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Abstract: We give an existence theorem for some quadratic functiogaatons which includes many key integral and functional
equations that arise in nonlinear analysis and its appicat In particular, we extend the class of characteristicfions appearing
in Chandrasekhar’s classical integral equation from phiysics and retain existence of its solutions. Also, sommi@y examples are
considered.
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1 Introduction nonlinear analysis. For example, the quadratic integral

. ] ] equation of Chandrasekhar type
The study of integral equations have gained much
't o(s)

attention due to extensive applications of these equations
in describing numerous events and problems of real Xt =1+A X(t)/o t+s
world, and the theory of integral equations is rapidly

developing with the help of several tools of functional and the quadratic integral equation of fractional order
analysis, topology and fixed point theory. For details, we
refer to 2]-[11] and [17]-[27].

X(s) ds

t(t—gPt

X(t) = f(t)+g(t,x(t))/0 6 h(s,x(s)) ds B> 0.

One of the kinds of integral equations is quadratic integral

equations which have received increasing attention during

recent years due to its applications in numerous divers@ Preliminaries

fields of science and engineering for example, the theory

of radiative transfer, kinetic theory of gases, the thedry o In this section, we introduce some notations and

neutron transport and the traffic theory. Many authorspreliminary facts which are used in the paper.

have studied different kinds of nonlinear quadratic Now let E be a Banach space with zero elemeht and

integral equations in different classes (€[3], [7]-[141  let X be a nonempty bounded subsetEf Moreover

and [17] - [27)). Especially, Chandrasekar's integral denote byB; = B(6,r) the closed ball irE centered af

equation which has been a subject of much investigatiorand with radiusr. In the sequel we shall need some

since its appearance around fifty years abf.[ criteria for compactness in measure; the complete
description of compactness in measure was given by

Let Ly = L1[0,T] be the class of Lebesgue integrable Fréchet fi], but the following sufficient condition will be

functions onl = [0, T] with the standard norm. more convenient for our purposes (s8g[

Here, we are concerning with the nonlinear quadratic
functional equation Theorem 1.Let X be a bounded subset of. [Assume that

there is a family of subset¥2c)o<c<p—a Of the interval
X(t) = ftLX(@ ) + gtx(@0) ¥ (15 ut.sxes(9))ds), t € 1. (a,b) such that meaQ; = c for every cc [0,b—a], and
(1) for every xe X, X(t1) < x(t2) , (t1 € Qc,tx & Qc), then
which includes as special cases numerous functionthe set X is compact in measure.
integral and functional integral equations encountered in
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The measure of weak noncompactness defined by DeBlasi(i) f, g: | x R — R are functions such that

[1] and [15] is given by, f,g: 1 x R. — R;. Moreover, the functions, g
satisfy Caratheodory condition (i.e. are measurable in
t forall x € Rand continuous inx forallt € | )

B(X) =inf(r >0: there exists a weakly compact sub¥etof E such thaiX C Y +K;) and there EXiSt two functionsml, M < I—1 and
constantsb; > 0, b, >0 such that

The function B(X) possesses several useful properties

which may be found in15). IFEX)] < my(t) +ba x|, [g(t,x)] < mp(t) + b2 [ x|
The convenient formula for the functiofi(X) in Ly was
given by Appel and De Pascale ( sa#) | V(tx) el xR _

Apart from this the functions f and g are
B(X) = lim_o(SUpex (SUP[p [X(t)|dt : D C [a,b],measD < ¢])), nondecreasing in both variables.

) (i) u: I xI xR — R is such thatu(t,s,x) >0 for
(t,sx) € | xI xRy and u(t,sx) satisfies
where the symbol med3 stands for Lebesgue measure  Carathéodory condition (i.e. it is measurable(ins)

of the setD. forall x € R and continuous inx for almost all
Next, we shall also use the notion of the Hausdorff _ (t,S) € I'xl). N .
measure of noncompactnegsgseefl]) defined by (iiThere exist a positive constantb3, a funct|on_

mz € L1 and a measurable (in both variables) function
X(X)=inf(r >0: there exists a finite subsétof E such thatX C Y +K;) kt,s) = k: I x 1 — Ry suchthat

In the case when the seX is compact in measure, the lu(t,s )| < k(t,s)(mg(t) + bs|x[) Vt,sel andforxe R

Hausdorff and De Blasi measures of noncompactness will

be identical. Namely we have (saggnd [L5)) and the integral operatdf, generated by the function

k and defined by
Theorem 2.Let X be an arbitrary nonempty bounded

t
subset of kL. If X is compact in measure then (Kx)(t) = / kit,s)x(s)ds tel. (3)
B(X) = x(X). 0
Finally, we will recall the fixed point theorem due to Darbo , MaPS contingously_l into Lo, on l
[6]. (iv) t — u(t,s,x) is a.e. nondecreasing dnfor almost all

fixed se | and for eackx € R;

Theorem 3.Let Q be a nonempty, bounded, closed and V) ¥ : | x R — R'is a function such that
convex subset of E and let H) — Q be a continuous ¢: 1 xR — R,. Moreover, the functony
transformation which is a contraction with respect to the ~ Satisfies Caratheodory condition (i.e. is measurable in
Hausdorff measure of noncompactngss.e., there exists t forallx € Rand continuousinx forallt € I )
a constanta € [0,1) such that x(HX) < a x(X) for and there exist bounded and measurable function
any nonempty subset X of. @hen H has at least one m(t) and a constanb >0, such that

fixed point in the set
P Q WX < mt) + b|x| VX €1 xR

Apart from this the functiony is nondecreasing in

3 Existence Theorem both variables.
(vi) a: 1 — | is continuous.
Let the functional operatoH be defined as (vi) @: 1 — 1,1=123 are increasing, absolutely

continuous on and there exist positive constants
a(t) Bi, i =1,2,3 suchthatg > B; a.e.onl;
(HX)(t) = @ <t,/ u(t,s,x(s)) ds), (viii)Let
0 d > \/4AM Db by b3 Bi? B2 By ([[mu|| + b M.|Ima[ [[ma[[ + N [Im]]),
Im(t)| <N, M=|[K]L,

(Fx)(t) = f(t,x(t))

Then equationX) may be written in operator form as:

(A(t) = (Fx(@))(t) + (GxX(g2))(t)-(Hx(es))()

where we assume that
d = B1ByB3— b1 BoBs— bl M By Bz ||ms| -
M b bz By By [[mg|| +bp N By Bs.

Moreover, we assume that there exists a positive solution r

where (Gx)(t) = g(t,x(t)). of the quadratic equation
Consider the following assumptions: by b3 By M2 — dr + By By Ba(||my| + b M.[|my| ||ms||+N ||my||) = O.
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and define the set
= {xely:||x| <r}.

For the existence of at least orle —positive solution of
the quadratic functional equationl)( we have the
following theorem.

Theorem 4.Let the assumptions (i)-(viii) be satisfied.
If by B, Bs+M b bp By Bs ||m3||+ rbby, bg M+
b, B1 B3 N < B; By Bs,
equation () has at least one solution x L; which is
positive and a.e. nondecreasing on |

Proof. Take an arbitraryx € L;, then, we get

LAY | < [mu(t)] + by [ x(qu(t))]
+<mz()+bz\>< ®U) )

[ +b/

9 + bs | X <>>\>ds]

and

1AM || = Jo | (AQ() | dt

< Jo Im()ldt + by fg | x(@u(t)] dt

I3 (maft) dt + b | X(@(0) |) [mt)+b 5 K9 (ma(t) + b | x(@e(9) |) dg] ot

< mill + & 3 IX@ )@ dt + fg me(t) mt)dt+ b 5 mp(t) f5 kt,s) me(s) ds dt

+bbe 3 x(@)] 5" K(t.s) me(s) ds dt+ bbs i ma(t) 5 Kit.9) [x(gs(s))| ds dt

+bbybs g [X(@(1)] fo ¥ K(t.9) [X(@a(s))] ds dt+ by fg m(t)[x(gx(t))] dt

< lmyf| + 2 t)dt + b f§ m(t) fg k(t.s)

Lo | x(eu(t)]- () mg(s) ds dt

+bby J [X(@()] Jg k(t.s) ma(s) dsdt+ bbs J§ ma(t) Jg k(t,s) [x(gs(s))] ds dt+N fg mp(t) dt

+b b by g [X(@a(t)] Jg K(t.S) [x(g5(s)| ds dt+ bp N g [x(gu(t)] dt
< [Imfl + g [25) IX@)@) dt + b J§ mp(t) 3 kt,s) me(s) ds dt
+ 52 ) K@) (0) my(s) ds dt+ BN g [x(@2(1))]-gh(t) dt+N ||mp]|

B2 Jo me(t) f%(o) k(t,s) [x(gs(s))]-¢i(s) ds dt

—— 0)l.g1) [2

+ oz (20 x(g,

k(t S) [x(¢3(s))|-@(s) ds dt

then the quadratic functional

< [l + & 3 [X(6)] 6 + b M ||mpl| ||mg]| + M2 T x(6) dE +N [|m,

+ bR mel T 1x(0)| do + Mg lebs [T [x(8)] d6. J§ [x(8)] do+ %N [ZT) Ix

20 (W) du

M b
< limull + B 11X + b M [|mg| [[mg||+ 422l 1| 4 N ||y |

M b bz ||mp Mbbzb bhb, N
+ M el gy M2 202 e 2R )

which shows that the operatoﬂk maps the ballB; into
itself with

r = 4= V/d2—4b M by bz B1? By Bg (||my| + b M.[Jmp|| [|mg][+N [[mg]])
= 2b M b b By :
(4)

Assumption (vii) implies
0 < d? — 4bM by bg B1? By B (||my|| + b M.||my|| [|mg||+N [|mp]) < d?,

which implies that

0 < /d— 4bM by b3 B1Z B, Bg (/][ + b M.[[mg| [Jme][ + N [jm]) < d.
Then d is positive and hence is a positive constant.
Let Qr be asubset oB; € L1 consisting of all functions
which are a.e. nondecreasing on

Clearly, the setQ; is nonempty, bounded, convex and
closed f]. Moreover this set is compact in measusg [
Then we deduce that the operatdrmaps Q, into itself.
Since the operator(Ux)(t) = fo"(t) u(t,s,x(s)) ds is
continuous, then the operatsét is continuous and hence
the productG.H is continuous. Also,F is continuous.
Thus the operatoA is continuous onQy.

Let X be a nonempty subset of;. Fix € > 0 and
take a measurable subsetD < | such that
measD < &. Then, for any x € X, using the same
reasoning as ird] and [5], we get

o= [ 1A |t
/|m1 )| dt +b1/ | X(@u(t))] dt

+ Jo (me(t) dt + bz | x(ge(V) | ) [m0) +b 5"

[ ALy

K(t.S)(Me(9) + bs | X(@a(9) |) d at

< [Imufl o) + E—i Jo IX(@(0)]-@(t) dt + b 5 mp(t) g k(t.9)ma(s) dsdt+N f5 my(t) dt
)] Jo k(t.s) ma(s) dsdt+Mbbs [ mp(t) fo [x(¢s(9))] ds dt
+Mbhybs f5 [X(@1) o [X(@s(s))| ds dt+ 2% bz N o IX(ge(t))] @(t) d
Mbb, [mgll, |
Mok el

b [x(6)] d6

+bby [p [X(@

< lImilliyo) + B Jo |X(8)d6 + b M [Imelluy o [Imellc, +

b
G MO Il T g) do + MO [ 1x(9)| 6. T [x(6)] B

Bs

%5 Ip 1X(6)] d6+N |Imy|L, (o

< Ml + 2 11X + M bl o lmslle + 220 ) o)
M b bz [|mg||L, M b by b
51O x| + MR ||x]|L o) |1

b2 N

8 XLy

"‘N HmZHLl
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< MLy + 8 11Xl + M [Imelluy oy [msll, + 220" ) o
rb M bz [Impl], p) 4 rbMby bs |||
Bs B, Bs L1(D)
by N

B, [1X[ILy o) +N M|y
Since

limg o {sup{ Jp |m(t)|]dt: D C I, measD < e}} =0, i=123.

We obtain
M b by
B(AXY)) < (Bt + 2R el Mbbpbar \ baNy gixt)).
This implies
by , Mbb|mg| bbb b
B(AX) < [B_i—'— B> -+ M52b2533r+25_2N]B(>(<)5
5
where f3 is the De Blasi measure of weak
noncompactness.

Keeping in mind Theorerd we can write §) in the form

M b by [[mgl]L, | Mbhbybsr
B Bz B3

X(AX) < [g+ + 28] x(x),

where x is the Hausedorff measure of noncompactness.

: by , Mbb|mglL, Mbhybgr | by N
Since B T B, + 7B, 8, +B—2<1, from

Theorem3 follows that A is contraction with respect to
the measure of noncompactnegs Thus A has at least
one fixed point inQ; which is a solution of the quadratic
functional equatiom

4 Special casesand applications

As particular cases of Theorefnve can obtain theorems

on the existence of positive and a.e. nondecreasin%x

solutions belonging to the space; (1) of the following
guadratic functional equations:

LIf wt,x) = [T ut, s x(@s(s)) ds then we obtain
the quadratic functional equatio2d]
x(t) = f(tx(@(1) + 9t x( @) f5¥ ut,sx(gs(9) ds t € 1.

2.0f @(t,x) = [ou(t,sx(gs(s))) ds then we obtain the
guadratic functional equation

X(t) = ft.x(@u(t) + gt.x(e2(1)) fo ult,sx(@(9)) ds t € I.

that was studied inlf4].

I Y(t.x) = [fut,sx(@x(9)) ds g(t.x) =1 and
f(t,x) = a(t) then we obtain the functional integral
equation of Urysohn type

X(t) = a(t) + /0t u(t,sx(gs(s) ds t € 1.

4.1f f(t,x) = a(t), u(t,s,x) = h(t,x), then we obtain
the quadratic integral equation

x(t) = a(t) + gt x(@u(t))) /Ot h(s x(¢(s))) ds t € |

that was proved inZ2).
5.If g(t,x) =0, then we obtain the functional equation

X(t) f(t,x(@u(1))), tel

which is the same results proved by Bards [
6.If f(t,x) = a(t), u(t,s,x) = Kk(t,s) h(t,x), then we
obtain the quadratic integral equation

X(t) = a(t) + g(t,x(t)) /0t k(t,s) h(s,x(@(5))) ds t € |

which is the same results proved 21].
7.0f f(t,x)=a(t), u(t,s,x) =Kk(t,s) h(t,x) andg(t,x) =
1 then we obtain the functional integral equation

X(t) = a(t) + /0t k(t,s) h(s,x(@(s))) ds t € |

which is the same results proved B].[
8.If f(t,x)=0 foranytel and xe Ry we have

t

X(0) = gtx(@e) | utsx(@e) ds tel.

0
9If @t)=t, i=123, ¢(t,x) = [u(t,sx(s)) ds
foranyt el and xe Ry we have

X(t) = F(t,x(t)) + gt x(t) /0t u(t,s,x(s) ds t € 1.

4.1 Chanrasekhar’s integral equation

ample 1:
Let us consider the quadratic integral equation of Volterra
type having the form

tot
x(t) = a(t) + x(t)/o Coutsxe)ds  (6)

This equation represents the Volterra counterpart of the
famous Chandrasekhar quadratic integral equation which
has numerous application (cf2][ [3], [7] and [L3)). It
arose originally in connection with scattering through a
homogeneous semi- infinite plane atmosphekg.[In
astrophysical applications of the Chandraskhar’s eqoatio
the only restriction, that fol p(s)ds< 1/2 is treated a
necessary condition irLp)].

Incasea(t) =1 and u(t,s,x(s)) = A @(s) x(s), A isa
positive constant and oh. Then Eqn.§) has the form

Lt g(s)
o t+s

X(t) =1+ A X(t) X(s) ds

(@© 2015 NSP
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