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Abstract: In this paper, a high-resolution direction-of-arrival (DOA) estimation algorithm is proposed for highly correlated signals.
This algorithm is divided into two stages. In Stage 1, a high-resolution method of DOA estimation using an oblique projection operator
was applied to estimate the DOA of highly correlated signals. In Stage 2, because estimations obtained in highly correlated signal
environments are prone to bias, a beamspace was built near the estimated angles from Stage 1 to reduce DOA bias. Next, the oblique
projection operator was used on the beamspace to determine the characteristics of the signal source DOAs on a spatial spectrum for
scanning and estimating the angle of arrival of signals. High-resolution estimations of DOA were thus obtained. Finally, computer
simulations were performed to assess the performance and procedural accuracy of the proposed method.
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1 Introduction

Estimating the direction of arrival (DOA) of signals
impinging on a sensor array is a fundamental aspect of
employing array processing in various applications
related to radar, sonar, communications, and astronomy.
A number of high-resolution DOA methods based on
subspace, such as multiple signal classification (MUSIC)
and estimation of signal parameters via rotation
invariance techniques (ESPRIT), have been developed [3,
4]. In normal circumstances, coherent or highly correlated
signal sources created through multipath transmissions
merge into a single signal source. When this occurs, the
number of uncorrelated signal sources decreases and the
rank of the source signal covariance matrix becomes less
than the number of incident signal sources, severely
impeding the performance of the algorithms and causing
incorrect DOA estimations.

In an environment containing coherent or highly
correlated signals, using a spatial spectrum to estimate the
DOAs requires a preprocessing procedure, called
decorrelation, to ensure that the rank of the source signal
covariance matrix is equal to the number of signal
sources. The spatial spectrum of the uncorrelated source
signals can then be used for DOA estimations. Two major
decorrelation preprocessing methods are currently used;

the first method involves dimensionality reductions, in
which the effective sensor elements of array sensors are
reduced to correspond with the number of uncorrelated
signal sources; an example of such method is the spatial
smoothing technique [6,7]. The second method requires
no dimensionality reductions and combines the
decorrelation processing technique with the spatial
spectrum algorithm for estimating the DOA; an example
of such method is the frequency smoothing technique [8].
The methods discussed in [9,10,11,12,13,14] were used
to estimate DOAs when both uncorrelated and coherent
source signals coexisted in the system; the first step of
DOA estimation involved using a traditional subspace
method to estimate the DOAs of uncorrelated source
signals. The uncorrelated source signal covariance matrix
was either a Toeplitz-like matrix or a utilized oblique
projection operator (OPO) [15,16], in which the
covariance matrix removed the uncorrelated source
signals and estimated the DOAs of the remaining
coherent signals through decorrelation. By contrast, the
Bartlett algorithm estimates DOAs using a traditional
beamforming method. Although this method cannot be
used to analyze DOA estimations when the angles of
arrival of the two source signals are less than the width of
the array lobes, the Bartlett algorithm is superior to the
MUSIC method for estimating the DOAs of coherent
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signals [17,18]. The methods employed in [19,20,21]
included the characteristics of this algorithm and rebuilta
steering matrix near the estimated DOAs angle. In
addition, the original collected data were projected onto
the beamspace extending from the steering vectors to
build a new set of data. When the spatial spectrum and
iteration algorithm were adopted, relatively
higher-resolution DOA estimates were obtained,
improving the performance.

In this paper, a high-resolution DOA estimation
method used to determine the incident DOAs of highly
correlated signals is proposed. This method is divided
into two procedures: First, the signal subspace scale
MUSIC (SSMUSIC) algorithm developed using the OPO
[16] was used to estimate high-resolution DOAs for one
set of source signals; however, the estimations were
biases. Second, a steering matrix was rebuilt near the
estimated DOAs angle. The original collected data were
projected onto the beamspace extending from the steering
vectors to build a new set of data. Next, the OPO on the
beamspace was employed to characterize the DOAs of
signal sources on a spatial spectrum for scanning and
estimating the angle of arrival of the signals.

The remainder of this paper is arranged as follows:
Section 2 briefly describes the data model. Section 3
introduces the beamspace, the OPO built on the
beamspace, and the proposed algorithm, and Section 4
discusses several computer simulations conducted to
verify the proposed algorithm’s estimation performance.
Finally, Section 5 concludes.

2 Data Model

Assume that aD number of far-field narrow band source
signals impinge on a uniform linear array comprisingM
sensors at varying angles of arrival{θ1,θ2, · · · ,θD}; the
spacing constant between the two adjacent antenna
components isd, which is 0.5 of the wavelength, andp
highly correlated source signals exist inD. When
a(θi) = [a1(θi),a2(θi), · · · ,aM(θi)]

T is theM ×1 steering
vector of the angle-of-arrival θi, then
am(θ ) = exp[− j2πd(m− 1)sinθ/β ], m = 1,2, · · · ,M is
the response of themth sensor to incident signals arriving
from the directionθ , where j =

√
−1 and β is the

wavelength of the signal carrier. Thus, theM × 1 data
vector of the array sensors at timet can be expressed as

x(t) =
p

∑
i=1

a(θi)si(t)+
D

∑
i=p+1

a(θi)si(t)+n(t)

= A1(θ )s1(t)+A2(θ )s2(t)+n(t)
= A(θ )s(t)+n(t), (1)

wheret = 1,2, · · · ,N andN is the number of snapshots.
Let s(t) = [s1(t),s2(t)] = [s1(t),s2(t), · · · ,sD(t)]T be the
D × 1 vector composed of signal amplitudes;
A1(θ ) = [a(θ1),a(θ2), · · · ,a(θp)] and

A2(θ ) = [a(θp+1),a(θ2), · · · ,a(θD)], where
A(θ ) = [A1(θ ),A2(θ )] is theM ×D steering matrix, and
the superscriptT is transposition. The noisen(t) of the
array sensors is a white Gaussian process with zero mean
and varianceσ2

n , uncorrelated with any of the source
signals. Thus, the noise covariance matrix is the following
unknown diagonal matrix:

Rn = E{n(t)nH(t)}
= σ2

n · IM, (2)

whereE{•} and the superscriptH represent the expected
value and the complex conjugate transpose, respectively,
and IM is the M ×M identity matrix. The source signal
covariance matrix is

Rs = A(θ )E{s(t)sH(t)}AH(θ )
= A(θ )SAH(θ ), (3)

where
S= E{s(t)sH(t)}. (4)

The input data vector of array sensors has the following
M×M covariance matrix:

Rx = E{x(t)xH(t)}
= A(θ )E{s(t)sH(t)}AH(θ )+E{n(t)nH(t)}
= A(θ )SAH(θ )+σ2

n · IM

= Rs +Rn. (5)

The received source signal covariance matrixRx can be
substituted with the received limited sample mean
⌢

Rx = (1/N)∑N
t=1 x(t)xH(t) , where N is the number of

snapshots.
The received source signal covariance matrixRx is

Hermitian and positive semidefinite;S, Rs, andRn share
the same characteristics asRx. Therefore,Rx can be
diagonalized to produce the following equation:

Rx = ∑M
m=1 λmemeH

m

= ∑D
m=1 λmemeH

m +EnΛnEH
n , (6)

whereλ1 > λ2 > · · · > λD > λD+1 = · · · = λM = σ2
n is the

eigenvalue ofRx, the em table eigenvector of unit norm
corresponds to λm, m = 1,2, · · · ,M and
Es = [e1,e2, · · · ,eD], En = [eD+1,eD+2, · · · ,eM].
Λn = σ2

n IM−D is the eigenvalue diagonal matrix ofRn .
Each vector of the matrixEs = [e1,e2, · · · ,eD] is
orthogonal to that of the matrix
En = [eD+1,eD+2, · · · ,eM]. Moreover, form = 1,2, · · · ,D,

Rsem = (λm −σ2
n )em. (7)

Equation (7) shows that(λm −σ2
n ), m = 1,2, · · · ,D and 0,

m = D+1,D+2, · · · ,M are the eigenvalues ofRs.
When the D source signals are uncorrelated and

M > D, thenE{si(t)sH
i (t)}, i = 1,2, · · · ,D is the power of

each source signal andE{si(t)sH
k (t)} = 0 , i 6= k, and

k = 1,2, · · · ,D. Thus the rank ofRx is D and

λ1−σ2
n > λ2−σ2

n > · · ·> λD −σ2
n > 0. (8)
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Becausee1,e2, · · · ,eD are the eigenvectors of the signal
subspace andeD+1,eD+2, · · · ,eM are the eigenvectors of
the noise subspace, {e1,e2, · · · ,eD} and
{eD+1,eD+2, · · · ,eM} span the signal subspace and the
noise subspace, respectively. Because{e1,e2, · · · ,eM} is
the orthogonal eigenvector of the unit norm of the
corresponding eigenvalue{λ1,λ2, · · · ,λM}, Es⊥En.
These results indicate that by performing eigenvalue
decomposition in theRx space, the perpendicularly
related signal subspace and noise subspace can be
obtained. The orthogonal projection operatorsPEs on the
signal subspace andPEn on the noise subspace are
mutually orthogonal (PEs⊥PEn). In addition,PEs andPEn

can be defined as
PEs = EsEH

s , (9)

PEn = EnEH
n = I −PEs, (10)

Moreover, {e1,e2, · · · ,eD} and
{a(θ1),a(θ2), · · · ,a(θD)} span the same signal subspace
[3]. The MUSIC algorithm [3] estimates the DOAs of the
source signals because the signal subspace and noise
subspace are orthogonal.

In [16], the authors used the OPO to project the
source signal onto the desired signal subspace, obtaining
the source signal covariance from the source signal
covariance matrix. Thus, the cost function of SSMUSIC
[16] for DOA estimation is expressed as

JSSMUSIC(θ ) = max
θ

a(θ )HR+
s a(θ )

|aH(θ )PEna(θ )|

= max
θ

a(θ )HR+
s a(θ )

|aH(θ )EnEH
n a(θ )| , (11)

where R+
s is a pseudoinverse matrix and

R+
s = [A(θ )SAH(θ )]+ . Because (11) is the function

value derived from multiplying the MUSIC algorithm
numerator by the source signal subspace, it is called the
signal SSMUSIC. The computer simulations in [16]
showed that DOA estimations of highly correlated source
signals in an environment with a low signal-to-noise ratio
(SNR) and small sample size produced a more favorable
resolution than did MUSIC. When the correlation
coefficient is less than 0.8, such method produces an
excellent DOA estimation resolution.

In a highly correlated source signal environment, the
MUSIC and SSMUSIC algorithms produce biased DOA
estimates. To reduce the estimation biases, the OPO on
the beamspace can be used to characterize the source
signal DOAs on the spatial spectrum for scanning and
estimating the angle of arrival of a source signal and
obtain high-resolution estimations. Thus, the following
algorithm is proposed.

3 Proposed Algorithm

In this paper, a high-resolution method for estimating
DOAs of highly correlated source signals is proposed.

The method is divided into two stages: First, the DOA
estimations of a group of source signals is obtained using
(11), and the source signals directions are determined.
Second, a steering matrix is rebuilt near the estimated
DOA angle determined in Stage 1. In addition, the
original collected data are projected onto the beamspace
extending from steering vectors to build a new set of data
and OPOs, which are used to separate the desired source
signal from the source signal subspace. The covariance of
the desired source signal to be estimated is extracted from
the source signals covariance matrix to characterize the
DOAs of the desired source signals on the spatial
spectrum. Stages 1 and 2 are detailed as follows.

Stage 1: Equation (11) is used to estimate
high-resolution DOAs for the source signals{

θ̂1, θ̂2, · · · , θ̂D

}
. Next, according to [20,21], 0.5 is

chosen as the resolution of the left and right sides ofθ̂i to
obtainθ̂i− andθ̂i+ .

Stage 2: A M × 3D steering matrix is rebuilt as
W = [a(θ̂1−),a(θ̂1),a(θ̂1+), · · · ,a(θ̂D−),a(θ̂D),a(θ̂D+)].
Subsequently, the new data output is written as a 3D×1
vectory(t) = WHx(t) and

y(t) = WHx(t)

= WHA(θ )s(t)+WHn(t). (12)

Let Ā(θ ) = WHA(θ ) andn(t) = WHn(t); thus,

Ā(θ ) = WHA(θ )
= [WHa(θ1),W

Ha(θ2), · · · ,WHa(θD)]

= [a(θ1),a(θ2), · · · ,a(θD)]. (13)

Ā(θ ) in the beamspace processing serves the same role as
A(θ ) in elementspace processing. The symbol ofĀ(θ ) is
simplified asĀ = Ā(θ ). Therefore,

y(t) = As(t)+n(t). (14)

From (14), the covariance matrix ofy(t) is expressed as

Ry = E{y(t)yH(t)}
= ASA

H
+E{n(t)nH(t)}. (15)

Let

Rs = ASA
H

andRn = E{n(t)nH(t)}. (16)

Then, (15) can be rewritten as

Ry = Rs +Rn. (17)

Ry undergoes eigenvalue decomposition [17,18], which
can be expressed as

Ry = E{y(t)yH(t)}
= ∑3D

m=1 γmvmvH
m (18)
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and

Ry = ∑3D
m=1 γmvmvH

m

= ∑D
m=1 γmvmvH

m +∑3D
m=D+1 γmvmvH

m

= [EsEn]

[
Λ s 0
0 Λ n

][
E

H
s

E
H
n

]

= EsΛ sE
H
s +EnΛ nE

H
n , (19)

whereγ1 > γ2 > · · ·> γD > γD+1 = · · ·= γ3D = σn
2 is the

eigenvalue ofRy and corresponds to the eigenvectorvm of
γm , m = 1,2, · · · ,3D and Es = [v1, · · · ,vD] and
Es = [vD+1, · · · ,v3D] . In the following, 〈•〉 denotes the
subspaces spanned by the column vectors of a matrix. In
the beamspace,

〈
Es
〉

and
〈
A
〉

are the signal subspaces,
and

〈
En

〉
is the noise subspace; the correlation between

the highly correlated signals can be removed [17,18].
Next, the OPOs are established on the beamspace to

project the desired source signal subspace, and the source
signal is separated from highly correlated source signals.
The covariance of the desired source signal is extracted
from the source signals covariance matrix, thereby
creating the spatial spectrum algorithm used to estimate
the desired source signal DOA. To ensure that the
algorithm is valid for general applications, theith source
signal was chosen as the desired source signal to be
estimated. Equation (14) can be rewritten as follows:

y(t) = a(θi)si(t)+
D

∑
k=1
k 6=i

a(θk)sk(t)+n(t)

= a(θi)si(t)+B(θi)b(t)+n(t). (20)

whereB(θi) is the 3D× (3D−1) matrix of Ā minusa(θi)
, andb(t) is the (D− 1)× 1 column matrix ofsi minus
s(t). Because the signal subspace

〈
Es

〉
and noise

subspace
〈
En

〉
are orthogonal,

〈
Es
〉
⊕

〈
En

〉
= C3D×3D,

where
〈
Es

〉
⊕
〈
En

〉
is the direct sum of the subspaces〈

Es
〉

and
〈
En

〉
. Let αk = E{sksH

k }, k = 1,2, · · · D ; Si is
the (D − 1) × (D − 1) diagonal matrix of diagonal
elementsαk, k 6= i. The equivalence relation for the signal
covariance matrixRs [16] is obtained:

Rs =





Ry −EnΛ nE
H
n = ASA

H

a(θi)αiaH(θi)+B(θi)SiBH(θi)

EsΛ sE
H
s .

(21)

The OPOOa(θi)B(θi) [15,16] is expressed as

Oa(θi)B(θi) = a(θi)[aH(θi)P⊥
B(θi)

a(θi)]
−1a(θi)

HP⊥
B(θi)

.

(22)
whereP⊥

B(θi)
is the orthogonal projection operator of the

range space that is orthogonal to〈B(θi)〉. According to
(22), the range space ofOa(θi)B(θi) is 〈a(θi)〉, and the null
space contains〈B(θi)〉. Thus,

Oa(θi)B(θi)
a(θi) = a(θi) andOa(θi)B(θi)

B(θi) = 0. (23)

Oa(θi)B(θi) can be used to removeB(θ ), and a(θi)
remains unaffected. Thus, the desired source signal to be
estimated can be separated from the other source signals.
The OPO Oa(θi)B(θi) differs from the orthogonal
projection operator in (9) and can only be used to remove
the subspace that is orthogonal to the projected space.

To extract the desired source signal variance
E{[a(θi)si][a(θi)si]

H} from the source signal covariance
matrix, the source signal DOA spatial spectrum
estimation algorithm is developed. To obtain an accurate
estimate of [a(θi)ŝi] of a(θi)si, oblique projection is
performed on〈a(θi)〉 usingy(t) ; thus,

a(θi)ŝi = Oa(θi)B(θi)y(t)

= a(θi)[aH(θi)P⊥
B(θi)

a(θi)]
−1aH(θi)P⊥

B(θi)
y(t).(24)

The desired source signal covariance
E{[a(θi)si][a(θi)si]

H} is derived from the second-order
statistic E{[a(θi)ŝi][a(θi)ŝi]

H} of a(θi)ŝi . According to
(23) and (24), E{[a(θi)si][a(θi)si]

H} can be expressed as

E{a(θi)ŝi ŝ
H
i aH(θi)} = Oa(θi)B(θi)E{y(t)y(t)H}OH

a(θi)B(θi)

= Oa(θi)B(θi)RyOH
a(θi)B(θi)

= a(θi)αiaH(θi)

+Oa(θi)B(θi)EnΛ nE
H
n OH

a(θi)B(θi)
.

(25)

Next, (26) and (27) are derived from (21) and (25):

Oa(θi)B(θi)RsOH
a(θi)B(θi)

= a(θi)αiaH(θi), (26)

OB(θi)a(θi)RsOH
B(θi)a(θi)

= B(θi)SiBH(θi). (27)

Equations (26) and (27) can be combined as

Oa(θi)B(θi)RsOH
a(θi)B(θi)

+OB(θi)a(θi)RsOH
B(θi)a(θi)

= a(θi)αiaH(θi)+B(θi)SiBH(θi)

= Rs. (28)

According to (26), the OPOOa(θi)B(θi) can be used to
extract the desired source signal covariance fromRs. In
[14], when both uncorrelated and coherent source signals
coexisted in the system, the uncorrelated source signals
from the covariance matrix were separated; the MUSIC
was then used to estimate the DOA of the uncorrelated
source signals, and the high-resolution DOA estimation
method was adopted to estimate the remaining coherent
source signals, thereby improving the estimation
performance and resolution.

To obtain the desired source signal covariance using
(26), Rs and Oa(θi)B(θi) must be determined first. The
following lemmas show that the pseudoinverse matrix of
Rs (R

+
s ) can be obtained from the received limited signal

samples, which can be used to estimateRs and produce
Oa(θi)B(θi)[14,15,16].
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Lemma 3.1 The equation for the OPOOa(θi)B(θi) is as
follows:

Oa(θi)B(θi) = a(θi)[aH(θi)R
+
s a(θi)]

−1aH(θi)R
+
s , (29)

and

Oa(θi)B(θi)RsOH
a(θi)B(θi)

= a(θi)αiaH(θi)

= a(θi)[aH(θi)R
+
s a(θi)]

−1aH(θi),

(30)

where [aH(θi)R
+
s a(θi)]

−1 = αi . Here,

R
+
s = (ASA

H
)+ = EsΛ

−2
s E

H
s is the pseudoinverse matrix

of Rs.

Proof. Please refer to Appendix 6.1.
According to Lemma 3.1,R

+
s is obtained from the

received limited signal samples to estimateRs. Therefore,
a(θi) in (29) is changed toa(θ ) as the scanning steering
vector to build a θi-related algorithm, in which
θ ∈ [−90◦, 90◦] is scanned to estimateOa(θi)B(θi).
Equation (29) is reordered to produce (31) and (32):

Fa(θ) = a(θ )[aH(θ )R+
s a(θ )]−1aH(θ )R+

s , (31)

Ga(θ) = PA −Fa(θ), (32)

wherePA is the orthogonal projection operator with the
range space

〈
A
〉
.

According to Theorem 3.2 of [16], let

H = Fa(θ)RsFH
a(θ)+Ga(θ)RsGH

a(θ), (33)

Trace{H}
= Trace{ Rs}+2aHPEn

(θ )a(θ )/[aH(θ )R+
s a(θ )]

> Trace{ Rs}
= Trace{ Rs}, whena(θ ) = a(θi), (34)

whereTrace{•} denotes the trace of a matrix.

Proof. Please refer to Appendix 6.2.
According to (34), when the scanning angleθ is set at

[−90◦, 90◦] and aH(θ )PEn
(θ )a(θ )/[aH(θ )R+

s a(θ )]
equals zero, the spatial incidence angle of arrival of the
source signalθi is obtained in a similar manner with (11)
to build a peak in the power spectrum of the beamspace
and estimate the source signal DOAs. The cost function
for DOAs estimation is expressed as

f (θ ) = max
θ

aH(θ )R+
s a(θ )

|aH(θ )PEn
a(θ )|

= max
θ

aH(θ )WR
+
s WHa(θ )

|aH(θ )WE
H
n EnWHa(θ )|

. (35)

The following flowchart shows the procedures of the
two-stage algorithm:

Fig. 1: Flowchart of proposed method

4 Design Examples

This section discusses computer simulations that were
conducted to demonstrate the performance of DOA
estimation when the proposed method was applied to
uniform linear arrays.M sensor elements were located in
the uniform linear arrays, and the distance between each
element was half the distance of the wavelength. The
SNR was the ratio between the signal power and the noise
variance of each sensor element. The number of source
signals was known, and the zero-mean spatially white
Gaussian process was used when performing these
simulations.
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During the first simulation, a group of two highly
correlated source signals entered the system atθ1 = 0◦

and θ2 = 5◦ ; the second group contained a third signal
entering atθ3 = 40◦ and was not correlated with the
aforementioned two signals. The SNR of all the source
signals was 10 dB, and the number of sensor elements
wasM = 8. Fig.2 shows that in a highly correlated source
signal environment, using MUSIC in a beamspace to
estimate the DOAs yielded angles of arrival the resolution
of which was superior to those obtained using MUSIC in
a received signal space.

Fig. 2: Normalized spectrums of the MUSIC and MUSIC after
beamspace (BMUSIC) algorithm

Conditions for the second simulation were the same
those for the first; Fig.3 depicts the f (θ ) spatial
spectrum. The peak of the spatial spectrum represents the
angle of arrival of the source signal, and DOA estimations
yielded a high resolution in highly correlated source
signal environments.

The root mean square error (RMSE) was used as the
performance indicator of the estimation method, and the
RMSE of the DOA was expressed as

RMSE =

√
∑F

r=1∑D
i=1 (θ̂i(r)−θi(r))2/(FD), (36)

whereθ̂i(r) is the estimate ofθi(r) during therth Monte
Carlo test. The RMSE was used to compare the DOA
estimation performance between the MUSIC, SSMUSIC
[16], and proposed methods. The following simulations
were obtained using 1000 Monte Carlo tests. The
correlated coefficients of highly correlated source signals
were defined according to [17].

For the third simulation, the performance was
investigated whenM = 12 and the SNR values differed.
The experimental conditions are as follows: two highly
correlated source signals with a correlated coefficient of

Fig. 3: Normalized spectrum of the proposed method

0.9 entered the array sensors at{0◦,5◦}; a third
uncorrelated source signal entered the array sensors at
40◦; the SNR ranged from 0 dB to 20 dB; and the number
of snapshots was 500. Because the received signal
subspace was projected onto the beamspace to enhance
the source signal characteristics, the proposed method
reduced the correlation between the source signals and the
estimation bias. Fig.4 shows that the proposed method
outperformed the MUSIC and SSMUSIC methods. The
simulations indicate that in a low SNR environment, the
SSMUSIC method outperformed the MUSIC method.
However, in a high SNR environment, because the results
obtained from (11) were similar to the results produced
by the MUSIC method, the performance of (11) and the
MUSIC method did not differ significantly. By contrast,
the proposed method demonstrated an improved
performance in a low SNR environment.

For the fourth simulation, the number of snapshots
was varied to test the performance of the proposed
method. The SNR was set at 10 dB and the number of
snapshots was increased from 100 to 1000; all other
conditions remained the same. The SSMUSIC method
outperformed the MUSIC method in estimating DOAs
when the snapshots were few. Fig.5 shows that the
proposed method outperformed the MUSIC and
SSMUSIC methods when the snapshots were few; as the
number of snapshots increased, the proposed method
obtained excellent resolution.

For the fifth simulation, the correlated coefficients
[17] were varied from 0.5 to 0.9 and the number of
snapshots was set at 100; the other conditions remained
the same. Fig.6 shows that the proposed method
outperformed the MUSIC and SSMUSIC methods when
the snapshots were few, because the proposed method
involves the beamspace for reducing the DOA estimation
bias; this caused a favorable performance even when the
correlated coefficients were high.
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Fig. 4: RMSE of DOA estimations for varying SNRs

Fig. 5: RMSE of DOA estimations for a varying number of
snapshots

For the last two simulations, two groups of two highly
correlated source signals were used; the angles of arrival
were{−30◦,−26◦} and{0◦,5◦}, respectively. A group of
uncorrelated source signals had a 40◦ angle of arrival.M
was set at 12 and the SNR was set at 10 dB. In the sixth
simulation, the performance of the three methods was
investigated by setting the correlated coefficients at 0.9
and varying the number of snapshots. Fig.7 shows that
the proposed method and the SSMUSIC method were
superior to the MUSIC method [16] when the snapshots
were few. As the number of snapshots increased, the
proposed method outperformed the MUSIC and
SSMUSIC methods. In the seventh simulation, according
to the previous simulations, the number of snapshots was
set at 500 and the correlated coefficients were altered
from 0.5 to 0.9. Fig.8 shows that when the correlated

Fig. 6: RMSE of DOA estimations for varying correlation
coefficients

coefficients varied, the proposed method outperformed
the MUSIC and SSMUSIC methods.

Fig. 7: RMSE of DOA estimation versus the number of
snapshots.

5 Conclusion

This paper introduces a high-resolution estimation
method that uses the OPO to separate desired source
signals from the source signal subspace and adopts the
beamspace to reduce estimation bias. Computer
simulation results revealed that the proposed method
yielded superior resolution in the DOA estimation results
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Fig. 8: RMSE of DOA estimations for varying correlation
coefficients

for highly correlated signals. Moreover, the proposed
method exhibited favorable DOA estimation performance
when uncorrelated source signals and highly correlated
source signals coexisted.

6 Appendix

According to [14,15,16], Lemma 3.1 and Theorem 3.2
were proposed. According to Lemmas 5.3h and 5.9 in
[22], the pseudoinverse matrix ofRs in (16) is

R
+
s = (ASA

H
)+ = (A

H
)+S−1A

+
, (37)

whereA
+
= (A

H
A)−1A

H
. BecauseA = [a(θi),B(θi)] ,

the following results were obtained by using [15]:

A+ =

[
[aH(θi)P⊥

B(θi)
a(θi)]

−1aH(θi)P⊥
B(θi)

[B(θi)P⊥
a(θi)

B(θi)]
−1B(θi)P⊥

a(θi)

]
. (38)

According to the definitions of the pseudoinverse matrix
and orthogonal projection, the following basic
characteristics were derived:

R
+
s RsR

+
s = R

+
s , (39)

PARs = RsPA = Rs. (40)

6.1 Proof of Lemma 3.1

Equations (37) and (38) were used to deriveaH(θi)R
+
s and

obtain the following equation:

aH(θi)R
+
s

= aH(ASA
H
)+

= aH(θi)(A
H
)+S−1A

+

= [A
+

a(θi)]
HS−1A

+

=

{[
[aH(θi)P⊥

B(θi)
a(θi)]

−1aH(θi)P⊥
B(θi)

[B(θi)P⊥
a(θi)

B(θi)]
−1B(θi)P⊥

a(θi)

]
a(θi)

}H

S−1A
+

= (
1
αi

,0, · · · ,0)A+

=
1
αi

[aH(θi)P⊥
B(θi)

a(θi)]
−1aH(θi)P⊥

B(θi)
. (41)

Thus,

aH(θi)R
+
s a(θi)

=
1
αi

[aH(θi)P⊥
B(θi)

a(θi)]
−1[aH(θi)P⊥

B(θi)
a(θi)]

=
1
αi

. (42)

When (37), (38), and (42) are used, the following is
obtained:

a(θi)[aH(θi)R
+
s a(θi)]

−1aH(θi)R+
s

= a(θi)αiaH(θi)(A
H
)+S−1A

+

= a(θi)αi[A
+

a(θi)]
HS−1A

+

= a(θi)αi

{[
[aH(θi)P⊥

B(θi)
a(θi)]

−1aH(θi)P⊥
B(θi)

[B(θi)P⊥
a(θi)

B(θi)]
−1B(θi)P⊥

a(θi)

]
a(θi)

}H

S−1A
+

= a(θi)αi(
1
αi

,0, · · · ,0)
[
[aH(θi)P⊥

B(θi)
a(θi)]

−1aH(θi)P⊥
B(θi)

[B(θi)P⊥
a(θi)

B(θi)]
−1B(θi)P⊥

a(θi)

]

= a(θi)[aH(θi)P⊥
B(θi)

a(θi)]
−1aH(θi)P⊥

B(θi)
. (43)

According to the definition ofOa(θi)B(θi) in (22) and (43),
Lemma 3.1 has been validated.

6.2 Proof of Theorem 3.2

For simplicity,a(θ ) is abbreviated asa. When Lemma 3.1
and (39) are used, the following is obtained:

FaRsFH
a = a[aHR

+
s a]−1aHR

+
s RsR

+
s a[aHR

+
s a]−1aH

= a[aHR
+
s a]−1aHR

+
s a[aHR

+
s a]−1aH

= a[aHR
+
s a]−1aH

=
1

aHR
+
s a

aaH . (44)
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When (31), (32), (39), (40), (44), and Lemma 3.1 are used,

FaRsFH
a +GaRsGH

a

= FaRsFH
a +(PA −Fa)Rs(PA −Fa)

H

=
2

aHR
+
s a

aaH +Rs −
1

aHR
+
s a

PAaaH − 1

aHR
+
s a

aaHPA

= Rs +
1

aHR
+
s a

(I −PA)aaH +
1

aHR
+
s a

aaH(I −PA)

= Rs +
1

aHR
+
s a

PEn
aaH +

1

aHR
+
s a

aaHPEn
. (45)

When (45) and the basic properties of theTrace are used,
the following is obtained:

Trace{H}

= Trace{Rs +
1

aHRsa
PEn

aaH +
1

aHRsa
aaHPEn

}

= Trace{ Rs}+
2(aHPEn

a)

aHRsa
> Trace{ Rs}. (46)

WhenPEn
a(θi) = 0, (46) is valid, thereby confirming the

validity of the theorem.
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