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Abstract: In this article we introduce a new chaotic five dimensional (5D) continuous autonomous system involving complex
variables,via 3D Pan system[Pan et al 2010]. The basic dynamical properties of the new system are analyzed such as equilibrium points,
eigenvalues structures, and maximal Lyapunov exponent. Wepropose an approach for controlling chaotic attractor of this system by
adding a complex periodic forcing. Computer simulations are calculated to study the behavior of this system.
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1 Introduction

For nearby 40 years, chaos theory was an interesting
phenomenon of dynamical systems. It has been found to
be very useful and has great potential in many disciplines
such as the fields of communication, Laser, neural work,
nonlinear circuits, and etc [1-3]. Famous examples of
chaotic systems are Lorenze [4], Rössler [5], Chen [6], Lü
[7], Henon map [8] and Pan [9]. Chaotic behavior have
been widely studied on a great numbers of real variables.
However, there also are many interesting cases of
dynamical systems involving complex variables, like,
Lorenz system which is used to describe and simulate the
physics of detuned lasers and thermal convection of liquid
flows [10]. In recent years, Mahmoud et al have been
introduced and studied chaotic complex systems [11-16].
In 2010 Pan et al [9] proposed a new 3D chaotic system
which is similar to the Lorenz chaotic attractor, but it is
not topological equivalent. Here, similar to complex
systems like Lorenz [10], Rössler [17], Chen and Lu [14],
we wish to include complex variables in Pan system to
get a higher-dimensional system. Some basic dynamical
properties such as maximal Lyaponuv exponent,
eigenvalues, chaotic behavior and chaos control of this
new system are studied. The remainder of the paper is
organized as follows: Section 2 explains the proposed
new chaotic system and its dynamics. Section 3 discusses

the controlling chaos of the new system and finally the
concluding remark is given in section 4.

2 System description

The mathematical model of real Pan system is a system of
non-linear ordinary differential equations as:

ẋ = ρ(y− x)
ẏ = σx− xz
ż = xy−β z







(1)

whereρ , σ andβ are positive parameters [9]. Now, the
Pan system with complex variables is:

ẋ = a(y− x)
ẏ = cx− xz
ż = −bz+ 1

2(x̄y+ ȳx)







(2)

wherea, b andc are positive parameters,x = u1+ iu2 and
y = u3+ iu4 are complex variables,i =

√
−1 andz = u5

is a real variable, dots represent derivatives with respectto
time and an over bar denotes complex conjugate variable.
The real version of (2) which is a five dimensional chaotic
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autonomous system reads:

u̇1 = a(u3− u1)
u̇2 = a(u4− u2)
u̇3 = cu1− u1u5
u̇4 = cu2− u2u5
u̇5 = −bu5+ u1u3+ u2u4



















(3)

2.1 Dissipativity and the existence of attractor

The divergence of the flow3 is defined by:

∇F = ∂ f1
∂u1

+ ∂ f2
∂u2

+ ∂ f3
∂u3

+ ∂ f4
∂u4

+ ∂ f5
∂u5

=−a− a+0+0+b=−2a+ b

Where :F = ( f1, f2, f3, f4, f5) = [10(u3−u1),10(u4−
u2),16u1 − u1u5,16u2 − u2u5,− 8

3u5 + u1u3 + u2]. It
means that system (3) is dissipative and its contraction

rate is dV
dt = − 52

3 V thenV = V0e−
52
3 t for the casea = 10,

b = 8
3 andc = 16. Therefore each volume containing the

trajectory of this system decay to zero ast → ∞ at an
exponential rate− 52

3 . So, the asymptotic motion settles
onto an attractor of (3). The attractors of system3 are
displayed in Fig.1. The parameters are chosen asa = 10,
b = 8

3 and c = 16 and the initial values are taken as :
u1(0) = u2(0) = 1, u3(0) = u4(0) = −1, u5(0) = 10.
Fig.1 (a,b,c) shows the chaotic attractors in(u1,u3),
(u1,u5) and(u3,u5) respectively. The waveforms ofu1(t)
and u5(t) in time domain are shown in Fig.1 (d and e).
Other values ofa, b andc can similarly studied such that
−2a+ b< 0.

2.2 Maximal Lyapunov exponent (MLE)

The maximal Lyapunov exponent measures the
exponent of the rate at which nearby trajectories diverge
in state space. A positive maximal Lyapunov exponent is
a strong indication of deterministic chaos. To calculate
MLE we must put system3 in the vector notation as
follows:

U̇(t) = F [U(t);µ ] (4)

Where U(t) = [u1(t), ...,u5(t)]T is the state vectors,
F = [ f1, ..., f5]T , µ is a set of parameters and[...]T

denotes transpose. System (4) for small deviationδU
from the solutionU(t) is:

δU̇(t) = Ji j[U(t);µ ]δU, i, j = 1,2, ..,5 (5)

WhereJi j =
∂ fi
∂u j

is the following Jacobian matrix:

Ji j =











−a 0 a 0 0
0 −a 0 a 0

c− u5 0 0 0 −u1
0 c− u5 0 0 −u2
u3 u4 u1 u2 −b











. (6)

Fig. 2: The Maximal Lyapunov exponent of new system with the
same initial conditions and parameter values of Fig.1.

The MLE of the system defined by:

λmax = lim
t→∞

1
t

log
‖δU(t)‖
‖δU(0)‖ (7)

To find λmax, equations (5) and (6) must be numerically
solved simultaneously. By using Mathematica software
we calculate MLE with the same above parameters and
initial values. The maximal Lyapunov exponent of the
new system is obtained as (λmax

∼= 0.63). Fig.1(f) shows
MLE.

2.3 Eigenvalues test

System (3) has (11) terms, four quadratic nonlinearities
(u1u5,u2u5,u1u3 and u2u4) and three positive real
constant parameters(a,b,c). The new system equation
has two fixed points. The set of fixed points which satisfy
this requirement are found by setting all the left hand side
of equation (3) equal zero, and solving foru1,u2,u3,u4
andu5:

0 = a(u∗3− u∗1)
0 = a(u∗4− u∗2)
0 = cu∗1− u∗1u∗5
0 = cu∗2− u∗2u∗5
0 = −bu∗5+ u∗1u∗3+ u∗2u∗4



















(8)

Two fixed points exist:

(u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5) = (9.39857±1.56278i,2.12572∓6.90962i

,9.39857±1.56278i,2.12572∓6.90962i,16)

For the case when the fixed point is:

(u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5) = (9.39857+1.56278i,2.12572−6.90962i

,9.39857+1.56278i,2.12572−6.90962i,16)
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Fig. 1: The dynamical behavior of the new chaotic system : (a)u1−u3 phase plane strange attractor, (b)u1−u5 phase plane strange
attractor, (c)u3− u5 phase plane strange attractor, (d)u1(t) wave form, (e)u5(t) wave form, (f) Maximal lyapinove exponent versus
time

the Jacobian (6) becomes:











−10 0 10 0 0
0 −10 0 10 0
0 0 0 0 −9.39857−1.56278i
0 0 0 0 −2.12572+6.90962i

9.39857+1.56278i 2.12572−6.90962i 9.39857+1.56278i 2.12572−6.90962i − 8
3











(9)

The eigenvalues are found by solving the equation|J−
λ I|= 0 yielding eigenvalues:

λ1 =−12.557−5.06564×10−15i,λ2 =−108.79911×10−16i,

λ3 =−0.0548184−8.2434i,λ4 =−0.0548184−8.2434,

λ5 = 4.4408910−16−8.88178×10−16i

For the case when the fixed point is:

(u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5) = (9.39857−1.56278i,2.12572+6.90962i

,9.39857+1.56278i,2.12572−6.90962i,16)

the Jacobian (6) becomes:











−10 0 10 0 0
0 −10 0 10 0
0 0 0 0 −9.39857+1.56278i
0 0 0 0 −2.12572−6.90962i

9.39857−1.56278i 2.12572+6.90962i 9.39857+1.56278i 2.12572−6.90962i − 8
3











(10)

The eigenvalues are found by solving the equation|J −
λ I|= 0 yielding eigenvalues:

λ1=−12.557−5.06564×10−15i,λ2=−108.79911×10−16i,

λ3 =−0.0548184−8.2434i,λ4=−0.0548184−8.2434,

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2556 A. A. M. Farghaly: Generating a Complex Form of Chaotic Pan System...

Fig. 3: The dynamical behavior of the new chaotic system after control: (a) u1 − u3 phase plane,(b)u1− u5 phase plane, (c)u3− u5
phase plane, (d)u4(t) wave form (e)u5(t) wave form (f) chaotic attractor in (u1,u3,u5) after control.

λ5 = 4.4408910−16+8.88178×10−16i

For the case when the fixed point is:

(u∗1,u
∗
2,u

∗
3,u

∗
4,u

∗
5) = (9.39857−1.56278i,2.12572+6.90962i

,9.39857+1.56278i,2.12572−6.90962i,16)

Note that for all fixed points there is oneλ has positive
real part. Consequently the fixed points are unstable and
this implies chaos as mentioned above in Fig. 1 .

3 Controlling chaos of a new system

In this section, the main results with a new and simple
control low will be discussed. Based on the addition of
complex periodic forcing to the first equation of system

(2), so system (2) becomes:

ẋ = a(y− x)+ (1+ i)k cosωt
ẏ = cx− xz
ż = −bz+ 1

2(x̄y+ ȳx),







(11)

where ω and k are positive parameters. The controlled
system (11) in the real version withu6 = ωt is:

u̇1 = a(u3− u1)+ k cosu6,

u̇2 = a(u4− u2),
u̇3 = cu1− u1u5+ k cosu6,

u̇4 = cu2− u2u5,

u̇5 = −bu5+ u1u3+ u2u4,

u̇6 = ω .



























(12)

Numerical simulations are used to investigate the
controlled chaotic system (12) using Mathematica
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software version 9. When the parameters are
a = 10,b = 8

3 and c = 16 and the additional parameters
(ω = 6.75 andk = 250 ). The initial values are taken as:
u1(0) = u2(0) = 1, u3(0) = u4(0) = −1 andu5(0) = 10.
In the controller timet, one can see when is greater than
or equal to 44 , chaos attractor disappear. The behavior of
the controlled chaotic system (12) are displayed in
Fig.3.(a, b, c, d, e and f).

4 Conclusions

In this paper, we introduced a new 5 dimensional system,
which is called a chaotic complex Pan system. The new
system is generated from a famous Pan system after
replacing the real variables of the first and second
equations of (1) with complex ones. The maximal
Lyapunov exponent of this system is positive as shown in
Fig. 2 which means that our system is chaotic. System (2)
is controlled by adding the complex forcing to the first
equation and the control time starts fromt ≥ 44. Since the
new system has more complex dynamical behavior , it is
believed that the system will have a broad applications in
various information systems.
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