/Journals.asp 2755

[30] J. Knoop, O. Ruthing, and Bernhard Steffen. Lazy code
motion. SIGPLAN Not. 39,460-472 (2004).

[31] M. W. Hall, S. P. Amarasinghe, Brian R. Murphy,
Shih-Wei Liao, and Monica S. Lam. Interprocedural
parallelization analysis in suif. ACM Trans. Program.
Lang. Syst. 27, 662-731 (2005).

[32] Y. Kim and Y. Jun. Restructuring parallel programs
for on-the-fly race detection. In Proceedings of the
5th International Conference on Parallel Computing
Technologies, PaCT99, London, UK, 446-451 (1999).
Springer-Verlag.

[33] A. Herz and K. Apinis. Class-modular, class-escape
and points-to analysis for object-oriented languages.
In Alwyn Goodloe and Suzette Person, editors, NASA
Formal Methods, Lecture Notes in Computer Science,
Springer 7226, 106-119 (2012).

[34] B. Yang, M. Zhang, and Y. Zhang. Applying answer
set programming to points-to analysis of object-oriented
language. In De-Shuang Huang, Yong Gan, Vitoantonio
Bevilacqua, and Juan Carlos Figueroa Garcya, editors,
ICIC (1), Lecture Notes in Computer Science, Springer
6838, 676-685 (2011).

[35] H. R. Nielson and F. Nielson. Flow logic: A
multi-paradigmatic approach to static analysis. In
Torben. Mogensen, David A. Schmidt, and Ivan Hal
Sudborough, editors, The Essence of Computation,
Lecture Notes in Computer Science, Springer 2566, 223-
244 (2002).

[36] N. Benton. Simple relational correctness proofs for
static analyses and program transformations. In Neil
D. Jones and Xavier Leroy, editors, POPL, ACM, 14-25
(2004).

Mohamed A.
El-Zawawy received:
PhD in Computer Science
from the University
of Birmingham in 2007,
M.Sc. in Computational
Sciences in 2002 from Cairo
University, and a BSc. in
Computer Science in 1999
from Cairo University. Dr

El-Zawawy is an associate professor of Computer
Science at Faculty of Science, Cairo University Since
2014. Currently, Dr. El-Zawawy is on a sabbatical
from Cairo University to College of Computer and
Information Sciences, Al Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh,
Kingdom of Saudi Arabia. During the year 2009, Dr.
El-Zawawy held the position of an extra-ordinary
senior research at the Institute of Cybernetics,
Tallinn University of Technology, Estonia. Dr.
El-Zawawy worked as a teaching assistant at
Cairo University from 1999 to 2003 and latter at
Birmingham University from 2003 to 2007. Dr.
El-Zawawy worked as an assistant professor at
Cairo University from 2007 to 2014. Dr. El-Zawawy
is interested in static analysis, shape analysis, type
systems, and semantics of programming languages.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Probabilistic Memory Safety of Imperative Multi-Core Programs
	Probabilistic Memory Safety for Multi-Core Object-Oriented Programs
	Related Work

