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Abstract: This paper presents a novel fragile watermarking scheneglasan artificial neural network (ANN). The fragile waterina
is designed according to the characteristics of the originage. If the image is modified, the alteration can be detkuta the fragile
watermark without original image. Based on the type of atien, we can determine what modifications have been peefdriAn
artificial neural network is used to analyze the modificationhe experimental results show that the proposed methodiezct
tampering, locate where the tampering has occurred, arafynéze what kind of alteration has occurred. This method enhaggh
success ratio in recognizing the types of modifications andiges sufficient evidence. The experimental results destnate that our
method is indeed effective.
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1 Introduction watermark is extracted, the approximate host image can

be reconstructed. Then a modified image can be detected

A fragile watermark is useful in image authentication gccording (o the fragile V}/gtgrmark and the regonstructed
image. Afterward, an artificial neural network is used to

applications [1, 4-6, 11, 14-23]. It can detect slight analyze the tampering of the host image, locate where the

changgs in the ‘m?‘ge and prevent mark-transfer attack&\mpering has occurred, and identify what kind of
(replacing or covering the owner's watermark with that of alteration has occurred. The fragile watermark provides

the attacker)[2]. In the past, most fragile watermark g icient aythentication evidence. This method is novel
systems worked by inserting watermark data Of and efficient

modifying some coefficients directly in the host image [3,

8, 9, 10, 12]. Indeed, it does make sense to embed some The paper is organized as follows. The fragile
data into the image as a robust watermark that carriegvatermarking procedures are described in Section 2.
proof of authorship_ However, there are prob|ems with Section 3 describes the artificial neural network model.
these systems. These methods need original images wheie experimental results and discussions are presented in
they extracted the fragile watermarks. At the same time Section 4. In Section 5, the conclusion of this paper is
they cannot encode the features of the image, nor can thestated.

be used to identify what kind of modification has

occurred. As a result, these methods can allow the

detection of only certain kinds of distortion. In addition,

these fragile watermarking methods sometimes destroy

the host image. In order to overcome these problems, w@ Fragile Watermarking Procedures

here propose a novel artificial neural network-based

fragile watermarking scheme, as shown in Fig. 1. The

fragile watermark is designed according to the wavelet

coefficients of the host image. This fragile watermark canWe propose a novel fragile watermarking scheme in this
record the characteristics of the original image and bepaper. In our approach, a DWT-based algorithm is
extracted without original image. After the fragile developedto embed the fragile watermark.
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wavelettransform (DWT) to transfer the image [, [, lolcleal ], slalslzlelalals
information from the spatialdomain to the wavelet ©) - d)

domain. We analyze the coefficients in the high-high band

(HHp, p = Ilj 2’3;.'],%') after thF DWTa We aln?lyzeﬁt.hg ig. 2: Embedding the fragile watermaFf into theHH; band.
average vajue, diiierence value, and wavelel COEMCIENt4) wavelet coefficientsHH;). (b) The average valubf; for

magnitude. each of the 2x2 wavelet coefficients. (c) Fragile waternfark
After the DWT, we calculate the average valMan  (d) Embedding the fragile watermaFy into theHH; band.

for each of the 2x2 wavelet coefficients (Fig. 2(a) and Fig.

2(b)). Then an approximate look-up table (ALUT) is

generated to encode the average vallag (Tablel). The

ALUT is designed according to the distribution of the

coefficients value. Based on the ALUTM; is . .

transformed into binary data. Then the binary data ardable (DLUT) is generated to encode the difference values

permuted in order (Fig. 2(c)). We use this binary data aom (Table2). The DLUT is designed according to the
fragile watermark F1, which is embedded into the distribution of the coefficients value. Based on the DLUT,

HHy(p = 1,2, -) band, and on which the exclusive-or Dm’s are transformed into binary data. Then the binary
(XOR) operation and the least significant bit (LSB) of dat@ are permuted in order. We use this binary data as
wavelet coefficients are performed to obtain embeddingnother fragile watermark; (Fig. 3(c)).F, is embedded
data. The embedding data are embedded into thd'0 theHLy(p=1,2,3--) band, and then we perform
HHp(p = 1,2,3- ) band (Fig. 2(d)). The coefficients in the exclusive-or (XOR) operation on this watermark and
the high frequency range stand for high resolution andthe least significant bit LSB of wa}velet coefficients
represent a subtle difference in the image. If the hos Hip(p = 1,2,3--) b'and) to the obtain the embgddlng
image is modified, any slight changes can be detected. Adat@. The embedding data are embedded into the
fragile watermark F; is designed according to the HLp(P=1,2,3--)band (Fig. 3(d)). The coefficients in
characteristics of the image, we can reconstruct thdn€ high frequency range stand for high resolution and

original features of the image even after the image isCan represent subtle differences in the image. When the
modified. host image is modified, any slight changes can be

In order to increase the resolution of fragile detected. When the image is reconstructed, we can

watermarkF;, we consider the error due to the ALUT eliminate the error in the approximate image ustag
processing. After DWT, we also calculate the maximum  In order to increase the resolution of the fragile
difference value for each of the 2x2 wavelet coefficientswatermark, we consider the error during the ALUT
Dm (Fig.3(a) and Fig. 3(b)). Then a difference look-up processing. LetVm, be the F3 value obtained by
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Table 1: Approximate Look-Up Table (ALUT). 36-22=14
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Table 2: Difference Look-Up Table (DLUT). alalelil oJals
Range  0~25  25~75 7.5-12.5 125-17.5 17.5~225 22.5-275 olilileliloleole |:> HL, Band
Difference olololelelolelo
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1 i { 1 (1] L} 1 1
Range 27.5~32.5 32.5~37.5 37.5~42.5 42.5-47.5 47.5~52.5 52.5~575
(c) (d)
Difference
30 35 40 45 50 55
Value Fig. 3: Embedding the fragile watermaf into theHL; band.
Code 0110 o111 1000 1001 1010 1011 (a) Wavelet coefficientdH{H1). (b) The difference value for each

of the 2x2 wavelet coefficient;j. (c) Fragile watermark;. (d)
Embedding the fragile watermaFg into theHL1 band.

comparing the wavelet coefficient with the average value
(Fig. 4(a) and Fig. 4(b)) as follows:

Vm =1 if wavelet coefficient> average value

Vim=0 if wavelet coefficienk average value fragile watermarks Ry, F2, F3), we can find the

differences between the host and the modified images
We use this binary data as another fragile watermark(Fig.5). Because the wavelet coefficients stand for the
Fs (Fig. 4(c)).Fs is embedded into theHp(p=1,2,3- ) spatial characteristics of the host image, we can locate
band. We perform the exclusive-or (XOR) operation onwhere the tampering has occurred. After comparing the
fragile watermarke; and the least significant bit (LSB) of fragile watermarksKy, F,, F3) with the modified fragile
wavelet coefficientsl(Hp(p = 1,2,3- --) band) to obtain watermarks Kui, Fu2, Fus3), we can extract the
the embedding data. The coefficients in the highdifference featured)F;. Any slight modification can be
frequency range stand for high resolution and represent detected easily from analysis of the variations in the
subtle difference in the image. When the host image isfragile watermark (Fig. 5).
modified, any slight changes can be detected. When the
image is reconstructed, we can revise the error in the  Then we use the fragile watermarks,(F», F3) to
approximate image usirig. reconstruct the approximate host imalge(Fig. 6). We
In order to increase the quality of the fragile also use the extracted fragile watermarks, (&, Fs) to
watermarks, a pseudo extraction function extracts thgeconstruct the modified imagey. Comparing the
fragile watermarks K1, F», F3). Then the adaptive approximate host imagk and modified imagey, we
learning and training function analyze the embeddingcan find the differences between the approximate host
quality and modify the ALUT and DLUT repeatedly to image and modified image. Then we can extract the
obtain the optimization tables (Fig. 1). difference featuresPF,. A large modification can be
detected easily from analysis of the variations in the
reconstructed image (Fig. 5).
2.2 Fragile Watermark Extraction and Analysis.
This fragile watermark method can detect not only
First, we transform the modified image using DWT and slight changes but also large changes. When the host
extract the fragile watermark Fy1 in  the image is modified, the slight changes can be detected
HHp(p=1,2,3- ) band,Rv2 in theHLp(p=1,2,3- ) from the fragile watermarkR, F, F3 , Fu1, Fum2, and
band, andrys in theLH(p=1,2,3---) band. Comparing  Fv3), and the large changes can be detected from the
the extracted fragile watermarkisy, Fvz2, Fumsz) with the  reconstructed imagég andly)(Fig. 5).
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ofol ol Table 4. We Use Several Kinds of Modification Typek as

ol ool idols . Output Vector.
(© ! Output Modification Type QOutput Meodification Type

d;  |Image Cropping dii  |Linear Geometric Transform
Fig. 4: Embedding the fragile watermaf into theLH; band. da__|Salt and Pepper Noise di2_ |Median Filtering + JPEG
(a) Wavelet coefficientsHHy). (b) Let Vjj be theF3 value. ds  |Scaling dis_ [Sharpening
Comparing the wavelet coefficient with the average valug. (c 44 |Roution du  |Rotation +Cropping
Fragile watermarks. (d) Embedding the fragile watermaFi g5 BlOrmE Qi ROBHOn & Sculing
into theLHl band. de Mcdlu.n hl\l.crln.g die R()lu.ll()n + JPEG_

d7  |Gaussian Filtering di7  [Scaling + Cropping

ds |JPEG dis  |Scaling + JPEG

dy  |Remove Row dio  |JPEG + Cropping

dig  [Remove Column da  |Addtive Uniforn Noise

Reconstruct
Host Image

Reconstruct Artificial
i 2 s G Table 5: PSNR of Watermarked Images.
Fragile Watermarking
Manipulation IMAGE | Lema | Pepper Baboon | Boat | Gul | Shutlle
Analysis PSNR(dB)| 575 | 555 555 | stz | se1r | sa7

Fig. 5: Fragile watermark extraction and analysis.

3 Artificial Neural Network Model

Consider gradient descent, and adjust the weighting
coefficients AW; backward between output layer and
hidden layer, where is the learning-rate parameter of
the back-propagation algorithm.

We use an artificial neural network to recognize what kind
of modification has occurred [4, 7]. Given an input training
pattern vector; and its desired output vectak, let ok
denote the actual output vector. The indeis an input
layer node. The indexis a hidden layer node. The index
k is an output layer node. Leatdenote the product of the
weighting coefficients\Wj; and input features,

s ® A (1= 1)~ Wi (1) = —1 o
Sj = ) WijiXi 1 Wi =W (t—1) —Wj(t) = —n
i i; jiXi i j i OV
The sum of the squared-erraris: — _nd_E% OS¢ 3
90, 95 W ®)
1kK = —n(—(dx— oK) fL(s0)0;
E=2 Y (d— 00> @) n(—(dk /k)) k(S)0;
25 = 1 (dx — 0x) fi () 0;

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2681-2689 (2015)www.naturalspublishing.com/Journals.asp NS = 2685

Adjust the weighting coefficients backward between

hidden layer and hidden layer, or between hidden layel
and input layer,

JE
AV\/Jl—V\/J.(t+1)—V\/J.(t)——na—V\/ji @
~ _0EJoj ds;  OE #(s))o (@)
- ndoj ds] dVVJI N ndo] J : | 30-7.5[30+7.5
30-7.5[30+75
9E _OE 05 0E 05 9E ¢ w
doj ds100j 0% 00; ds¢ d0j Fig. 6: Reconstructing the approximate host image. (a) We
OE do;0s;  O0E 00y 0%, use original fragile watermarkd={, F», F3) to reconstruct the
= TME% 5—025% """ approximate host image. (b) The approximate host image. (c)
) ) The original host image.
. 9E 90¢ 05
0ok 0s¢ 00k | ()
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K
AWji = —n [ =5 (d—0k) fe(sOW; | fi(s))or
k=1
(6) Input Hidden Output

Layer Layer Layer

Fig. 7: Back propagation model of artificial neural network.

(7) reconstructed image (Fig. 9(a)). Next, the horizontal
distribution is estimated (Fig. 9(b)). The horizontal
We adopt the back propagation model, as shown indistribution factors are encoded (Fig. 9(c)). The
Fig. 7. We get the difference coefficien®BR; andDF,) modification features extraction is finished. We use these
from the fragile watermark and reconstructed image (Fig.factors as the neural network input vector. The input
5). Next, we extract several important features accordingsector is put into the neural network that has been trained.
to the difference coefficients. We analyze the horizontalAccording to the characteristic of input vector, the neural
energy distribution, vertical energy distribution, size, network will analyze the type of modification.
histogram variation, and similarity (Tabld). We use  The following describes the modification featurgs
these modification features;, as the neural network
input vector. We use several kinds of modification types, 1)Horizontal Distribution: the horizontal distribution

dk, as the output vector (Tab#. After the initial values feature estimates the horizontal difference value
are set, the neural network begins training until it finds  between reconstructed host image (RHI) and modified
the optimal weights. After the neural network is image (MI). The ANN-based fragile watermark

established, we can use this model to analyze the degree model can detect image cropping using horizontal
of change, and in any modified image, the type of distribution feature (Fig. 9(a)(b)(c)).
modification that has occurred. 2)Vertical Distribution: the vertical distribution feat

We here provide an example to explain the  estimates the vertical difference value between RHI
modification features extraction. In Fig. 8(a), the image, and MI. The ANN-based fragile watermark model can
“Lena”, is attacked by image cropping. The fragile detect image cropping using vertical distribution
watermark detects the modification and presents the feature.
alteration (Fig. 8(b)). Then, the horizontal difference 3)Size: the size feature estimates the size change and
value is calculated from the fragile watermark and  detects resize attack.
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Fig. 8: (a) Host image attacked by cropping. (b) Fragile

watermark detect the alteration. Fig. 9: Modification features extraction (a) Calculat the

difference from fragile watermark and reconstructed imdgg
Calculate the horizontal distribution. (c) Encode the haontal

Table 6: The Characteristics Comparison of several fragile distribution factors.

watermark schemes.

Fragile Watermarking
Ding Lie Zhong Inoue Kundur
Method Proposed
[3] (10] (12 (8] 91
Domain DWT DCT DWT Spatial DWT DWT
PSNR(dB) 575 565 359 51 378 43
Recagnize
Yes No No No No No
Modification

4)Histogram Variation: the histogram variation estimates
the histogram of RHI and MI. Then the variation will
be calculated by histogram variation feature.

5)Similarity: the similarity feature estimates the simiiia
between RHI and MI.

6)Quantization Factor: quantization factor estimates the
average value of each block and evaluates quantization

value. This factor can detect JPEG compression. j.‘- &
7)Angle: angle feature estimates image rotate angle al |4 ,&

between RHI and MI. This feature can detect rotation m‘

attack. ©

8)Geometric Factor: geometric feature estimate the
geometric alteration between RHI and MI. This
feature can detect the geometric attack.

9)Spectrum Distribution: spectrum distribution estinsate
the spectrum distribution in DWT domain and DCT

Fig. 10: Watermarked image (a)Lena (b)pepper (c)baboon
(d)boat (e)Girl (f)shuttle.

domain.
10)Correlation: correlation feature estimate the cotieha
relation between RHI and MI. Images of “Lena”, “pepper”, “baboon”, “boat”, “girl",
and “shuttle” were adopted for the simulation. The results
are summarized in Tabl®, where we computed the
PSNR for each watermarked image (Fig. 10). The
4 Experimental Result and Discussion experimental results show that the watermarked images
had high PSNR with a low degree of distortion.
4.1 Experimental results. According to the results, the watermark is invisible. The

comparison on PSNR between our method and other

In order to prove the capabilities of the artificial neural methods is shown in Tablé(using Lena image). Our
network-based fragile watermarking scheme, a series ofethod has high image quality.
experiments were conducted. To test the validity of our method, a tampering attack

We used our method to embed fragile watermarkingwas performed. Fig. 11a shows the original “clock”
into a host image. The fragile watermarks were embeddedmage, and Fig. 11b shows the tampered image. The
into the HHp(p = 1,2,3- ) band,HLy(p = 1,2,3- ) fragile watermark detects and locates the tampered
band, and_Hp(p = 1,2,3- ) band in the DWT domain. regions according to the proposed scheme (Fig. 11c).
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Table 7: Recognition Results for Modification Type. characteristics are worthy of giving further discussion as

Attack Number of teaching pictures fO”OWS_

Type A A A N Embedding the fragile watermark at LSB of wavelet
e v T By s e coefficients just detects slight change in image. In order to
Scaling %% | 100% | 0% | 100% | 100% solve this problem, our method establishes reconstructed
Rotation 3% | 98% | 100% | 100% | 100% image (r andly) to assist the fragile watermark;( F»,

Blurred 61% | 9% | 76% | 84% | 93% F3, Fu1, Fv2, andFRy3). This scheme can detect not only
Median Filtering G4% | 7% | 8% | 9% | 9% slight changes but also large changes. The slight changes
JG;E“G“ Filiering :? j :;’j j)i :;j Zz i can be detected from the fragile watermak, (F, Fs ,
—e P B Ty e Fu1, Fu2, andFRy3) and the large changes can be detected
T — e | D | e | T | G from the reconstructed imag&(andly)(Fig. 5). On the
Linear Geometric Transform | 63% | 81% | 94% | 97% | 100% other hand, the fragile watermark is extracted using the
Median Filtering +/PEG 51% | 60% | 71% | 83% | 91% exclusive-or (XOR) operation without original image.
Sliarpentng D% | W | 76% | B6% | I This technique solves the traditional problem that a
Ett“:gd""k‘& j:j ;jj Z:j Zf : ZZ i fragile watermark need original image to be extracted.
T o R T The art|f|C|aI neural ngtwork is used to analyze the
SelngCronane ow | 7ow | mwm | mm | o modifications. The experimental results show that the
Scaling + JPEG B% | 57% | 3% | 6% | 82% more the proposed method can recognize what kind of
JPEG + Cropping 6% | 9% | 61% | 8% | 85% alteration has occurred. The reorganization results
R fon oo maite | e | SN | B [ W provide sufficient evidence for image authentication. It is

(Unit: Recognition Rate %)

the first paper to recognize the modification type adopting
fragile watermark. This scheme is novel.

In the fragile watermark extraction process, we
compared the fragile watermark and reconstructed the
image. We extracted several features as inputs of the
neural network input. We trained the neural network
repeatedly until the optimal weights were found. Then we
used several images attacked by StirMark 3.1
(http://www.cl.cam.ac.uk/fapp2/watermarking/stirtkgt 3].

This scheme can easy recognize blurred, scaling,
median filtered, and Gaussian noise attacks and JPEG
compression. This scheme can also recognize cropping
attacks, salt and pepper noise attacks, slight changes, and
so on. Our method has a high recognition ratio. The more
experiments we do, the greater accuracy we attain. At
first, we used 50 pictures to train the neural network. The
average recognition ratios approached 65%. If we use 250
pictures to train the neural network, the average
recognition ratios approach 95% (Tabl&). The
experimental results have proven that our method is ©
indeed effective.

Because our fragile watermark is designed according

to the characteristics of the host image, the fragile . , I
watermark can represent the original image. We ca ig. 11: The proposed fragile watermark detect the modification

recognize what kind of alteration has occurred. After(a) Host image (b)Modified image (c)Fragile watermark detec

T . the slight change.
training the neural network, we can recognize any
modification easily. Compared with other methods(Table
6), our method proposes alteration recognition technique
to provide sufficient evidence for image authentication.

5 Conclusions

4.2 Discussion. A novel artificial neural network-based scheme for fragile
watermarking has been developed in this work. This

An artificial neural network-based fragile watermarking scheme analyzes the wavelet coefficients and encodes the

scheme is proposed in this work. There are some keyharacteristics of the host image. It easily detects even
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