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1 Introduction and Preliminaries

Very recently, Samet et al. introduced in [28] the notion of
α-ψ-contractive type mapping and proved a number of
fixed point results for such mappings. As an extension of
α-ψ-contractive type mapping, Asl et al. later proposed
α∗-ψ-contractive type of multivalued mappings.
Motivated by their results several authors have started
working on this subject area and successfully managed to
improve this notion in various ways by proving theorems
for single and multi-valued operators in the setting of
different abstract spaces, see e.g. [17,30,31,32,33,34,35,
36].

The aim of this paper is to provide results that
establish the existence and/or uniqueness of fixed points
of α∗-ψ-contractive type mappings in the context of
b-metric spaces. Czerwik introducedb-metric spaces in
[16,15] as a generalization of metric spaces. Czerwik’s
generalization can be considered as a continuation of
other approaches studied earlier by Bourbaki [14],
Bakhtin [4], Heinonen [19]. Following Czerwik’s papers,
b-metric spaces and related fixed point theorems have
been heavily investigated by many authors, see e.g.
Boriceanu et al.[10], Boriceanu [11,12], Bota [13], Aydi
et al. [2,3].

As a secondary purpose, we consider Ulam-Hyers
stability under the light of the fixed point results we prove
on b-metric spaces. The Ulam-Hyers stability problem of
functional equations, which was originated from a
question of Ulam [29] in 1940, deals with the stability of
group homomorphisms. The first affirmative partial
answer to the question of Ulam for Banach spaces was
given by Hyers [18] in 1941. Thereafter, this type of
stability is called the Ulam-Hyers stability and have
attracted attention from several authors. In particular,
Ulam-Hyers stability results in fixed point theory have
been studied densely by Bota-Boriceanu and Petruşel [8,
9,21,24,26]. Finally, we discuss well-posedness of the
fixed problems and limit shadowing property of the
multivalued operators.

Throughout this paper, the standard notations and
terminologies in nonlinear analysis will be used. We
recollect some essential definitions and fundamental
results in this section. First, we begin with the definition
of ab-metric space:

Definition 1.(Bakhtin [4], Czerwik [16]) Let X be a set
and let s≥ 1 be a given real number. A function
d : X×X → [0,∞) is said to be a b-metric if the following
conditions are satisfied:

1.d(x,y) = 0 if and only if x= y,
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2.d(x,y) = d(y,x),
3.d(x,z) ≤ s[d(x,y)+d(y,z)],

for all x,y,z∈ X. A pair(X,d) is called a b-metric space.

Note that ab-metric is a metric whens= 1. Hence, the
class of b-metric spaces contains the class of metric
spaces. For more details and examples onb-metric
spaces, see e.g. [4,5,14,15,16,19]. In particular, we
would like to give a specific example:

Example 1.[5] Let X be a set with the cardinalcard(X)≥
3. Suppose thatX = X1∪X2 is a partition ofX such that
card(X1) ≥ 2. Lets> 1 be arbitrary. Then, the functional
d : X×X → [0,∞) defined by:

d(x,y) :=







0, x= y
2s, x,y∈ X1
1, otherwise.

is ab-metric onX with coefficients> 1.

In the rest of this work, we shall need the families of
subsets of ab-metric space(X,d) listed below:

P(X) := {Y|Y ⊂ X};
P(X) := {Y ∈ P(X)|Y 6= /0};

Pb(X) := {Y ∈ P(X)|Y is bounded};
Pcp(X) := {Y ∈ P(X)|Y is compact};
Pcl(X) := {Y ∈ P(X)|Y is closed};

Pb,cl(X) := Pb(X)∩Pcl(X).

Additionally, we will also need the gap, excess
generalized, Pompeiu-Hausdorff andδ -functionals which
will be used to define certainb- metric spaces to study
various multi-valued operators. The definition of those
functionals are given as follows:

The gap functional:

(1) D : P(X)×P(X)→R+∪{+∞}

D(A,B) =







inf{d(a,b)| a∈ A, b∈ B}, A 6= /0 6= B,
0, A= /0= B,
+∞, otherwise.

The excess generalized functional:

(2) ρ : P(X)×P(X)→R+∪{+∞}

ρ(A,B) =







sup{D(a,B)| a∈ A}, A 6= /0 6= B,
0, A= /0,
+∞, B= /0 6= A.

Pompeiu-Hausdorff generalized functional:

(3) H : P(X)×P(X)→R+∪{+∞}

H(A,B) =







max{ρ(A,B),ρ(B,A)}, A 6= /0 6= B,
0, A= /0= B,
+∞, othewise.

δ functional:

(4) δ : P(X)×P(X)→ R+∪{+∞}

δ (A,B) =







sup{d(a,b)| a∈ A, b∈ B}, A 6= /0 6= B,
0, A= /0= B,
+∞, otherwise.

Remark If x0 ∈ X in (1), thenD(x0,B) := D({x0},B).
Moreover, ifA= B in (4), then we haveδ (A,A) := δ (A).
Notice that (Pb,cl(X),H) is a completeb-metric space
provided that(X,d) is a completeb-metric space (see
Czerwik [16]).

We will also require the following four lemmas in the
proof of the main result:

Lemma 1.Let (X,d) be a b-metric space and let A,B ∈
P(X). We suppose that there existsη > 0 such that:

(i) for each a∈ A there is b∈ B such that d(a,b)≤ η ;
(ii) for each b∈ B there is a∈ A such that d(a,b)≤ η .

Then, H(A,B)≤ η .

Lemma 2.Let (X,d) be a b-metric space, A∈ P(X) and
x∈ X. Then D(x,A) = 0 if and only if x∈ A.

Lemma 3.(Czerwik [16]) Let (X,d) be a b-metric space.
Also let{xk}

n
k=0 ⊂ X. Then

1.D(x,A) ≤ s[d(x,y) +D(y,A)], for all x,y ∈ XandA⊂
X.

2.d(xn,x0) ≤
sd(x0,x1)+ ...+ sn−1d(xn−2,xn−1)+ snd(xn−1,xn).

3.H(A,C)≤ s[H(A,B)+H(B,C)], for all A,B,C∈P(X).

Lemma 4.Let (X,d) be a b-metric space and let A,B ∈
P(X). For each q> 1 and for all a∈ A there exists b∈ B
such that

d(a,b)≤ qH(A,B).

Proof. Supposing the contrary: there existq > 1 and
a∈ A such that for allb∈ B we haved(a,b) > qH(A,B).
Taking in f

b∈B
we get D(a,B) ≥ qH(A,B). But

H(A,B) ≥ D(a,B) ≥ qH(A,B). Hence we obtainq ≤ 1,
which is a contradiction.�

Since ab-metric d on X induces a structure of anL-
space onX, we have the following concepts (see also [27]):

Definition 2.Let (X,d) be a b-metric space and T: X →
Pcl(X) be a multivalued operator. An operator T is called a
multivalued weakly Picard (briefly MWP) if for each x∈X
and each y∈ T(x) there exists a sequence{xn}n∈N such
that

(i)x0 = x, x1 = y;
(ii )xn+1 ∈ T(xn), for each n∈ N;
(iii )the sequence(xn)n∈N is convergent and its limit is a

fixed point of T .

Remark.A sequence(xn)n∈N satisfying the condition(i)
and (ii ), in the Definition 2 is called a sequence of
successive approximations ofT starting from(x0,x1).
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We next give some examples of MWP operators inb-
metric spaces.

Example 2.Let (X,d) be ab-metric space andti : X → X,
i ∈ {1,2, . . . ,n}, be single valuedki-contractions, i.e.,
ki ∈ [0,1[ andd(ti(x), ti(y)) ≤ kid(x,y), for eachx,y ∈ X.
Then the multivalued operatorT : X → Pcl(X),
T(x) = {t1(x), . . . , tn(x)}, is a MWP operator.

Example 3.Let (X,d) be a b-metric space and
T : X → Pcl(X) be a multivalueda-contraction, i.e.,
a∈ [0,1[ andH(T(x),T(y)) ≤ ad(x,y), for eachx,y∈ X.
Then T is a MWP operator. Indeed, if we analyze the
proof of Theorem 5 in Czerwik [16] we may remark that
for (x,y) ∈ Graph(T) there exists a sequence
xn+1 ∈ T(xn), n ∈ N such that x0 = x,x1 = y and

xn
d
→ x∗ ∈ Fix(T) asn→+∞.

A mappingϕ : [0,∞) → [0,∞) is called acomparison
functionif it is increasing andϕn(t)→ 0, n→ ∞, for any
t ∈ [0,∞). We denote byΦ, the class of the comparison
functions ϕ : [0,∞) → [0,∞). For more details and
examples , see e.g. [25,7]. Among them, we recall the
following essential result.

Lemma 5.(Berinde [7], Rus [25]) If ϕ : [0,∞)→ [0,∞) is
a comparison function, then:

(1)each iterateϕk of ϕ , k ≥ 1, is also a comparison
function;

(2)ϕ is continuous at0;
(3)ϕ(t)< t, for any t> 0.

Let Ψ denotes the family of nondecreasing functions

ψ : [0,∞)→ [0,∞) such that
∞

∑
n=1

ψn(t)< ∞ for eacht > 0,

whereψn is then-th iterate ofψ . It is clear that ifΦ ⊂Ψ
(see e.g. [20]) and hence, by Lemma5 (3), for ψ ∈Ψ we
haveψ(t)< t, for anyt > 0. Later, Berinde [7] introduced
the concept of(c)-comparison functionas follows:

Definition 3.(Berinde [7]) A functionϕ : [0,∞)→ [0,∞) is
said to be a(c)-comparison function if

(c1)ϕ is increasing,
(c2)there exists k0∈N, a∈ (0,1) and a convergent series of

nonnegative terms
∞

∑
k=1

vk such thatϕk+1(t)≤ aϕk(t)+

vk, for k≥ k0 and any t∈ [0,∞).

The notion of a (c)-comparison function was
improved as a(b)-comparison function by Berinde [6] in
order to extend some fixed point results to the class of
b-metric spaces.

Definition 4.(Berinde [6]) Let s≥ 1 be a real number. A
mappingϕ : [0,∞) → [0,∞) is called a (b)-comparison
function if the following conditions are fulfilled

(b1)ϕ is monotone increasing;

(b2)there exist k0 ∈ N, a∈ (0,1) and a convergent series

of nonnegative terms
∞

∑
k=1

vk such that bk+1ϕk+1(t) ≤

abkϕk(t)+ vk, for k≥ k0 and any t∈ [0,∞).

We denote byΨb the class of(b)-comparison functions.
Notice that(b)-comparison function is a(c)-comparison
function whenb= 1. Also notice that any(b)-comparison
function is a comparison function due to the lemma below:

Lemma 6.(Berinde [5]) If ϕ : [0,∞) → [0,∞) is a
(b)-comparison function, then we have the following

(1)the series
∞

∑
k=0

bkϕk(t) converges for any t∈R+;

(2)the function sb : [0,∞) → [0,∞) defined by

sb(t) =
∞

∑
k=0

bkϕk(t), t ∈ [0,∞), is increasing and

continuous at0.

We will need the following generalized Cauchy lemma
proved by Păcurar in [22]:

Lemma 7.Let ϕ : R+ → R+ be a b−comparison function
with constant s≥ 1 and an ∈ R+, n ∈ N such that an →
0, asn→ ∞ then

n

∑
k=0

sn−kϕn−k(ak)→ 0, asn→ ∞

Next, we shall present the definition of
α∗-ψ-contractive andα∗-admissible mappings introduced
by Hasanzade et al.[17]:

Definition 5.[17] Let (X,d) be a metric space and
T : X → P(X) be a multivalued operator. We say that T is
an α∗-ψ-contractive multivalued operator if there exist
two functionsα : X×X → [0,∞) andψ ∈Ψ such that

α∗(T(x),T(y))H(T(x),T(y))≤ψ(d(x,y)), for all x,y∈X.
(1)

whereα∗(A,B) = in f{α(a,b), a∈ A, b∈ B}.

Definition 6.[17] Let T : X → P(X) and
α : X×X → [0,∞). We say that T isα∗-admissible if

x,y∈ X, α(x,y) ≥ 1=⇒ α∗(T(x),T(y))≥ 1.

2 Main results

In this section, we shall state and prove our main results.
First we start withb-metric version of Definition5 for the
Pompeiu-Hausdorff generalized functional:

Definition 7.Let (X,d) be a b-metric space and
T : X → Pcl(X) be a multivalued operator. We say that T
is anα∗-ψ-contractive multivalued operator of type(b) if
there exist two functionsα : X ×X → [0,∞) and ψ ∈ Ψb
such that

α∗(T(x),T(y))H(T(x),T(y))≤ψ(d(x,y)), for all x,y∈X.
(2)
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Our first main result is the following.

Theorem 1.Let (X,d) be a complete b-metric space with
constant s> 1. Let T : X →Pcl(X) be anα∗-ψ-contractive
multivalued operator of type-(b) satisfying the following
conditions:

(i)T is α∗-admissible;
(ii)there exists x0 ∈ X and x1 ∈ T(x0) such that

α(x0,x1)≥ 1;
(iii)if x n is a sequence in X such thatα(xn,xn+1) ≥ 1 and

xn → x thenα(xn,x)≥ 1,∀n.

Then T is MWP operator.

Proof.Let x0 ∈ X andx1 ∈ T(x0). If x0 = x1 we obtain the
desired conclusion. Letx0 6= x1 andx1 /∈ T(x1). Then, by
the properties of the functionalH there existq1 > 1 and
x2 ∈ T(x1) such that
d(x1,x2)≤ q1H(T(x0),T(x1)) andq1ψ(d(x0,x1))< d(x0,x1).

By using the fact thatT is an α∗-ψ-contraction we
obtain

d(x1,x2)≤ q1H(T(x0),T(x1))≤ q1α∗(T(x0),T(x1))H(T(x0),T(x1))

≤ q1ψ(d(x0,x1))< d(x0,x1).

We know that α(x0,x1) ≥ 1. By (i), we have
α∗(T(x0),T(x1)) ≥ 1. This implies thatα(x1,x2) ≥ 1.
Thus we getα∗(T(x1),T(x2))≥ 1.

From the fact thatψ is an increasing function, we find
that

ψ(d(x1,x2))< ψ(d(x0,x1)).

In a similar way there existq2 > 1 andx3 ∈ T(x2)
such that
d(x2,x3)≤ q2H(T(x1),T(x2)) andq2ψ(d(x1,x2))< d(x0,x1).

So we have

d(x2,x3)≤ q2H(T(x1),T(x2))≤ q2α∗(T(x1),T(x2))H(T(x1),T(x2))

≤ q2ψ(d(x1,x2))< ψ(d(x0,x1)).

Sinceψ is an increasing function, we obtain that

ψ(d(x2,x3))< ψ2(d(x0,x1)).

Inductively, we see that there existsxn+1 ∈ T(xn) such
thatα(xn+1,xn+2)≥ 1 and

d(xn+1,xn+2)< ψn(d(x0,x1)), for eachn∈ N.

We shall prove that{xn} is a Cauchy sequence.

d(xn,xn+p)≤ s·d(xn,xn+1)+ s2 ·d(xn+1,xn+2)+ . . .

++sp−2 ·d(xn+p−3,xn+p−2)+

+ sp−1 ·d(xn+p−2,xn+p−1)+ sp ·d(xn+p−1,xn+p)

< s·ψn−1(d(x0,x1))+ s2 ·ψn(d(x0,x1))+ . . .+

+ sp−2 ·ψn+p−4(d(x0,x1))+ sp−1 ·ψn+p−3(d(x0,x1))+

+ sp ·ψn+p−2(d(x0,x1))

=
1

sn−2

·
[

sn−1 ·ψn−1(d(x0,x1))+ . . .+ sn+p−3 ·ψn+p−3(d(x0,x1))+

+sn+p−2 ·ψn+p−2(d(x0,x1))
]

=
1

sn−2 ·
n+p−2

∑
k=n−1

sk ·ψk(d(x0,x1)).

Let Sn =
n

∑
k=0

skψk(d(x0,x1)), n≥ 1. Then we find that

d(xn,xn+p)≤
1

sn−1 [Sn+p−1−Sn−1], n≥ 1, p≥ 1. (3)

Due to Lemma 6, we conclude that the series
n−1

∑
k=1

skψk(d(x0,x1)) is convergent.

SayS= lim
n→∞

Sn. Regardings≥ 1 and(6), we obtain

that {xn} is a Cauchy sequence in theb-metric space
(X,d). Since(X,d) is complete, there existsx∗ ∈ X such
thatxn → x∗ asn→ ∞.

Sinceα(xn,x∗) ≥ 1 we have from hypothesis (i) and
(iii) that α∗(T(xn),T(x∗)) ≥ 1. As a consequence, we
derive that

D(x∗,T(x∗))≤ s[d(x∗,xn+1)+D(xn+1,T(x
∗))]

≤ s[d(x∗,xn+1)+H(T(xn),T(x
∗))]

≤ s[d(x∗,xn+1)+α∗(T(x
∗),

T(xn))H(T(xn),T(x
∗))]

≤ s[d(x∗,xn+1)+ψ(d(xn,x
∗))].

From the properties ofψ we haveD(x∗,T(x∗)) = 0.
SinceT(x) is closed we obtainx∗ ∈ T(x∗).

We give another characterization of Definition5 for a
b-metric via the gap functional:

Definition 8.Let (X,d) be a b-metric space and
T : X → Pcl(X) be a multivalued operator. We say that T
is a generalizedα∗-ψ-contractive multivalued operator of
type (b) if there exist two functionsα : X ×X → [0,∞)
andψ ∈Ψb such that

α∗(T(x),T(y))D(y,T(y))≤ ψ(d(x,y)),

for all x∈ X, y∈ T(x). (4)
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We have the following result:

Theorem 2.Let (X,d) be a complete b-metric space and let
T : X → Pcl(X) be anα∗-admissible strictly generalized
α∗−ψ-contractive mapping. Assume that there exist x0 ∈
X and x1 ∈T(x0) such thatα(x0,x1)≥ 1. Then there exists
an orbit{xn} of T at x0 and x∗ ∈ X such thatlimn→∞ xn =
x∗. Moreover, x∗ is a fixed point of T if and only if f(ξ ) =
D(ξ ,Tξ ) is lower semi-continuous at x.

Proof.Following the same lines of argument given in the
proof of Theorem1 we can construct a Cauchy sequence
{xn} which converges tox∗, as n → ∞. By the lower
semicontinuity of the functionD we obtain the desired
conclusion.

Next, we propose a version of Definition5 for b-metric
via δ -functional:

Definition 9.Let (X,d) be a b-metric space and T: X →
Pcl(X) be a multivalued operator. We say that T is anα∗-
ψ-δ -contractive multivalued operator of type(b) if there
exist two functionsα : X ×X → [0,∞) and ψ ∈ Ψb such
that

α∗(T(x),T(y))δ (y,T(y))≤ ψ(d(x,y)),

for all x∈ X, y∈ T(x). (5)

Finally, we have the following result:

Theorem 3.Let (X,d) be a complete b-metric space and let
T : X → Pb(X) be anα∗-admissible generalizedα∗−ψ −
δ -contractive mapping. Assume that there exist x0 ∈X and
x1 ∈ T(x0) such thatα(x0,x1) ≥ 1. Then there exists an
orbit {xn} of T at x0 and x∗ ∈ X such thatlimn→∞ xn = x∗.
Moreover,{x∗} = Tx∗ if and only if f(ξ ) = δ (ξ ,Tξ ) is
lower semi-continuous at x.

Proof.Similar to the proof of Theorem1, we let x0 ∈ X
and x1 ∈ T(x0). We obtain the desired conclusion if
x0 = x1. Let x0 6= x1 andx1 /∈ T(x1). By the hypothesis we
have thatα(x0,x1) ≥ 1. As T is α∗-admissible we have
thatα∗(T(x0),T(x1))≥ 1. Then

δ (x1,T(x1))≤α∗(T(x0),T(x1))δ (x1,T(x1))≤ψ(d(x0,x1)).

There existsx2 ∈ T(x1) such that

0< d(x1,x2)≤ δ (x1,T(x1))< ψ(d(x0,x1)).

From the fact thatψ is increasing we obtain that

ψ(d(x1,x2))< ψ2(d(x0,x1)).

By an inductive procedure we have that there exists
xn+1 ∈ T(xn) such thatα(xn,xn+1)≥ 1 and

d(xn,xn+1)< δ (xn,T(xn))≤ψn(d(x0,x1)), for eachn∈N.

We shall prove that(xn)n∈N∗ is a Cauchy sequence.

d(xn,xn+p)≤ s·d(xn,xn+1)+ s2 ·d(xn+1,xn+2)

+ . . .+ sp−2 ·d(xn+p−3,xn+p−2)+

+ sp−1 ·d(xn+p−2,xn+p−1)+ sp ·d(xn+p−1,xn+p)

< s·ψn(d(x0,x1))+ s2 ·ψn+1(d(x0,x1))+ . . .+

+ sp−2 ·ψn+p−3(d(x0,x1))+ sp−1 ·ψn+p−2(d(x0,x1))+

+ sp ·ψn+p−1(d(x0,x1))

=
1

sn−1 · [s
n ·ψn(d(x0,x1))+ . . .+ sn+p−2 ·ψn+p−2(d(x0,x1))+

+sn+p−1 ·ψn+p−1(d(x0,x1))
]

=
1

sn−1 ·
n+p−1

∑
k=n

sk ·ψk(d(x0,x1)).

DenotingSn =
n

∑
k=0

skψk(d(x0,x1)), n≥ 1 we obtain:

d(xn,xn+p)≤
1

sn−1 [Sn+p−1−Sn−1], n≥ 1, p≥ 1. (6)

Due to Lemma 6, we conclude that the series
n−1

∑
k=1

skψk(d(x0,x1)) is convergent.

Thus there existsS= lim
n→∞

Sn. Regardings≥ 1 and by

(6), we obtain that{xn}n≥0 is a Cauchy sequence in theb-
metric space(X,d). Since(X,d) is complete, there exists
x∗ ∈ X such thatxn → x∗ asn→ ∞.

Letting n → ∞ in δ (xn,T(xn)) ≤ ψn(d(x0,x1)) we
obtain that

δ (xn,T(xn))→ 0, as, n→ ∞.

By the semicontinuity of the functionalδ we obtain
the desired conclusion.

Remark.It is clear that Definition7 reduces to Definition5
and (b)-comparison function becomes(c)-comparison
function. Consequently, Theorem 2.1 in [17] is a
consequence of Theorem3. Further, if we replace
multivalued operator with a single valued self-mapping
we get Theorem as a corollary of Theorem3. Hence,
several results in these papers can be concluded also from
Theorem3.

3 Applications

Definition 10.Let (X,d) be a b-metric space and T: X →
P(X) be a multivalued operator. The fixed point inclusion

x∈ T(x), x∈ X (7)

is called generalized Ulam-Hyers stable if there existsψ :
R+ → R+ is increasing, continuous in0 and ψ(0) = 0

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2616 M. F. Bota et al. : Onα∗-ψ-Contractive Multi-Valued...

such that for eachε > 0 and for each solution y∗ ∈ X of
the inequality

D(y,T(y))≤ ε (8)

there exists a solution x∗ of the fixed point inclusion (7)
such that

d(y∗,x∗)≤ ψ(ε).

If there exists c> 0 such thatψ(t) := ct, for each t∈
R+, then the fixed point inclusion (7) is said to be Ulam-
Hyers stable.

For Ulam-Hyers stability results in the case of fixed
point problems see [8], [21], [24], [26].

In order to prove the next theorem we need the
following hypothesis:

(H) : for all x,y∈ X, there existsz∈ X such that

α(x,z) ≥ 1 andα(y,z) ≥ 1.

Regarding the Ulam-Hyers stability problem the ideas
given in Petru et al. [23] allow us to obtain the following
result.

Theorem 4.Let (X,d) be a complete b-metric space with
constant s> 1. Suppose that all the hypotheses of
Theorem 1 hold and additionally that the function
β : [0,∞) → [0,∞), β (r) := r − sψ(r) is strictly
increasing and onto. Suppose also that SFixT6= /0 then
we have:

(i)The fixed point inclusion(7) is generalized Ulam-Hyers
stable.

(ii)Fix(T) = SFix(T) = {x∗}.
(iii)Let S : X → Pcl(X) be a multivalued operator,η > 0

such that Fix(S) 6= /0 and H(S(x),T(x)) ≤ η , for all
x∈ X. Then

H(Fix(S),Fix(T))≤ β−1(sη).

(iv)(Well-posedness of the fixed point problem with
respect to D) If{xn} is a sequence in X such that

D(xn,T(xn))→ 0 as n→ ∞, then xn
d
→ x∗ as n→ ∞.

(v)(Well-posedness of the fixed point problem with respect
to H) If {xn} is a sequence in X such that

H(xn,T(xn))→ 0 as n→ ∞, then xn
d
→ x∗ as n→ ∞.

(vi)(Limit shadowing property of the multivalued
operator) Suppose thatϕ is a sub-additive
b-comparison function. If{yn} is a sequence in X
such that D(yn+1,T(yn)) → 0, as n→ ∞, then there
exists a sequence{xn} ⊂ X of successive
approximations of T , such that d(xn,yn) → 0, as
n→ ∞.

Proof.

(i)Since T : X → Pcl(X) is a multivalued weakly Picard
operator, so{x∗} ∈ Fix(T). Let ε > 0 andy∗ ∈ X be a
solution of(8), i.e,

D(y∗,T(y∗))≤ ε.

Since T is α∗-ψ-contractive multivalued mapping of
type-(b) and sincex∗ ∈ Fix(T), from (H) there exists
y∗ ∈ X such thatα(x∗,y∗) ≥ 1 and taking into account
that T is α∗-admissible we haveα∗(T(x∗),T(y∗)) ≥ 1.
So, we obtain:

d(x∗,y∗)=D(T(x∗),y∗)≤ s[H(T(x∗),T(y∗))+D(T(y∗),y∗)]≤

≤ s[α∗(T(x∗),T(y∗))H(T(x∗),T(w∗))+ε]≤ s[ψ(d(x∗,y∗))+ε].

Therefore,
β (d(x∗,y∗)) := d(x∗,y∗)− sψ(d(x∗,y∗))≤ s· ε =⇒ d(x∗,y∗)≤ β−1(s· ε).
Consequently, the fixed point inclusion(7) is
β−1-generalized Ulam-Hyers stable.
(ii)From Theorem 1, we get that Fix(T) 6= /0. Let
x∗ ∈ SFix(T). Notice first thatSFix(T) = {x∗}. We want
to prove thatFix(T) = {x∗}. Let y∈ Fix(T), i.e.y∈ T(y)
with y 6= x∗. Using the hypothesis (H) we can estimate the
following distance

d(x∗,y) = D(T(x∗),y)≤ H(T(x∗),T(y))
≤ α∗(T(x∗),T(y))H(T(x∗),T(y))
≤ ψ(d(x∗,y))< d(x∗,y).

(9)

We obtain thatd(x∗,y) = 0, and so x∗ = y. Hence
Fix(T) ⊂ SFix(T). Since SFix(T) ⊂ Fix(T) we obtain
thatSFIx(T) = Fix(T).

The uniqueness condition of the strict fixed point can
be proved with the same method.
(iii)Let y ∈ Fix(S) and x∗ ∈ SFix(T). Then using the
hypothesis (H) we obtain:

d(y,x∗) ≤ H(S(y),T(x∗))≤

≤ s· [H(S(y),T(y))+H(T(y),T(x∗))]≤

≤ s·α∗(T(x∗),T(y)) [H(S(y),T(y))+H(T(y),T(x∗))]≤

≤ s· [η +ψ(d(y,x∗))] ,

from where we obtain thatd(y,x∗)−s·ψ(d(y,x∗))≤ s·η .
Hence

H(Fix(S),Fix(T))≤ β−1(sη).
(iv)Let x∗ ∈ SFix(T) and let(xn)n∈N be a sequence inX
such that D(xn,T(xn)) → 0, as n → ∞. Then for
vn ∈ T(xn) such thatd(xn,vn) = D(xn,T(xn)), n ∈ N,
using the hypothesis (H) we have:

d(xn,x
∗) ≤ s[d(xn,vn)+d(vn,x

∗)] =

= s[d(xn,vn)+D(vn,T(x
∗))]≤

≤ s[d(xn,vn)+H(T(xn),T(x
∗))]

≤ s[D(xn,T(xn))+α∗(T(x∗),T(y))H(T(xn),T(x∗))]

≤ s[D(xn,T(xn))+ψ(d(xn,x
∗))] .

Thus we get

d(xn,x
∗)− s·ψ(d(xn,x

∗))≤ s·D(xn,T(xn)).
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From the above inequalities we obtain that

d(xn,x
∗)≤ β−1(s·D(xn,T(xn)))→ 0,asn→ ∞.

Hence we see thatxn
d
→ x∗, asn→ ∞.

(v)It follows from (iii).
(vi)Let (yn)n∈N be a sequence inX such that
D(yn+1,T(yn)) → 0, as n → ∞. Then there exists
un ∈ T(yn),n ∈ N such thatd(yn+1,un) → 0, asn → ∞.
Using the hypothesis (H) we obtain:

d(x∗,yn+1)

≤ s[D(yn+1,T(yn))+α∗(T(x
∗),T(y))H(T(yn),T(x

∗))]

≤ s·D(yn+1,T(yn))+s·ψ(d(yn,x∗))

≤ s·D(yn+1,T(yn))+s·ψ(s·D(yn,T(yn−1))

+s·ψ(d(yn−1,x
∗)))

≤ s·D(yn+1,T(yn))+s2 ·ψ(D(yn,T(yn−1)))

+s2 ·ψ2(s·D(yn−1,T(yn−2))+s·ψ(d(yn−2,x
∗)))≤ . . .≤

≤ s·D(yn+1,T(yn))+s2 ·ψ(D(yn,T(yn−1)))+

+s3 ·ψ2(D(yn−1,T(yn−2)))+ . . .+sn ·ψn−1(D(y2,T(y1)))+

+sn+1 ·ψn(D(y1,T(y0)))+sn+1 ·ψn+1(d(y0,x
∗)) =

= s

[

n

∑
i=0

si ·ψ i(D(yn−i+1,T(yn−i)))+sn ·ψn+1(d(y0,x
∗))

]

≤ s·
n+1

∑
i=0

si ·ψ i(D(yn−i+1,T(yn−i))).

By Lemma7, the right side of the inequality above tends
to zero asn → ∞. Thus we find thatd(x∗,yn+1) → 0, as
n→ ∞. Since the multivalued operator is a MWP operator
(1), we obtain that there exists a sequence of successive
approximations ofT starting from(x0,x1) ∈ Graph(T)
which converges tox∗ ∈ Fix(T). From the uniqueness of
the fixed point we get thatd(xn,x∗)→ 0, asn→ ∞. Thus
we derive that

d(xn,yn)≤ s· [d(xn,x
∗)+d(x∗,yn)]→ 0,asn→ ∞.

Hence the condition follows.�

4 Examples of a fixed point inclusions

Example1
Let us consider the following initial value problem:

{

x′(t) ∈ F(x(t)), for t ∈ [a,b]
x(t) = x0 for t = a, (10)

whereF is a lower semicontinuous mutivalued operator
and[a,b] a real interval.

Then we can say that there exists a selectionf :R→R

such thatf (u) ∈ F(u) for all u∈R.
It is clear that any solution of the following problem

{

x′(t) = f (x(t)), for t ∈ [a,b]
x(t) = x0, for t = a (11)

is a solution for the problem (10).
The problem (11) is equivalent to

x(t) = x0+

∫ t

a
f (x(s))ds, for t ∈ [a,b] (12)

Let us suppose thatf satisfies the following
conditions:

(C1)
∫ t

a
f (x(s))ds= 0, for all t ∈ [a,b] if and only if x≡ x0

on [a,b].
(C2)‖ f (u)− f (v)‖ ≤ L f ‖u− v‖, for all u,v∈R

We define the operator
T : X → X, whereX := C[a,b], with x 7→ Tx, by the
formula

Tx(t) = x0+

∫ t

a
f (x(s))ds, for t ∈ [a,b]. (13)

In the second part of the proof we need the functions
α, d, ψ , defined below:

α : X×X →R+, by

α(x,y) =

{

k for x 6≡ x0 andy 6≡ x0, wherek≥ 1
0, otherwise (14)

d : X×X → R+, by

d(x,y) := max
t

‖x(t)− y(t)‖2, for t ∈ [a,b]

ψ : R+ → R+, by

ψ(t) := L2
f (b−a)t.

First we want to prove the admissibility ofT.
From the definition of admissibility we have that

α(x,y) ≥ 1, which implies thatα(x,y) = k in our case.
We havex 6≡ x0 andy 6≡ x0. From condition (C1) we find
that Tx 6≡ x0 and Ty 6≡ x0 on [a,b]. It follows that
α(Tx,Ty) = k≥ 1. This proves the admissibility ofT.

Now we want to prove thatT is anα −ψ contractive
operator. We estimated(Ty,Tx) as follows:

d(Ty,Tx) = max‖
∫ t

a
f (x(s))ds−

∫ t

a
f (y(s))ds‖2

≤ max
∫ t

a
‖ f (x(s))ds− f (y(s))‖2ds≤

≤ max
∫ t

a
L2

f ‖x(s)− y(s)‖2ds

≤ L2
f

∫ t

a
max‖x(s)− y(s)‖2ds≤ L2

f (b−a)d(x,y).

By applying Theorem1 we obtain that the problem
(11) has a solution. But, if we have a solution for the
selection then we have a solution for the problem (10).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2618 M. F. Bota et al. : Onα∗-ψ-Contractive Multi-Valued...

Finally, we prove that the fixed point inclusion (10) is
the generalized Ulam-Hyers stable. We define
β (r) := r − sL2

f (b−a)r in relation toψ(r) = L2
f (b−a)r.

Sinceβ is a continuous strictly increasing function, we
get lim

r→0+
β (r) = 0 and lim

r→+∞
β (r) = +∞. Thus, we

conclude that β is strictly increasing and onto.
Consequently, all the hypothesis of Theorem4 hold, and
hence the fixed point inclusion (10) is β−1 generalized
Ulam-Hyers stable.

Example 2
Let us consider the following problem:

{

x′(t) ∈ F(t,x(t),x(t −h)), for t ∈ [a,b]
x(t) = x0, for t ∈ [a−h,a] (15)

whereF is a lower semicontinuous mutivalued operator
and [a,b] a real interval andh a positive real nonzero
parameter.

Then we can say that there exists a selectionf :R→R

such thatf (u) ∈ F(u) for all u∈R.
We can see that any solution of the following problem

{

x′(t) = f (t,x(t),x(t −h)), for t ∈ [a,b]
x(t) = x0, for t ∈ [a−h,a] (16)

is a solution for the problem (15).
The problem (16) is equivalent with

{

x(t) = x0+
∫ t

a
f (s,x(s),x(s−h))ds, for t ∈ [a,b]

x(t) = x0, for t ∈ [a−h,a]
(17)

Let us suppose forf the following conditions:

(C1)
∫ t

a
f (s,x(s),x(s− h))ds= 0, for all t ∈ [a,b] if and

only if x≡ x0 on [a,b].
(C2)‖ f (t,u1,v1) − f (t,u2,v2)‖ ≤

L f (‖u1−u2‖+ ‖v1− v2‖), for all u1,v1,u2,v2 ∈ R

We define the following operator
T : X → X,whereX :=C[a−h,b]×R×R, with x 7→ Tx,
by the formula

Tx(t) =

{

x0+
∫ t

a
f (s,x(s),x(s−h))ds, for t ∈ [a,b]

x(t) = x0, for t ∈ [a−h,a]
(18)

In the second part of the proof we need the functions
α, d, ψ , defined below:

α : X×X →R+, by

α(x,y) =

{

k for x 6≡ x0 andy 6≡ x0, wherek≥ 1
0, otherwise (19)

d : X×X → R+, by

d(x,y) := max
t

‖x(t)− y(t)‖2, for t ∈ [a−h,b]

ψ : R+ → R+, by

ψ(t) := 4L2
f (b−a)t.

First we want to prove the admissibility forT.
From the definition of admissibility we have that

α(x,y) ≥ 1. Which in our case implies thatα(x,y) = k.
We have thatx 6≡ x0 andy 6≡ x0. From condition (C1) we
have thatTx 6≡ x0 and Ty 6≡ x0 on [a,b]. It follows that
α(Tx,Ty) = k≥ 1. This proves the admissibility ofT.

Now we want to prove thatT is anα −ψ contractive
operator. In order to show that we estimated(Ty,Tx) and
we obtain:

d(Ty,Tx) = max‖
∫ t

a
f (s,x(s),x(s−h))ds−

∫ t

a
f (s,y(s),y(s−h))ds‖2

≤ max
∫ t

a
‖ f (s,x(s),x(s−h))ds−

∫ t

a
f (s,y(s),y(s−h))‖2ds

≤ max
∫ t

a
L2

f ‖y(s)−x(s)‖222ds

≤ 4L2
f

∫ t

a
max‖x(s)−y(s)‖2ds

≤ 4L2
f (b−a)d(x,y).

Applying Theorem1 we obtain that the problem (16)
has a solution. But, if we have a solution for the selection
then we have a solution for the problem (15).

In what follows we prove the generalized Ulam-Hyers
stability for the fixed point inclusion (15). Due toψ(r) =
4L2

f (b−a)r, we defineβ (r) := r −4sL2
f (b−a)r. Sinceβ

is a continuous strictly increasing function, we find that
lim

r→0+
β (r) = 0 and lim

r→+∞
β (r) = +∞. Hence,β is strictly

increasing and onto. All the hypothesis of Theorem4 hold,
so the fixed point inclusion (15) is β−1 generalized Ulam-
Hyers stable.
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point theorem for set-valued quasi-contractions in b-metric
spaces, Fixed Point Theory Appl. 2012, 2012:88.

[3] H. Aydi, M-F. Bota, E. Karapınar and S. Moradi,A common
fixed point for weakφ -contractions on b-metric spaces,
Fixed Point Theory, 13(2012), No 2, 337-346.

[4] I.A. Bakhtin, The contraction mapping principle in
quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst.
30(1989), 26-37.

[5] V. Berinde,Generalized contractions in quasimetric spaces,
Seminar on Fixed Point Theory, Preprint no. 3(1993), 3-9.

[6] V. Berinde, Sequences of operators and fixed points in
quasimetric spaces, Stud. Univ. ”Babeş-Bolyai”, Math.,
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Studia Univ. Babeş-Bolyai, Mathematica, 3(2009), 3-14.

[13] M. Bota, Dynamical Aspects in the Theory of Multivalued
Operators, Cluj University Press, 2010.

[14] N. Bourbaki,Topologie Générale, Herman, Paris, 1974.
[15] S. Czerwik, Contraction mappings in b-metric spaces,

Acta Mathematica et Informatica Universitatis Ostraviensis
1(1993), 5-11.

[16] S. Czerwik,Nonlinear set-valued contraction mappings in
b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998),
263-276.

[17] J. Hasanzade Asl, Sh. Rezapour and N. Shahzad,On fixed
points of α − ψ- contractive multifunctions, Fixed Point
Theory and Applications, 2012(2012), doi:10.1186/1687-
1812-2012-212.

[18] D. H. Hyers, On the stability of the linear functional
equation, Proceedings of the National Academy of Sciences
of the United States of America, vol. 27, no. 4, pp. 222-224,
1941.

[19] J. Heinonen,Lectures on Analysis on Metric Spaces,
Springer Berlin, 2001.

[20] N. Hussain, Z. Kadelburg, S. Radenović, and F.Al-Solamy,
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