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Abstract: In this paper, we will prove some existence and uniquenesséms fora. - contractive type operators defined oter

metric spaces. In particular, we will provide results retato Ulam-Hyers stability, well-posedness and limit sheidg. The theorems
presented will extend, generalize or unify several statésneurrently exist in the literature on those topics. We algo give examples
to illustrate the applications our results.
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1 Introduction and Preliminaries As a secondary purpose, we consider Ulam-Hyers
stability under the light of the fixed point results we prove
on b-metric spaces. The Ulam-Hyers stability problem of

Very recently, Samet et al. introduced Bf] the notion of  functional equations, which was originated from a

a-y-contractive type mapping and proved a number ofquestion of Ulam 29] in 1940, deals with the stability of

fixed point results for such mappings. As an extension ofgroup homomorphisms. The first affirmative partial
a-y-contractive type mapping, Asl et al. later proposedanswer to the question of Ulam for Banach spaces was
a.-y-contractive type of multivalued mappings. given by Hyers 18] in 1941. Thereafter, this type of

Motivated by their results several authors have startedstability is called the Ulam-Hyers stability and have

working on this subject area and successfully managed tettracted attention from several authors. In particular,

improve this notion in various ways by proving theorems Ulam-Hyers stability results in fixed point theory have
for single and multi-valued operators in the setting of been studied densely by Bota-Boriceanu and Petr@sel |
different abstract spaces, see elf,80,31,32,33,34,35 ~ 9,21,24,26]. Finally, we discuss well-posedness of the

36]. fixed problems and limit shadowing property of the

The aim of this paper is to provide results that multivalued operators.

establish the existence and/or uniqueness of fixed points Throughout this paper, the standard notations and

of a.-y-contractive type mappings in the context of terminologies in nonlinear analysis will be used. We

b-metric spaces. Czerwik introducddmetric spaces in recollect some essential definitions and fundamental

[16,15] as a generalization of metric spaces. Czerwik’sresults in this section. First, we begin with the definition

generalization can be considered as a continuation obf ab-metric space:

other approaches studied earlier by Bourbaki][ _— . .
Bakhtin [4], Heinonen 9. Following Czerwik's papers, Definition 1.(Bakhtin [4], Czerwik [16]) Let X be a set
@nd let s> 1 be a given real number. A function

b-metric spaces and related fixed point theorems havé - T o :
been heavily investigated by many authors, see e.g?1'>fj.x.x_>[0’°°) [sf_saéq to be a b-metric if the following
Boriceanu et al]0], Boriceanu L1,17], Bota [13), Aydi conditions are satisfied:

etal. [2,3]. 1.d(x,y) = 0ifand only if x=y,
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2.d(x,y) = d(y,x),
3.d(x,2) < s[d(x,y) +d(y,2)],

for all x,y,z€ X. A pair(X,d) is called a b-metric space.

Note that ab-metric is a metric whers = 1. Hence, the
class of b-metric spaces contains the class of metric
spaces. For more details and examples Bmetric
spaces, see e.g4,p,14,1516,19. In particular, we
would like to give a specific example:

Example 15] Let X be a set with the cardinabrd(X) >

3. Suppose thaX = X; U X; is a partition ofX such that
card(X;) > 2. Lets > 1 be arbitrary. Then, the functional
d: X x X — [0,0) defined by:

d(x,y) := {

is ab-metric onX with coefficients > 1.

0, x=y
2s, X,y € X1
1, otherwise.

In the rest of this work, we shall need the families of
subsets of &-metric spacéX,d) listed below:

2 (X) ={Y|Y CX};
P(X) :={Y e 2(X)|Y #0};
R (X) :={Y € P(X)| Y is bounded;
Pep(X) :={Y € P(X)| Y is compac};
Pe(X) :={Y € P(X)| Y is closed;
ool (X) 1= R(X) NP (X).
Additionally, we will also need the gap, excess

generalized, Pompeiu-Hausdorff adedunctionals which
will be used to define certaih- metric spaces to study
various multi-valued operators. The definition of those
functionals are given as follows:

The gap functional:

(1) D: P(X) x P(X) = R, U{+oo}

D(A,B) = {

The excess generalized functional:

inf{d(a,b)]ac A, be B}, A#0+#B,
0, A=0=B,
+-00, otherwise.

(2) p: P(X) x P(X) = R, U{+oo}

sup{D(a,B)| ac A}, A# 0D +# B,
p(AaB): 0, =Y
00, B=0+#A

Pompeiu-Hausdorff generalized functional:

(3) H: 2(X) x 2(X) = Ry U{+o}
max{p(A.B),p(B,A)}, A# D +#B,

H(A,B)=1¢ O, A=0=B,
+-00, othewise.

o functional:

(4) 0: P(X)x P(X) = RpU{+ow}

5(A,B) = {

Remark If xp € X in (1), thenD(xo,B) := D({x0},B).
Moreover, ifA= B in (4), then we hav (A, A) := d(A).
Notice that (R, ¢(X),H) is a completeb-metric space
provided that(X,d) is a completeb-metric space (see
Czerwik [16]).

We will also require the following four lemmas in the
proof of the main result:

sup{d(a,b)|ac A, be B}, A% D+#B,
0, A=0=B,
+-00, otherwise.

Lemma 1Let (X,d) be a b-metric space and let,B
P(X). We suppose that there exists> 0 such that:
(i) for each ac A there is be B such that da,b) < n;
(i) for each be B there is ac A such that da,b) < n.
Then, HA,B) <n.

Lemma 2L et (X,d) be a b-metric space, A P(X) and
x € X. Then Ox,A) = 0 if and only if xe A.

Lemma 3(Czerwik [L6]) Let (X,d) be a b-metric space.
Also let{x}y_o C X. Then

1.D(x,A) < g[d(x,y) + D(y,A)], for all x,y € XandAC
2.d(Xn, X0)

sd(Xo,X1) + .. + 8" (Xn—2,X1—-1) + S (Xq-1, Xn).
3.H(A,C) <sH(A B)+H(B,C)],forall A,B,C € P(X).

<

Lemma 4Let (X,d) be a b-metric space and let,B
P(X). For each g> 1 and for all ac A there exists l& B
such that

d(a,b) < qH(A,B).

Proof. Supposing the contrary: there exgt> 1 and
a € A such that for alb € B we haved(a,b) > gH(A,B).
Taking inf we get D(a,B) > qH(A,B). But

beB

H(A,B) > D(a,B) > gH(A,B). Hence we obtairg < 1,
which is a contradictiori.]

Since ab-metricd on X induces a structure of ao
space orX, we have the following concepts (see algd|]:

Definition 2.Let (X,d) be a b-metric space and TX —

P: (X) be a multivalued operator. An operator T is called a
multivalued weakly Picard (briefly MWP) if for eackexX
and each ye T(x) there exists a sequende;, }nn such
that

(X0 =X, x =Y,
(ii)%n+1 € T(Xn), for each ne N;
(iii )the sequencéx,)nen is convergent and its limit is a
fixed pointof T.

RemarkA sequencexn)nen Satisfying the conditior(i)
and (ii), in the Definition 2 is called a sequence of
successive approximationsBfstarting from(xg, x).
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We next give some examples of MWP operatorg-in
metric spaces.

Example et (X,d) be ab-metric space anti : X — X,

i € {1,2,...,n}, be single valuedk-contractions, i.e.,
ki € [0,1] andd(ti(x),ti(y)) < kid(x,y), for eachx,y € X.
Then the multivalued operatorT : X — Py(X),
T(X) = {te(x),...,ta(X)}, is @ MWP operator.

Example d.et (X,d) be a b-metric space and
T : X — Py(X) be a multivalueda-contraction, i.e.,
ac [0,1] andH (T (x),T(y)) < ad(x,y), for eachx,y € X.
ThenT is a MWP operator. Indeed, if we analyze the
proof of Theorem 5 in Czerwikle] we may remark that
for (x,y) € GraphT) there exists a sequence
Xnt1 € T(Xn), n € N such thatxg = x,x3 = y and

Xn 4 xe Fix(T) asn — 4.

A mappingg : [0,0) — [0, ) is called acomparison
functionif it is increasing andp"(t) — 0, n — oo, for any
t € [0,0). We denote byd, the class of the comparison
functions ¢ : [0,0) — [0,e0). For more details and
examples , see e.g2%,7]. Among them, we recall the
following essential result.

Lemma 5(Berinde [7], Rus [25]) If ¢ :[0,c0) — [0,0) is
a comparison function, then:

(Leach iterate¢X of ¢, k > 1, is also a comparison
function;

(2)¢ is continuous ao;

(3)p(t) <t, foranyt> 0.

Let ¥ denotes the family of nondecreasing functions
@ :[0,00) — [0,00) such thaty ¢"(t) < « for eacht >0,

n=1
wherey" is then-th iterate ofy. It is clear that if® c W
(see e.g.20]) and hence, by Lemma (3), for ¢y € ¥ we
havey(t) < t, for anyt > 0. Later, BerindeT] introduced
the concept ofc)-comparison functioms follows:

Definition 3.(Berinde [7]) A function¢ : [0,00) — [0,) is
said to be & c)-comparison function if

(c1)¢ is increasing,
(cp)there exists ke N, ac€ (0,1) and a convergent series of

nonnegative term§’ vic such thap***(t) < ag(t) +
=]
Vi, for k> kg and any te [0, ).

The notion of a (c)-comparison function was
improved as db)-comparison function by Berind&]in

(bo)there exist k€ N, a€ (0,1) and a convergent series

0

of nonnegative termsy” v such that Brigktit) <
=

ablgX(t) + v, for k> ko and any te [0, ).

We denote by, the class of(b)-comparison functions.
Notice that(b)-comparison function is &c)-comparison
function wherb = 1. Also notice that anyb)-comparison
function is a comparison function due to the lemma below:

Lemma 6(Berinde B]) If ¢ : [0,0) — [0,0) is a

(b)-comparison function, then we have the following

(L)the seriesi b*¢X(t) converges for any & R ;

(2)the fungﬁgn § . [0,0) — [0,00) defined by
S(t) = gbkqbk(t), t € [0,%), is increasing and
continuc;(ljg ao.

We will need the following generalized Cauchy lemma
proved by Pacurar ir2p):

Lemma7Llet¢ : R, — R, be a b-comparison function
with constant s> 1 and & € R, n€ N such that @ —
0, asn — « then

n
Y sk9" (@) — 0, asn— o
k=0

Next, we shall present the definition of
a.--contractive andr.-admissible mappings introduced
by Hasanzade et alf]:

Definition 5.[17] Let (X,d) be a metric space and
T : X — P(X) be a multivalued operator. We say that T is
an a,--contractive multivalued operator if there exist
two functionsa : X x X — [0,0) andy € ¥ such that

o (T(X), T(Y)H(T(x), T(y)) < g(d(x,y)), forall X,y€(1>§-
wherea. (A,B) =inf{a(a,b), ac A be B}.

Definition 6.[17] Let T X — PX)
a X x X —[0,00). We say that T isr,.-admissible if

xyeX, axy) >1= a.(T(x),T(y)) > 1

and

2 Main results

In this section, we shall state and prove our main results.
First we start withb-metric version of Definitiord for the
Pompeiu-Hausdorff generalized functional:

order to extend some fixed point resuits to the class of2€finition 7.Let (X,d) be a b-metric space and

b-metric spaces.

Definition 4.(Berinde [B]) Let s> 1 be a real number. A
mapping¢ : [0,0) — [0,) is called a(b)-comparison
function if the following conditions are fulfilled

(b1)¢ is monotone increasing;

T : X = Py (X) be a multivalued operator. We say that T
is ana.-y-contractive multivalued operator of tygb) if
there exist two functiong : X x X — [0,0) and ¢ € ¥,
such that

o (T(X), T(Y)H(T(x), T(y)) < g(d(xy)), for all X,y€(2>§-
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Our first main result is the following.

Theorem 1Let (X,d) be a complete b-metric space with

constants> 1. Let T: X — Py (X) be ana..--contractive
multivalued operator of typéb) satisfying the following
conditions:

()T is a,-admissible;
(ithere exists ¥ € X and % € T(Xy) such that
a(Xo,x1) > 1;
(iii)if x n is @ sequence in X such thatx,,x,.1) > 1 and
Xn — X thena (xn,X) > 1,vn.

Then T is MWP operator.

ProofLetxg € X andx; € T(Xp). If Xo = X1 we obtain the
desired conclusion. Lef # x; andxy ¢ T(x1). Then, by
the properties of the function&l there existy; > 1 and
X2 € T(x1) such that
d(x1,%2) < qiH(T(%0), T (x1)) andgaip(d(xo,x1)) < d(Xo,X1).

By using the fact thall is an a.-{-contraction we
obtain

d(xq,%2) < o1H(T(x0), T (x1)) < 10 (T (X0), T (x2))H (T (x0), T (x1))
< qlLP(d(X()le)) < d(Xo,Xl).

We know that a(xp,x1) > 1. By (i), we have
a.(T(X),T(x1)) > 1. This implies thata(xg,x2) > 1.
Thus we getr,. (T(x1), T (x2)) > 1.

From the fact thaty is an increasing function, we find

that
P(d(x1,%2)) < Y(d(xo,x1)).

In a similar way there existp > 1 andxz € T(X2)
such that
d(X2,%3) < GeH (T (x1), T(x2)) andazy(d(x1,%2)) < d(Xo,X1)-

So we have

d(x2, %) < GH (T(x1), T (%)) < G0t (T (X2), T(%2))H(T (x1), T (x2))
< QY (d(xe,%2)) < Y(d(x0,%1))-

Sincey is an increasing function, we obtain that
Y(d(x2,%3)) < YA(d(x0,%0))-

Inductively, we see that there exists.1 € T (xn) such
thatd (Xn+1,%n+2) > 1 and

d(Xn+1,%n+2) < Y"(d(x0,%1)), for eachn € N.

We shall prove thafx,} is a Cauchy sequence.

d(Xn, X 1p) < S+ d(Xn, Xn1) + 5%+ d(Xn1, Xns2) + - -
+ 4sP2. d(Xnt p—3; Xn+ p—2)+
+sP L. d(Xnsp—2,Xnp-1) + 7 - d(Xnsp-1,Xn1p)
<s- " Yd(x0,x1)) + - YN (d (X0, %1)) + ...+
+P2 P4 (d(x0, %)) + 8P P 3(d (%0, %))+
+8P- PP (d (%0, %))
1
g2
S A (x0,x0)) . STPR P3(d (0,30 ))
+SP2 YMP2(d (%0, 0))]

n+p-2

- =3 1sk- Yr(d(x0,%1))-

k=n—

U%H

n
LetS, = Z}skwk(d(xo,xl)), n> 1. Then we find that
k=

1
d(Xn, Xnsp) < F[Smp—l— S1,n>1 p>1 (3)

Due to Lemma6, we conclude that the series
n—-1
z SYX(d(x0,x1)) is convergent.
k=1

SayS= r!@ Sy Regardings > 1 and(6), we obtain

that {x,} is a Cauchy sequence in themetric space
(X,d). Since(X,d) is complete, there exists € X such
thatx, — x* asn — oo,

Sincea(xn,X*) > 1 we have from hypothesis (i) and
(i) that a.(T(xn),T(x*)) > 1. As a consequence, we
derive that

D(X",T(x")) < s[d(X",Xn+1) + D(Xnp2, T(X))]
) +H(T (%), T(x))]

(X", Xnt1) + @ (T(X7),

T (%)) H(T (xn), T(x"))]
< S Xn 1) + W (d(x0,X))].

N

From the properties ofy we haveD(x*,T(x*)) = 0.
SinceT (x) is closed we obtaix" € T(x*).

We give another characterization of Definitibrior a
b-metric via the gap functional:

Definition 8.Let (X,d) be a b-metric space and
T : X — Py (X) be a multivalued operator. We say that T
is a generalizedr,--contractive multivalued operator of
type (b) if there exist two functions : X x X — [0, )
andy € ¥, such that

a.(T(x), T(y))D(Y. T(y)) < ¢(d(x,y)),
forallxe X, ye T(x). 4)
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We have the following result: We shall prove that<)nen+ is @ Cauchy sequence.

Theorem 2Let (X,d) be a complete b-metric space and letd(Xn, Xn+p) < 'S-d(Xn, Xnt1) + S d(Xns1, Xn12)
T : X — Py(X) be ana*-admissible strictly generalized p-2.

a* — (-contractive mapping. Assume that there exist x te le 77 A0t p-3,Xnsp-2) F

X and % € T (xp) such thatr(xo,x) > 1. Thenthere exists ~ +S° - d(Xnyp-2,%n4p-1) + - d(Xns p-1,Xn1p)
an orbit{xn} of T at> and X € X such thatimp_,. Xy = < s WN(d(Xo. X 2. " L(d(x0. x

X*. Moreover, X is a fixed point of T if and only if (€ ) = i’ ( rffolsl))+ v (7(1)(0’ nlj)j;"'Jr
D(&,T¢&) is lower semi-continuous at X. +8P7 PP (d (%0, %)) + 8P TP (d (%0, %))+

. . L + P " PL(d (%o, X
ProofFollowing the same lines of argument given in the v (do, %))

proof of Theoreml we can construct a Cauchy sequence i [ PN (X0, X)) + ... 4 STP2 Y P2(d (X0, X))+
{X»} which converges to¢*, asn — «. By the lower S
semicontinuity of the functioD we obtain the desired ~ +s™P~1 " P~1(d(x0,x1))]

conclusion. n+p-1

2 - K(d(xo, ).

‘%‘H

Next, we propose a version of Definitiérfor b-metric

via d-functional: .

; k .

. . = > :

Definition 9.Let (X,d) be a b-metric space and TX — Denotings, k;)sk(,u (d(x0,)), n > 1 we obtain
P; (X) be a multivalued operator. We say that T is@an

-5-contractive multivalued operator of tyde) if there 1
exist two functionsr : X x X — [0,00) and @ € ¥, such A0 Xntp) < G7lSup-1-S-1,n21, p=1. (6)
that
Due to Lemma6, we conclude that the series
o (T(X), T(¥)S(y, T(y)) < ¢(d(x.y)), sk . .
forallxe X, y € T(x). (5) Z ¢ (d(x0,x)) is convergen

Thus there exist§ = I|m S.. Regardings > 1 and by

(6), we obtain tha{xn}n>o |s a Cauchy sequence in the

Theorem 3Let (X,d) be a complete b-metric space and Ietmetrlc spacéX,d). Smce(x d) is complete, there exists
T : X — RBy(X) be ana*-admissible generalized* — ¢ — " € X such thak, — x” asn — o. .

d-contractive mapping. Assume that there exjst X and Lgtt|ng N = in 5(xn, T(xn)) < Y(d(%0,x1)) we
x1 € T(Xo) such thata (xo,x;) > 1. Then there exists an obtain that

orbit {x,} of T at> and X € X such thatim,_,. X, = x*.

Moreover,{x"} — Tx" if and only if f(£) = 8(£,T&) is 00, T(xn)) = 0, as n — eo.

lower semi-continuous at Xx.

Finally, we have the following result:

By the semicontinuity of the functional we obtain

. the desired conclusion.
ProofSimilar to the proof of Theoreni, we letxy € X

and x; € T(Xp). We obtain the desired conclusion if Remarkt is clear that Definitior? reduces to Definitios

Xo = X1. LetXg # X1 andxy ¢ T(x1). By the hypothesiswe  and (b)-comparison function become&)-comparison

have thata(xo,x1) > 1. As T is a.-admissible we have function. Consequently, Theorem 2.1 irl7] is a

thata, (T (%), T(x1)) > 1. Then consequence of TheorerB. Further, if we replace
multivalued operator with a single valued self-mapping

O(X1, T(x1)) < a(T (%), T(x1))d(X1, T(x1)) < Y(d(X0.X1))- we get Theorem as a corollary of TheorenHence,

_ several results in these papers can be concluded also from
There exists; € T(x1) such that Theorens.

0 < d(X1,X2) < &(X1, T (x1)) < Y(d(X0,X1))-
Application
From the fact thaty is increasing we obtain that 3 Applications
) Definition 10.Let (X,d) be a b-metric space and TX —
P(d(x1,%2)) < P=(d(x0,%1))- P(X) be a multivalued operator. The fixed point inclusion

By an inductive procedure we have that there exists X€T(x), xe X (7)
Xn+1 € T (Xn) such thaor (Xn, Xn+1) > 1 and

is called generalized Ulam-Hyers stable if there exigts

d(Xn,Xn11) < 0(%n, T (X)) < Y"(d(x0,%1)), foreacmeN. R, — Ry is increasing, continuous i6 and ¢(0) =0
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such that for eacle > 0 and for each solution*ye X of
the inequality

D(y, T(y)) <¢€ (8)

there exists a solution*xof the fixed point inclusion7j
such that
d(y",x") < y(e).

If there exists ¢ 0 such thaty(t) := ct, for each te
R, then the fixed point inclusiorT) is said to be Ulam-
Hyers stable.

For Ulam-Hyers stability results in the case of fixed
point problems see], [21], [24], [2€].

()SinceT : X — Py(X) is a multivalued weakly Picard
operator, so{x*} € Fix(T). Let & > 0 andy* € X be a
solution of(8), i.e

Dy, T(y")) <¢

Since T is a.-y-contractive multivalued mapping of
type{b) and sincex* € Fix(T), from (H) there exists
y* € X such thata(x*,y*) > 1 and taking into account
that T is a.-admissible we haver, (T (x*), T(y*)) > 1.
So, we obtain:

d(x",y") =D(T(xX"),y") <sH(T(X), T(y")+D(T(y"),y")] <
<o (T(E), TY)H(T ), T(W)) +e] <s[p(d(X,y")) +e].

In order to prove the next theorem we need theTherefore,

following hypothesis:

(H):

forall x,y € X, there existz € X such that

a(x,z) >landa(y,z) >1

Bd(x,y")) i=d(x",y") —sp(d(x",y)) <s-e = d(X",y") < B (s €).
Consequently, the fixed point inclusion(7) is
B~ 1-generalized Ulam-Hyers stable.

(i)From Theorem 1, we get thatFix(T) # 0. Let
x* € SFiX(T). Notice first thatSFixT) = {x"}. We want
to prove thafFix(T) = {x*}. Lety € Fix(T), i.,e.y € T(y)
with y # x*. Using the hypothesis (H) we can estimate the

Regarding the Ulam-Hyers stability problem the ideasfollowing distance

given in Petru et al.43 allow us to obtain the following
result.

Theorem 4Let (X,d) be a complete b-metric space with
constant s> 1. Suppose that all the hypotheses of
Theorem 1 hold and additionally that the function
B : [0,0) — [0,0), B(r) :=r —sy(r) is strictly
increasing and onto. Suppose also that SFx™ then
we have:

()The fixed point inclusio(7) is generalized Ulam-Hyers
stable.

(iFix(T) = SFIXT) = {x*}.

(iijLet S: X — Py (X) be a multivalued operator; > 0
such that FixS) # 0 and H(S(x), T(x)) < n, for all
x € X. Then

H(Fix(S),Fix(T)) < B~*(sn).

(iv)(Well-posedness of the fixed point problem with

respect to D) If{x,} is a sequence in X such that
D(Xn, T(Xn)) — 0as n— oo, then x 4 % asn— o.

(v)(Well-posedness of the fixed point problem with respect

to H) If {xo} is a sequence in X such that
H(Xn, T (Xn)) — 0as n— oo, then>ﬁ—>x as n— oo,

d(X*vy) =

We obtain thatd(x*,y) = 0, and sox* =y. Hence
Fix(T) C SFiXT). Since SFiXT) C Fix(T) we obtain
thatSFIXT) = Fix(T).

The uniqueness condition of the strict fixed point can
be proved with the same method.
(iiLet y € Fix(S) and x* € SFiXT). Then using the
hypothesis (H) we obtain:

d(y,x") < H(S(y), T(x)) <
< s [H(Sy), T(y) +H(T(y), T(x"))] <
< s (T(X), T(Y) [H(SY), T(y) +H(T(y), T(x))] <
< s [n+y(dy,x))],

from where we obtain that(y, x*)
Hence

=S g(d(y,x)) <s-n.

H(Fix(S),Fix(T)) < B~*(sn).

(iv)Let x* € SFiXT) and Iet(xn)neN be a sequence K
such that D(xn, T(xn)) — 0, as n — c. Then for
Vn € T(Xn) such thatd(X,,vn) = D(Xn, T(Xn)), N € N,
using the hypothesis (H) we have:

(vi)(Limit shadowing property of the multivalued 9(¢,X") < s[d(Xn,Vn)+d(vn,X")] =
operator) Suppose that¢ is a sub-additive = s[d(Xn,Vn) +D(Vn, T(X"))] <
b-comparison function. Ify,} is a sequence in X < s[d(%n, V) + H (T (Xn), T(x*))]
such that Dyn.1,T(Yn)) — 0, @as n— oo, then there D T TVIH(T T(x*
exists a sequence{x,} C X of successive is[ 0, T 0n)) 8 (T0C), THDH(T (xa). TO))]
approximations of T, such that(xh,y,) — 0, as < S[D0, T(xn)) + (d0xa, X))
n— oo, Thus we get

Proof. d(Xn,X") —s- P(d(Xn, X)) <5-D(%n, T (Xn)).
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From the above inequalities we obtain that is a solution for the problentL().
The problem 11) is equivalent to
(Xna ) <B (S'D(XnaT(Xn))) _>Oaasn_>0°'

; xo+/ f(x(9)ds fortefab]  (12)
Hence we see thaf, — x*, asn — .

(v)It follows from (iii). Let thatf tisfi the followi
(vi)lLet (Yn)nen be a sequence inX such that cond?tionuss' stppose fhattsatisties the Tolowing
D(Ynt1,T(Yn)) — 0, as n — . Then there exists '
Un € T(yn),n € N such thatd(yn1,Un) — 0, asn — oo, 1) t

Using the hypothesis (H) we obtain: f(x(s))ds=0, forallt € [a,b] if and only if x=Xo

i 0?1 [a,b].
d(X",Ynt1) (C2)|f(u)— f(v)|| <Lglu—v|, forallu,ve R
< S[D(Ynt1, T(¥n)) + 0 (T(X), T(y))H(T (yn), T(x"))] We define the operator
< $:D(Yn+1, T(Yn)) +s- ¢(d(yn, X)) T : X — X, whereX := C|a,b], with x — Tx by the
< 5:D(Ynt1, T(Yn)) +S Y(s-D(Yn, T (Yn-1)) formula
+s- Y(d(Yn-1,X)))
< $:D(Ynt1, T(Yn) + - Y(D(¥n, T(¥n-1)))
+8" (- D(¥n-1,T(Yn-2)) +5- Y(d(¥n-2,X))) < ... < Xo+/ f(x(s))ds forte[abl.  (13)
< 5:D(Yn1,T(¥n) +5 Y(D(Yn, T(Yn-1))) +
+s3-w;(lD(yn LT ) 4.t S lwn L(D(y2, T(y1))) + In the second part of the proof we need the functions

a, d, g, defined below:

+1 +1 +1 V)
+8M YDy, T(y0)) + 8" g (d(yo, X)) = G X xX 3R, by

=S [iﬁ Y (D(Yn-is1, T(¥n-i))) +5"- Y"1 (d(yo, x*))

n+1

a(xy):{kfmx?—fxoandyixo,wherek>1 (14)
<s Zﬁ @' (D(Yn-i+1, T (Yn-i)))-

0, otherwise

) ) d:XxX =Ry, by
By Lemma?, the right side of the inequality above tends

to zero asn — o. Thus we find thad(xf,yn+1) — 0, as d(x,y) := max||x(t) —y(t)||%, fort € [a,b]
n — co. Since the multivalued operator is a MWP operator t

(1), we obtain that there exists a sequence of successive ‘R. >R..b

approximations ofT starting from(Xp,x;) € Graph(T) weRe By

which converges ta" € Fix(T). From the uniqueness of W(t) :=L%(b—at.
the fixed point we get that(x,,x*) — 0, asn — . Thus
we derive that First we want to prove the admissibility &t
. . From the definition of admissibility we have that
d(Xn,¥n) < s-[d(Xn, X") +d(X", yn)] — 0,asn — co. a(x,y) > 1, which implies thata(x,y) = k in our case.
. We havex # xg andy # xg. From condition (C1) we find
Hence the condition follows.] that Tx i?_éxo and T;;_t;—é Xo on [a,b]. It follows that

a(Tx Ty) = k> 1. This proves the admissibility of.
) o ) Now we want to prove thal is ana — ( contractive
4 Examples of a fixed point inclusions operator. We estimatTy, Tx) as follows:

Example 1 .
Let us consider the following initial value problem: d(Ty’Tx):maxH/f s))ds— /f s))ds|?

X (t) e F(x(1)), fort € [a,b
{x(i))z xo(fo(r)t): a, b (10) < maX/ I(x(s))ds— f(y(s)[*ds <
whereF is a lower semicontinuous mutivalued operator < max/ L2|x(s) — y(s)||?ds
and[a,b] areal interval.

Then we can say that there exists a selecfioR — R
such thatf (u) € F(u) forallu e R.
It is clear that any solution of the following problem

<13 / max|x(s) - y(s)]°ds < L (b a)d(xy).

By applying Theorenil we obtain that the problem
X(t) = f(x(t)), fort € [a,b] 11 (11) has a solution. But, if we have a solution for the
X(t) =xo, fort=a (11) selection then we have a solution for the probléa®) (
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Finally, we prove that the fixed point inclusioh@) is
the generalized Ulam-Hyers stable. We define
B(r) :==r —sL2(b—a)r in relation toy(r) = L3(b—a)r.
Since 3 is a continuous strictly increasing function, we
get limpB(r) =0 and limB(r) = +c. Thus, we
r—0+ r—+o0

conclude that B is strictly increasing and onto.
Consequently, all the hypothesis of Theordrold, and
hence the fixed point inclusiorlQ) is B! generalized
Ulam-Hyers stable.

Example 2

Let us consider the following problem:

{

whereF is a lower semicontinuous mutivalued operator
and [a,b] a real interval anch a positive real nonzero
parameter.

Then we can say that there exists a selecfioR — R
such thatf (u) € F(u) for allu e R.

We can see that any solution of the following problem

{

is a solution for the problenif).
The problem 16) is equivalent with

(17)

Let us suppose fof the following conditions:

X(t) € F(t,x(t),x(t —h)), fort € [a,b]

X(t) =X, fort € [a—h,al (15)

X (t) = fF(t,x(t),x(t—h)), fort & [a,b]

X(t) = o, fort € [a—h,al (16)

X(t) =xo+/t f(s,x(s),x(s—h))ds fort € [a,b]
X(t) = Xo, fort e [a—h,a]

(Cl)/at f(s,x(s),x(s—h))ds= 0, forall t € [a,b] if and

only if x=xg on|a,b).
(C2)[ f(t,uz,v1) f(t, 2, v2)||
Lf(HUl— U2H + ||V1—V2H), for all U1,V1,Uz, Vo € R

<

We define the following operator
T:X — X,whereX :=Cla—h,b] xR xR, with x — TX,
by the formula

TX(t) = {

xo+/t f(s,x(),x(s— h))ds fort € [a,b]

X(t) :axo, fort € [a—h,a]
(18)

d: XxX =Ry, by

d(x,y) == max]x(t) - y(t)||?, fort e [a—h,b]

YRy = Ry by
Y(t) :=4L2(b—alt.

First we want to prove the admissibility far.

From the definition of admissibility we have that
a(x,y) > 1. Which in our case implies that (x,y) = k.
We have thak # Xy andy # Xg. From condition (C1) we
have thatT x # xg and Ty # Xp on [a,b]. It follows that
a(Tx Ty) = k> 1. This proves the admissibility Gf.

Now we want to prove thaf is ana — ¢ contractive
operator. In order to show that we estimdtdy, Tx) and
we obtain:

ot -t
ATy T = max| [ f(sx(s).x(s—)ds— [ f(sy(s).y(s—h)ads?

<max [ (s (95— m)ds— [ 1(s(5) s~ )]s
< max [ L7 y(s) - x(5)22%ds

<412 t - 2q
< famaXHX(S) y(s)||“ds

<43 (b—a)d(x,y).

Applying Theoreml we obtain that the probleni@)
has a solution. But, if we have a solution for the selection
then we have a solution for the problefrb).

In what follows we prove the generalized Ulam-Hyers
stability for the fixed point inclusionl(5). Due to(r) =
4L2(b—a)r, we defineB(r) :=r — 4sL?(b— a)r. Sincep
is a continuous strictly increasing function, we find that
rirBLB(r) =0 andr_ljmcﬁ(r) = +o0. Hence,f is strictly

increasing and onto. All the hypothesis of Theorehold,
so the fixed point inclusioril6) is B~ generalized Ulam-
Hyers stable.
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