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Abstract: We give an existence theorem for some quadratic functional equations which includes many key integral and functional
equations that arise in nonlinear analysis and its applications. In particular, we extend the class of characteristic functions appearing
in Chandrasekhar’s classical integral equation from astrophysics and retain existence of its solutions. Also, some counter examples are
considered.
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1 Introduction

The study of integral equations have gained much
attention due to extensive applications of these equations
in describing numerous events and problems of real
world, and the theory of integral equations is rapidly
developing with the help of several tools of functional
analysis, topology and fixed point theory. For details, we
refer to [2]-[11] and [17]-[27].

One of the kinds of integral equations is quadratic integral
equations which have received increasing attention during
recent years due to its applications in numerous diverse
fields of science and engineering for example, the theory
of radiative transfer, kinetic theory of gases, the theory of
neutron transport and the traffic theory. Many authors
have studied different kinds of nonlinear quadratic
integral equations in different classes (see[2], [3], [7]-[14]
and [17] - [27]). Especially, Chandrasekar’s integral
equation which has been a subject of much investigation
since its appearance around fifty years ago [13].

Let L1 = L1[0,T] be the class of Lebesgue integrable
functions on I = [0,T] with the standard norm.

Here, we are concerning with the nonlinear quadratic
functional equation

x(t) = f (t,x(φ1(t))) + g(t,x(φ2(t))).ψ
(

t,
∫ α(t)

0 u(t,s,x(φ3(s))) ds
)

, t ∈ I .

(1)
which includes as special cases numerous function,
integral and functional integral equations encountered in

nonlinear analysis. For example, the quadratic integral
equation of Chandrasekhar type

x(t) = 1 + λ x(t)
∫ t

0

t φ(s)
t + s

x(s) ds

and the quadratic integral equation of fractional order

x(t) = f (t)+g(t,x(t))
∫ t

0

(t − s)β−1

Γ (β )
h(s,x(s)) ds, β > 0.

2 Preliminaries

In this section, we introduce some notations and
preliminary facts which are used in the paper.
Now let E be a Banach space with zero elementθ and
let X be a nonempty bounded subset ofE. Moreover
denote byBr = B(θ , r) the closed ball inE centered atθ
and with radiusr. In the sequel we shall need some
criteria for compactness in measure; the complete
description of compactness in measure was given by
Fréchet [4], but the following sufficient condition will be
more convenient for our purposes (see[4]).

Theorem 1.Let X be a bounded subset of L1. Assume that
there is a family of subsets(Ωc)0≤c≤b−a of the interval
(a,b) such that measΩc = c for every c∈ [0,b−a], and
for every x∈ X, x(t1) ≤ x(t2) , (t1 ∈ Ωc, t2 6∈ Ωc), then
the set X is compact in measure.
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The measure of weak noncompactness defined by De Blasi
[1] and [15] is given by,

β (X) = in f (r > 0 : there exists a weakly compact subsetY of E such thatX ⊂Y+Kr)

The function β (X) possesses several useful properties
which may be found in [15].
The convenient formula for the functionβ (X) in L1 was
given by Appel and De Pascale ( see [1])

β (X) = limε→0(supx∈X(sup[
∫

D |x(t)|dt : D ⊂ [a,b],measD ≤ ε])),
(2)

where the symbol measD stands for Lebesgue measure
of the setD.
Next, we shall also use the notion of the Hausdorff
measure of noncompactnessχ (see[4]) defined by

χ(X) = in f (r > 0 : there exists a finite subsetY of E such thatX ⊂Y+Kr)

In the case when the setX is compact in measure, the
Hausdorff and De Blasi measures of noncompactness will
be identical. Namely we have (see[1] and [15])

Theorem 2.Let X be an arbitrary nonempty bounded
subset of L1. If X is compact in measure then
β (X) = χ(X).

Finally, we will recall the fixed point theorem due to Darbo
[6].

Theorem 3.Let Q be a nonempty, bounded, closed and
convex subset of E and let H: Q → Q be a continuous
transformation which is a contraction with respect to the
Hausdorff measure of noncompactnessχ , i.e., there exists
a constantα ∈ [0,1) such that χ(HX) ≤ α χ(X) for
any nonempty subset X of Q. Then H has at least one
fixed point in the set Q.

3 Existence Theorem

Let the functional operatorH be defined as

(Hx)(t) = ψ
(

t,
∫ α(t)

0
u(t,s,x(s)) ds

)

,

(Fx)(t) = f (t,x(t))

Then equation (1) may be written in operator form as:

(Ax)(t) = (Fx(φ1))(t) + (Gx(φ2))(t).(Hx(φ3))(t)

where (Gx)(t) = g(t,x(t)).

Consider the following assumptions:

(i) f , g : I × R → R are functions such that
f , g : I × R+ → R+. Moreover, the functionsf , g
satisfy Carathèodory condition (i.e. are measurable in
t for all x ∈ R and continuous inx for all t ∈ I )
and there exist two functionsm1, m2 ∈ L1 and
constantsb1 > 0, b2 > 0 such that

| f (t,x)| ≤ m1(t) + b1 | x |, |g(t,x)| ≤ m2(t) + b2 | x |

∀ (t,x) ∈ I × R.
Apart from this the functions f and g are
nondecreasing in both variables.

(ii) u : I × I ×R → R is such that u(t,s,x) ≥ 0 for
(t,s,x) ∈ I × I × R+ and u(t,s,x) satisfies
Carathéodory condition (i.e. it is measurable in(t,s)
for all x ∈ R and continuous inx for almost all
(t,s) ∈ I × I ).

(iii)There exist a positive constant b3, a function
m3 ∈ L1 and a measurable (in both variables) function
k(t,s) = k : I × I → R+ such that

|u(t,s,x)| ≤ k(t,s)(m3(t) + b3 | x |) ∀ t,s∈ I and for x∈ R

and the integral operatorK, generated by the function
k and defined by

(Kx)(t) =

∫ t

0
k(t,s) x(s) ds, t ∈ I . (3)

maps continuouslyL1 into L∞ on I ;
(iv) t → u(t,s,x) is a.e. nondecreasing onI for almost all

fixed s∈ I and for eachx∈ R+;
(v) ψ : I × R → R is a function such that

ψ : I × R+ → R+. Moreover, the functionψ
satisfies Carathèodory condition (i.e. is measurable in
t for all x ∈ R and continuous inx for all t ∈ I )
and there exist bounded and measurable function
m(t) and a constantb> 0, such that

|ψ(t,x)| ≤ m(t) + b | x | ∀ (t,x) ∈ I × R.

Apart from this the functionψ is nondecreasing in
both variables.

(vi) α : I → I is continuous.
(vii) φi : I → I , i = 1,2,3 are increasing, absolutely

continuous on and there exist positive constants
Bi , i = 1,2,3 such thatφ ′

i ≥ Bi a.e. on I ;
(viii)Let

d >
√

4 M b b2 b3 B1
2 B2 B3 (||m1|| + b M.||m2|| ||m3||+N ||m2||),

|m(t)| ≤ N, M = ||K||L∞

where we assume that
d = B1 B2 B3− b1 B2 B3− b b2 M B1 B3 ||m3||−
M b b3 B1 B2 ||m2|| +b b2 N B1 B3.

Moreover, we assume that there exists a positive solution r
of the quadratic equation

b b2 b3 B1 M r2 − d r + B1 B2 B3(||m1|| + b M.||m2|| ||m3||+N ||m2||) = 0.
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and define the set

Br = {x∈ L1 : ||x|| ≤ r}.

For the existence of at least oneL1−positive solution of
the quadratic functional equation (1) we have the
following theorem.

Theorem 4.Let the assumptions (i)-(viii) be satisfied.
If b1 B2 B3 + M b b2 B1 B3 ||m3||+ r b b2 b3 M +
b2 B1 B3 N < B1 B2 B3, then the quadratic functional
equation (1) has at least one solution x∈ L1 which is
positive and a.e. nondecreasing on I.

Proof. Take an arbitraryx ∈ L1, then, we get
| (Ax)(t) | ≤ |m1(t)| + b1 | x(φ1(t))|

+ ( m2(t) + b2 | x(φ2(t)) | )
[

m(t)+b
∫ α(t)

0
k(t,s)(m3(s) + b3 | x(φ3(s)) | ) ds

]

and

|| (Ax)(t) || = ∫ T
0 | (Ax)(t) | dt

≤
∫ T

0 |m1(t)| dt + b1
∫ T

0 | x(φ1(t))| dt

+
∫ T

0 ( m2(t) dt + b2 | x(φ2(t)) | )
[

m(t)+b
∫ α(t)

0 k(t,s)(m3(t) + b3 | x(φ3(s)) | ) ds
]

dt

≤ ||m1|| + b1
B1

∫ T
0 | x(φ1(t))|.φ ′

1(t) dt +
∫ T
0 m2(t) m(t)dt+ b

∫ T
0 m2(t)

∫ α(t)
0 k(t,s) m3(s) ds dt

+ b b2
∫ T

0 |x(φ2(t))|
∫ α(t)

0 k(t,s) m3(s) ds dt+ b b3
∫ T

0 m2(t)
∫ α(t)

0 k(t,s) |x(φ3(s))| ds dt

+ b b2 b3
∫ T

0 |x(φ2(t))|
∫ α(t)

0 k(t,s) |x(φ3(s))| ds dt+b2
∫ T

0 m(t)|x(φ2(t))| dt

≤ ||m1|| + b1
B1

∫ T
0 | x(φ1(t))|.φ ′

1(t) dt + b
∫ T

0 m2(t)
∫ T

0 k(t,s) m3(s) ds dt

+ b b2
∫ T

0 |x(φ2(t))|
∫ T

0 k(t,s) m3(s) ds dt+ b b3
∫ T

0 m2(t)
∫ T

0 k(t,s) |x(φ3(s))| ds dt +N
∫ T

0 m2(t) dt

+ b b2 b3
∫ T

0 |x(φ2(t))|
∫ T

0 k(t,s) |x(φ3(s))| ds dt + b2 N
∫ T

0 |x(φ2(t))| dt

≤ ||m1|| + b1
B1

∫ φ1(T)
φ1(0)

| x(φ1(t))|.φ ′
1(t) dt + b

∫ T
0 m2(t)

∫ T
0 k(t,s) m3(s) ds dt

+ b b2
B2

∫ φ2(T)
φ2(0)

|x(φ2(t))|.φ ′
2(t)

∫ T
0 k(t,s) m3(s) ds dt+ b2 N

B2

∫ T
0 |x(φ2(t))|.φ ′

2(t) dt+N ||m2||

+ b b3
B3

∫ T
0 m2(t)

∫ φ3(T)
φ3(0)

k(t,s) |x(φ3(s))|.φ ′
3(s) ds dt

+ b b2 b3
B2B3

∫ φ2(T)
φ2(0)

|x(φ2(t))|.φ ′
2(t)

∫ φ3(T)
φ3(0)

k(t,s) |x(φ3(s))|.φ ′
3(s) ds dt

≤ ||m1|| + b1
B1

∫ T
0 | x(θ )| dθ + b M ||m2|| ||m3||+ M b b2 ||m3||

B2

∫ T
0 |x(θ )| dθ +N ||m2||,

+ M b b3 ||m2||
B3

∫ T
0 |x(θ )| dθ + M b b2 b3

B2 B3

∫ T
0 |x(θ )| dθ .

∫ T
0 |x(θ )| dθ + b2 N

B2

∫ φ2(T)
φ2(0)

|x(u)| du

≤ ||m1|| + b1
B1

|| x|| + b M ||m2|| ||m3||+ M b b2 ||m3||
B2

||x||+N ||m2||

+
M b b3 ||m2||

B3
||x|| + M b b2 b3

B2 B3
||x||2+ b b2 N

B2
||x||.

which shows that the operatorA maps the ballBr into
itself with

r =
d −

√
d2−4 b M b2 b3 B1

2 B2 B3 (||m1|| + b M.||m2|| ||m3||+N ||m2||)
2 b M b2 b3 B1

.

(4)
Assumption (vii) implies

0 < d2 − 4 b M b2 b3 B1
2 B2 B3 (||m1|| + b M.||m2|| ||m3||+N ||m2||) < d2,

which implies that

0 <
√

d2− 4 b M b2 b3 B1
2 B2 B3 (||m1|| + b M.||m2|| ||m3||+N ||m2||) < d.

Then d is positive and hencer is a positive constant.
Let Qr be a subset ofBr ∈ L1 consisting of all functions
which are a.e. nondecreasing onI .
Clearly, the set Qr is nonempty, bounded, convex and
closed [4]. Moreover this set is compact in measure [5].
Then we deduce that the operatorA maps Qr into itself.

Since the operator(Ux)(t) =
∫ α(t)

0 u(t,s,x(s)) ds is
continuous, then the operatorH is continuous and hence
the product G.H is continuous. Also,F is continuous.
Thus the operatorA is continuous onQr .
Let X be a nonempty subset ofQr . Fix ε > 0 and
take a measurable subsetD ⊂ I such that
measD ≤ ε. Then, for any x ∈ X, using the same
reasoning as in [4] and [5], we get

|| Ax ||L1(D) =

∫

D
| (Ax)(t) | dt

≤
∫

D
|m1(t)| dt + b1

∫

D
| x(φ1(t))| dt

+
∫

D ( m2(t) dt + b2 | x(φ2(t)) | )
[

m(t)+b
∫ α(t)
0 k(t,s)(m3(s) + b3 | x(φ3(s)) | ) ds

]

dt

≤ ||m1||L1(D) + b1
B1

∫

D | x(φ1(t))|.φ ′
1(t) dt + b

∫

D m2(t)
∫ T

0 k(t,s)m3(s) ds dt +N
∫

D m2(t) dt

+ b b2
∫

D |x(φ2(t))|
∫ T

0 k(t,s) m3(s) ds dt+M b b3
∫

D m2(t)
∫ T

0 |x(φ3(s))| ds dt

+ M b b2 b3
∫

D |x(φ2(t))|
∫ T

0 |x(φ3(s))| ds dt+ b2 N
B2

∫

D |x(φ2(t))| φ ′
2(t) dt

≤ ||m1||L1(D) + b1
B1

∫

D | x(θ )| dθ + b M ||m2||L1(D) ||m3||L1 +
M b b2 ||m3||L1

B2

∫

D |x(θ )| dθ

+
M b b3 ||m2||L1(D)

B3

∫ T
0 |x(θ )| dθ + M b b2 b3

B2 B3

∫

D |x(θ )| dθ .
∫ T

0 |x(θ )| dθ

+ b2 N
B2

∫

D |x(θ )| dθ +N ||m2||L1(D)

≤ ||m1||L1(D) + b1
B1

|| x||L1(D) + M b ||m2||L1(D)||m3||L1 +
M b b2 ||m3||L1

B2
||x||L1(D)

+
M b b3 ||m2||L1(D)

B3
||x|| + M b b2 b3

B2 B3
||x||L1(D).||x||

+ b2 N
B2

||x||L1(D)+N ||m2||L1(D)
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≤ ||m1||L1(D) + b1
B1

|| x||L1(D) + M b ||m2||L1(D) ||m3||L1 +
M b b2 ||m3||L1

B2
||x||L1(D)

+
r b M b3 ||m2||L1(D)

B3
+ r b M b2 b3

B2 B3
||x||L1(D)

+
b2 N
B2

||x||L1(D)+N ||m2||L1()

Since

limε → 0 { sup{ ∫

D | mi(t) | dt : D ⊂ I , measD < ε } } = 0, i = 1,2,3.

We obtain

β (Ax(t)) ≤ [ b1
B1

+
M b b2 ||m3||L1

B2
+ M b b2 b3 r

B2 B3
+ b2 N

B2
] β (x(t)).

This implies

β (AX) ≤ [ b1
B1

+
M b b2 ||m3||L1

B2
+ M b b2 b3 r

B2 B3
+ b2 N

B2
] β (X),

(5)
where β is the De Blasi measure of weak
noncompactness.
Keeping in mind Theorem2 we can write (5) in the form

χ(AX) ≤ [ b1
B1

+
M b b2 ||m3||L1

B2
+ M b b2 b3 r

B2 B3
+ b2 N

B2
] χ(X),

where χ is the Hausedorff measure of noncompactness.

Since b1
B1

+
M b b2 ||m3||L1

B2
+ M b b2 b3 r

B2 B3
+ b2 N

B2
< 1, from

Theorem3 follows that A is contraction with respect to
the measure of noncompactnessχ . Thus A has at least
one fixed point inQr which is a solution of the quadratic
functional equation.

4 Special cases and applications

As particular cases of Theorem4 we can obtain theorems
on the existence of positive and a.e. nondecreasing
solutions belonging to the spaceL1(I) of the following
quadratic functional equations:

1.If ψ(t,x) =
∫ α(t)

0 u(t,s,x(φ3(s))) ds, then we obtain
the quadratic functional equation [26]

x(t) = f (t,x(φ1(t))) + g(t,x(φ2(t)))
∫ α(t)

0 u(t,s,x(φ3(s))) ds, t ∈ I .

2.If ψ(t,x) =
∫ t

0 u(t,s,x(φ3(s))) ds, then we obtain the
quadratic functional equation

x(t) = f (t,x(φ1(t))) + g(t,x(φ2(t)))
∫ t

0 u(t,s,x(φ3(s))) ds, t ∈ I .

that was studied in [14].
3.If ψ(t,x) =

∫ t
0 u(t,s,x(φ3(s))) ds, g(t,x) = 1 and

f (t,x) = a(t) then we obtain the functional integral
equation of Urysohn type

x(t) = a(t) +
∫ t

0
u(t,s,x(φ3(s))) ds, t ∈ I .

4.If f (t,x) = a(t), u(t,s,x) = h(t,x), then we obtain
the quadratic integral equation

x(t) = a(t) + g(t,x(φ1(t)))
∫ t

0
h(s,x(φ2(s))) ds, t ∈ I

that was proved in [22].
5.If g(t,x) = 0, then we obtain the functional equation

x(t) = f (t,x(φ1(t))), t ∈ I

which is the same results proved by Banas [4].
6.If f (t,x) = a(t), u(t,s,x) = k(t,s) h(t,x), then we

obtain the quadratic integral equation

x(t) = a(t) + g(t,x(t))
∫ t

0
k(t,s) h(s,x(φ(s))) ds, t ∈ I

which is the same results proved in [21].
7.If f (t,x) =a(t), u(t,s,x)= k(t,s) h(t,x) and g(t,x)=

1 then we obtain the functional integral equation

x(t) = a(t) +
∫ t

0
k(t,s) h(s,x(φ(s))) ds, t ∈ I

which is the same results proved in [5].
8.If f (t,x) = 0 for any t ∈ I and x∈ R+ we have

x(t) = g(t,x(φ2(t)))
∫ t

0
u(t,s,x(φ3(s))) ds, t ∈ I .

9.If φi(t) = t, i = 1,2,3 , ψ(t,x) =
∫ t

0 u(t,s,x(s)) ds
for any t ∈ I and x∈ R+ we have

x(t) = f (t,x(t)) + g(t,x(t))
∫ t

0
u(t,s,x(s)) ds, t ∈ I .

4.1 Chanrasekhar’s integral equation

Example 1:
Let us consider the quadratic integral equation of Volterra
type having the form

x(t) = a(t) + x(t)
∫ t

0

t
t + s

u(t,s,x(s)) ds. (6)

This equation represents the Volterra counterpart of the
famous Chandrasekhar quadratic integral equation which
has numerous application (cf. [2], [3], [7] and [13]). It
arose originally in connection with scattering through a
homogeneous semi- infinite plane atmosphere [13]. In
astrophysical applications of the Chandraskhar’s equation
the only restriction, that

∫ 1
0 φ(s)ds≤ 1/2 is treated a

necessary condition in [12].
In case a(t) = 1 and u(t,s,x(s)) = λ φ(s) x(s), λ is a
positive constant and onI . Then Eqn.(6) has the form

x(t) = 1 + λ x(t)
∫ t

0

t φ(s)
t + s

x(s) ds.
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In order to apply our results we have to impose an
additional condition that the so-called ”characteristic”
function φ need not be continuous onI it sufficient
only to be bounded and measurable onI .

In this caser = 1−
√

1−4λ k
2λ k and the assumption (vii) may

be reduced to 4λk≤ 1 where sup
s∈I

φ(s) = k.

Example 2:
Consider the following Chandrasekar’s integral equation

x(t) = 1+
1
10

x(t)
∫ 1

0

s t
t + s

x(s) ds, t ∈ [0,1] (7)

where λ = 1
2, φ(s) = s

5 and k= 1
10, then the condition

4 λ k≤ 1, is satisfied andr = 4 .

Example 3:
Consider the following Chandrasekar’s integral equation

x(t) = 1+
1
15

x(t)
∫ 1

0

exp(−s) t
t + s

x(s) ds, t ∈ (8)

where λ = 1
5, φ(s) = 1

3exp(−s) and k ≤ 1, then the
condition 4λ k≤ 1 is satisfied.

4.2 Fractional integral equation

Example 1:
Now, consider the quadratic integral equation of fractional
order

x(t) = f (t)+g(t,x(t))
∫ t

0

(t − s)α−1

Γ (α)
h(s,x(s)) ds, α > 0

which was studied in [11] (an existence theorem for
continuous solutions was proved) and in [21] (an
existence for integrable solutions was proved). In our

case, u(t,s,x(s)) = (t−s)α−1

Γ (α) h(s,x(s)) and h satisfies

|h(s,x(s))| ≤ m(s)+ b′
(t−s)α−1 |x|, m∈ L1. Then

|u(t,s,x(s))| ≤ (t−s)α−1

Γ (α) m(s) + b|x|, b is positive

constant and k(t,s) = (t−s)α−1

Γ (α) m(s) . The assumption
∫ t

0 k(t,s)ds≤ M is reduced byIβ m(t)≤ M′, β ≤ α .
For,

∫ t
0 k(t,s)ds= Iαm(t) = Iα−β Iβ m(t)≤ M′ ∫ t

0
(t−s)α−β−1

Γ (α−β ) ds= M′
Γ (α−β+1) = M
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