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Abstract: In this paper, first, we consider the distribution and survival functions. Next, we define intuitionistic randomϕ-normed
spaces which improve and generalize the definition of an intuitionistic Menger space. As an application, we prove the stability of some
functional equations in intuitionistic randomϕ-normed spaces by the modified method which provides a betterestimation.

Keywords: Distribution function; survival function; stability; cubic functional equation; intuitionisticϕ-random normed space.

1 Introduction

Distribution and survival functions are important in
probability theory. We use these functions to define
intuitionistic random ϕ-normed spaces and find an
application about stability of some functional equations.
The study of stability problems for functional equations is
related to a question of Ulam [26] concerning the stability
of group homomorphisms and affirmatively answered for
Banach spaces by Hyers [11]. Subsequently, the result of
Hyers was generalized by Aoki [2] for additive mappings
and by Rassias [22] for linear mappings by considering an
unbounded Cauchy difference. The paper [22] of Rassias
has provided a lot of influence in the development of what
we now call Hyers–Ulam–Rassias stability of functional
equations. We refer the interested readers for more
information on such problems to the papers [4,6,12,15,
23].

2 Preliminaries

Now, we give some definitions and lemmas for our main
results in this paper.

Definition 1.A function µ : R → [0,1] is called a
distribution function if it is left continuous on R,
non-decreasing and

inf
t∈R

µ(t) = 0, sup
t∈R

µ(t) = 1.

We denote byD the family of all measure distribution
functions and byH a special element ofD defined by

H(t) =

{

0, if t ≤ 0,
1, if t > 0.

Forward,µ(x) is denoted byµx.

Definition 2.A function ν : R→ [0,1] is called asurvival
functionif it is right continuous onR, non-increasing and

inf
t∈R

ν(t) = 0, sup
t∈R

ν(t) = 1.

We denote byB the family of all survival functions and
by G a special element ofB defined by

G(t) =

{

1, if t ≤ 0,
0, if t > 0.

Forward,ν(x) is denoted byνx.
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Lemma 1.([8]) Consider the set L∗ and the operation≤L∗

defined by:

L∗ = {(x1,x2) : (x1,x2) ∈ [0,1]2and x1+ x2 ≤ 1},

(x1,x2)≤L∗ (y1,y2)⇐⇒ x1 ≤ y1, x2 ≥ y2,

for all (x1,x2),(y1,y2) ∈ L∗. Then(L∗,≤L∗) is a complete
lattice.

We denote the bottom and the top elements of lattices
by 0L∗ = (0,1) and 1L∗ = (1,0). Classically, the
triangular norm ∗ = T on [0,1] is defined as an
increasing, commutative, associative mapping
T : [0,1]2 −→ [0,1] satisfying

T(1,x) = 1∗ x= x

for all x ∈ [0,1]. The triangular conorm S= ⋄ is defined
as an increasing, commutative, associative mapping
S : [0,1]2 −→ [0,1] satisfyingS(0,x) = 0⋄ x = x for all
x∈ [0,1].

Using the lattice(L∗,≤L∗), these definitions can be
straightforwardly extended.

Definition 3.([8]) A triangular norm(t–norm) on L∗ is a
mapping T : (L∗)2 −→ L∗ satisfying the following
conditions:

(a) for all x ∈ L∗, T (x,1L∗) = x (: boundary
condition);

(b) for all (x,y) ∈ (L∗)2, T (x,y) = T (y,x) (:
commutativity);

(c) for all (x,y,z) ∈ (L∗)3,
T (x,T (y,z)) = T (T (x,y),z) (: associativity);

(d) for all (x,x′,y,y′) ∈ (L∗)4, x ≤L∗ x′ and
y≤L∗ y′ =⇒ T (x,y)≤L∗ T (x′,y′) (: monotonicity).

In this paper,(L∗,≤L∗ ,T ) has an Abelian topological
monoid with the top element 1L∗ and soT is acontinuous
t–norm.

Definition 4.A continuoust–normT on L∗ is said to be
continuous representable t-normif there exist a
continuoust–norm ∗ and a continuoust–conorm⋄ on
[0,1] such that, for allx= (x1,x2),y= (y1,y2) ∈ L∗,

T (x,y) = (x1 ∗ y1,x2 ⋄ y2).

For example,

T (a,b) = (a1b1,min{a2+b2,1})

and
M(a,b) = (min{a1,b1},max{a2,b2})

for all a = (a1,a2), b = (b1,b2) ∈ L∗ are the continuous
representablet-norm.

Definition 5.A negatoron L∗ is any decreasing mapping
N : L∗ −→ L∗ satisfyingN (0L∗) = 1L∗ andN (1L∗) =
0L∗ .

If N (N (x)) = x for all x ∈ L∗, thenN is called an
involutive negator.

A negator on [0,1] is a decreasing mapping
N : [0,1] −→ [0,1] satisfyingN(0) = 1 andN(1) = 0. Ns
denotes thestandard negatoron [0,1] defined by

Ns(x) = 1− x

for all x∈ [0,1].

Let ϕ be a function defined on the real fieldR into
itself with the following properties:

(a) ϕ(−t) = ϕ(t) for all t ∈ R;
(b) ϕ(1) = 1;
(c) ϕ is strictly increasing and continuous on[0,∞),

ϕ(0) = 0 and limα→∞ ϕ(α) = ∞.

Some examples of such functions are:ϕ(t) = |t|;

ϕ(t) = |t|p, p∈ (0,∞); ϕ(t) = 2t2n

|t|+1 for all n∈N.

3 Intuitionistic random space

The notation of intuitionistic Menger space was
introduced in [16] and the notation of randomϕ-normed
spaces introduced in [9,18].

In the sequel, we adopt the usual terminology,
notations and conventions of the theory of intuitionistic
randomϕ-normed spaces as in [5,10,16,17,24,25].

Definition 6.Let µ andν be a distribution function and a
survival function fromX × (0,+∞) to [0,1] such that
µx(t) + νx(t) ≤ 1 for all x ∈ X and t > 0. The 3-tuple
(X,Pµ,ν ,T ) is said to be anintuitionistic random
ϕ-normed space(briefly ϕ-IRN-space) ifX is a vector
space,T is a continuous representablet-norm andPµ,ν
is a mappingX × (0,+∞) → L∗ satisfying the following
conditions: for allx,y∈ X andt,s> 0,

(a) Pµ,ν(x,0) = 0L∗ ;
(b) Pµ,ν(x, t) = 1L∗ if and only if x= 0;
(c) Pµ,ν(αx, t) = Pµ,ν (x, t

ϕ(α) ) for all α 6= 0;

(d) Pµ,ν(x+ y, t + s)≥L∗ T (Pµ,ν (x, t),Pµ,ν (y,s)).

In this case,Pµ,ν is called anintuitionistic random
norm. Here,

Pµ,ν(x, t) = (µx(t),νx(t)).

Note that, if (X,Pµ,ν ,T ) is a ϕ-IRN-space and
definePµ,ν(x− y, t) = Mµ,ν(x,y, t), then (X,Mµ,ν ,T )
is an intuitionistic Menger spaces.

Example 1.Let (X,‖ · ‖) be a normed space. Let
T (a,b) = (a1b1,min(a2 + b2,1)) for all
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a = (a1,a2), b = (b1,b2) ∈ L∗ and µ ,ν be a distribution
function and a survival function defined by

Pµ,ν(x, t) = (µx(t),νx(t)) =
( t

t + ‖x‖p ,
‖x‖p

t + ‖x‖p

)

for all t ∈ R
+ and 0< p ≤ 1. Then(X,Pµ,ν ,T ) is aϕ-

IRN-space.

Definition 7.(1) A sequence{xn} in a ϕ-IRN-space
(X,Pµ,ν ,T ) is called aCauchy sequenceif, for any
ε > 0 andt > 0, there existsn0 ∈ N such that

Pµ,ν(xn− xm, t)>L∗ (Ns(ε),ε)

for all n,m≥ n0, whereNs is the standard negator.
(2) A sequence{xn} is said to beconvergentto a point

x∈ X (denoted byxn
Pµ ,ν
−→ x) if Pµ,ν (xn− x, t) −→ 1L∗ as

n−→ ∞ for all t > 0.
(3) A ϕ-IRN-space (X,Pµ,ν ,T ) is said to be

completeif every Cauchy sequence inX is convergent to
a pointx∈ X.

4 Applications

The functional equation

f (2x+ y)+ f (2x− y) (1)

= 2 f (x+ y)+2 f (x− y)+12f (x)

is said to be thecubic functional equationsince the
function f (x) = cx3 is its solution. Every solution of the
cubic functional equation is said to be acubic mapping.
The stability problem for the cubic functional equation
was proved by Jun and Kim [13] for mappings
f : X −→ Y, whereX is a real normed space andY is a
Banach space. Later, a number of mathematicians have
worked on the stability of some types of the cubic
equation [14,22]. In addition, Mirmostafaee, Mirzavaziri
and Moslehian [19,20], Alsina [1], Miheţ and Radu [17]
investigated the stability in the settings of fuzzy,
probabilistic and random normed spaces.

We start our work with the main result in aϕ-IRN-
space with an additional condition for aϕ i.e.,

ϕ(st) = ϕ(s)ϕ(t)

for all t,s> 0.

Theorem 1.Let X be a linear space,(Z,P ′
µ,ν ,M) be aϕ-

IRN-space andφ : X×X −→Z be a function such that, for
some0< α < ϕ(8),

P
′
µ,ν(φ(2x,0), t)≥L∗ P

′
µ,ν(αφ(x,y), t) (2)

and
lim
n→∞

P
′
µ,ν(φ(2

nx,2ny),ϕ(8n)t) = 1L∗

for all x,y∈ X and t> 0. Let (Y,Pµ,ν ,M) be a complete
ϕ-IRN-space. If f: X →Y is a mapping such that

Pµ,ν( f (2x+ y)+ f (2x− y)−2 f (x+ y) (3)

−2 f (x− y)−12f (x), t)

≥L∗ P ′
µ,ν(φ(x,y), t)

for all x,y∈ X and t> 0, then there exists a unique cubic
mapping C: X →Y such that

Pµ,ν( f (x)−C(x), t) (4)

≥L∗ P
′
µ,ν(φ(x,0),ϕ(2)(ϕ(8)−α)t))

for all x,y∈ X and t> 0

Proof.Puttingy= 0 in (3), we get

Pµ,ν

( f (2x)
8

− f (x), t
)

≥L∗ P
′
µ,ν(φ(x,0),ϕ(16)t) (5)

for all x∈X andt > 0. Replacingx by 2nx in (5), we obtain

Pµ,ν

( f (2n+1x)
8n+1 −

f (2nx)
8n , t

)

(6)

≥L∗ P
′
µ,ν(φ(2nx,0), tϕ(16)ϕ(8n))

≥L∗ P
′
µ,ν

(

φ(x,0),
tϕ(16)ϕ(8n)

αn

)

for all x ∈ X and t > 0. It follows from f (2nx)
8n − f (x) =

∑n−1
k=0(

f (2k+1x)
8k+1 − f (2kx)

8k ) and (6) that

Pµ,ν

( f (2nx)
8n − f (x), t

)

(7)

≥L∗ P
′
µ,ν

(

φ(x,0),
t

∑n−1
k=0

αk

ϕ(16)ϕ(8k)

)

for all x∈ X andt > 0. By replacingx with 2mx in (7), we
observe that

Pµ,ν

( f (2n+mx)
8n+m −

f (2mx)
8m , t

)

(8)

≥L∗ P
′
µ,ν

(

φ(2mx,0),
tϕ(8m)

∑n−1
k=0

αk

ϕ(16)ϕ(8k)

)

≥L∗ P
′
µ,ν

(

φ(x,0),
t

∑n−1
k=0

αk+m

ϕ(16)ϕ(8k)ϕ(8m)

)

≥L∗ P
′
µ,ν

(

φ(x,0),
t

∑n−1
k=0

αk+m

ϕ(16)ϕ(8k+m)

)

≥L∗ P
′
µ,ν

(

φ(x,0),
t

∑n+m−1
k=m

αk

ϕ(16)ϕ(8k)

)

≥L∗ P
′
µ,ν

(

φ(x,0),
t

∑n+m−1
k=m

αk

ϕ(16)ϕ(8)k

)

for all x∈X andt > 0. Then{ f (2nx)
8n } is a Cauchy sequence

in (Y,Pµ,ν ,M). Since(Y,Pµ,ν ,M) is a completeϕ-IRN-
space, this sequence convergent to a pointC(x) ∈ Y. Fix
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x∈ X and putm= 0 in (8). Then we obtain

Pµ,ν

( f (2nx)
8n − f (x), t

)

(9)

≥L∗ P
′
µ,ν

(

φ(x,0),
t

∑n−1
k=0

αk

ϕ(16)ϕ(8)k

)

for all x∈ X andt > 0 and so, for allδ > 0,

Pµ,ν(C(x)− f (x), t + δ ) (10)

≥L∗ M
{

Pµ,ν

(

C(x)−
f (2nx)

8n ,δ
)

,Pµ,ν

( f (2nx)
8n − f (x), t

)}

≥L∗ M
{

Pµ,ν

(

C(x)−
f (2nx)

8n ,δ
)

,P
′
µ,ν

(

φ(x,0),
t

∑n−1
k=0

αk

ϕ(16)ϕ(8)k

)}

for all x ∈ X andt > 0. Taking the limit asn −→ ∞ and
using (10), we get

Pµ,ν(C(x)− f (x), t + δ ) (11)

≥L∗ P
′
µ,ν(φ(x,0),ϕ(2)(ϕ(8)−α))

for all x ∈ X andt > 0. Sinceδ was arbitrary, by taking
δ −→ 0 in (11), we get

Pµ,ν(C(x)− f (x), t)

≥L∗ P
′
µ,ν(φ(x,0),ϕ(2)(ϕ(8)−α))

for all x∈ X andt > 0. Replacingx andy by 2nx and 2ny
in (3), respectively, we get

Pµ,ν

( f (2n(2x+ y))
8n

+
f (2n(2x− y))

8n −
2 f (2n(x+ y))

8n

−
2 f (2n(x− y))

8n −
12f (2n(x))

8n , t
)

(12)

≥L∗ P
′
µ,ν(φ(2

nx,2ny),ϕ(8n)t)

for all x,y ∈ X and t > 0. Since
limn−→∞ P ′

µ,ν (φ(2nx,2ny),ϕ(8n)t) = 1L∗ , it follows that
C fulfills (4).

To prove the uniqueness of the cubic functionC,
assume that there exists a cubic functionD : X −→ Y
which satisfies (4). Fix x ∈ X. Clearly,C(2nx) = 8nC(x)
and D(2nx) = 8nD(x) for all n ∈ N. It follows from (4)

that

Pµ,ν

(

C(x)−D(x), t)

= Pµ,ν(
C(2nx)

8n −
D(2nx)

8n , t
)

≥L∗ M
{

Pµ,ν

(C(2nx)
8n −

f (2nx)
8n ,

t
2

)

,

Pµ,ν

(D(2nx)
8n −

f (2nx)
8n ,

t
2

)}

≥L∗ P
′
µ,ν(φ(2

nx,0),ϕ(2)×ϕ(8n)(ϕ(8)−α)t)

≥L∗ P
′
µ,ν

(

φ(x,0),
ϕ(2)×ϕ(8n)(ϕ(8)−α)t

αn

)

for all x∈ X andt > 0. Since limn→∞
ϕ(2)×ϕ(8n)(ϕ(8)−α)t

αn =
∞, we get

lim
n→∞

P
′
µ,ν

(

φ(x,0),
ϕ(2)×ϕ(8n)(ϕ(8)−α)t

αn

)

= 1L∗

for all x ∈ X and t > 0. Therefore, it follows that
Pµ,ν(C(x) − D(x), t) = 1L∗ for all t > 0 and so
C(x) = D(x). This completes the proof.

Corollary 1.Let X be a linear space,(Z,P ′
µ,ν ,M) be a

ϕ-IRN-space,(Y,Pµ,ν ,M) be a completeϕ-IRN-space in
whichϕ(t) = t and p,q be nonnegative real numbers and
let z0 ∈ Z. If f : X →Y is a mapping such that

Pµ,ν( f (2x+ y)+ f (2x− y)

−2 f (x+ y)−2 f (x− y)−12f (x), t)

≥L∗ P
′
µ,ν((‖x‖p+ ‖y‖q)z0, t)

for all x,y∈ X and t> 0, f(0) = 0 and p,q< 3, then there
exists a unique cubic mapping C: X →Y such that

Pµ,ν ( f (x)−C(x), t)≥L∗ P
′
µ,ν (‖x‖pz0,2(8−2p)t))

for all x ∈ X and t> 0.

Proof.Let ϕ : X×X −→ Z be defined byϕ(x,y) = (‖x‖p+
‖y‖q)z0. Then the corollary is followed from Theorem1 by
α = 2p.

Corollary 2.Let X be a linear space,(Z,P ′
µ,ν ,M) be a

ϕ-IRN-space,(Y,Pµ,ν ,M) be a completeϕ-IRN-space in
whichϕ(t) = t and let z0 ∈ Z. If f : X → Y is a mapping
such that

Pµ,ν( f (2x+ y)+ f (2x− y)

−2 f (x+ y)−2 f (x− y)−12f (x), t)

≥L∗ P
′
µ,ν(εz0, t)

for all x,y∈ X and t> 0 and f(0) = 0, then there exists a
unique cubic mapping C: X →Y such that

Pµ,ν ( f (x)−C(x), t)≥L∗ P
′
µ,ν(εz0,14t)

for all x ∈ X and t> 0.
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Proof.Let ϕ : X ×X −→ Z be defined byϕ(x,y) = εz0.
Then the corollary is followed from Theorem1 by α = 1.

Theorem 2.Let X be a linear space,(Z,P ′
µ,ν ,M) be aϕ-

IRN-space andφ : X×X −→Z be a function such that, for
some0< α < ϕ(16),

P
′
µ,ν(φ(2x,0), t)≥L∗ P

′
µ,ν(αφ(x,y), t) (13)

for all x,y∈ X and t> 0, f(0) = 0 and

lim
n→∞

P
′
µ,ν(ϕ(2

nx,2ny),ϕ(16n)t) = 1L∗

for all x,y∈ X and t> 0. Let (Y,Pµ,ν ,M) be a complete
ϕ-IRN-space. If f: X →Y is a mapping such that

Pµ,ν( f (2x+ y)+ f (2x− y) (14)

−4 f (x+ y)−4 f (x− y)−24f (x)+6f (y), t)

≥L∗ P
′
µ,ν(φ(x,y), t), (15)

for all x,y∈X and t> 0, then there exists a unique quartic
mapping Q: X →Y such that

Pµ,ν( f (x)−Q(x), t) (16)

≥L∗ P
′
µ,ν(φ(x,0),ϕ(2)(ϕ(16)−α)t)) (17)

for all x,y∈ X and t> 0

Proof.The proof is similar with the proof of Theorem1.

Corollary 3.Let X be a linear space,(Z,P ′
µ,ν ,M) be a

ϕ-IRN-space,(Y,Pµ,ν ,M) be a completeϕ-IRN-space in
which varphi(t) = t and p,q be nonnegative real numbers
and let z0 ∈ Z. If f : X →Y is a mapping such that

Pµ,ν( f (2x+ y)+ f (2x− y)

−4 f (x+ y)−4 f (x− y)−24f (x)+6f (y), t)

≥L∗ P
′
µ,ν((‖x‖p+ ‖y‖q)z0, t)

x,y∈ X and t> 0, f(0) = 0 and p,q< 4, then there exists
a unique quartic mapping Q: X →Y such that

Pµ,ν( f (x)−Q(x), t)

≥L∗ P
′
µ,ν(‖x‖pz0,2(16−2p)t))

for all x ∈ X and t> 0.

Proof.Let ϕ : X×X −→Z be defined byϕ(x,y) = (‖x‖p+
‖y‖q)z0. Then the corollary is followed from Theorem2 by
α = 2p.

Corollary 4.Let X be a linear space,(Z,P ′
µ,ν ,M) be a

ϕ-IRN-space,(Y,Pµ,ν ,M) be a completeϕ-IRN-space
in which varphi(t) = t and let z0 ∈ Z. If f : X → Y is a
mapping such that

Pµ,ν( f (2x+ y)+ f (2x− y)

−4 f (x+ y)−4 f (x− y)−24f (x)+6f (y), t)

≥L∗ P
′
µ,ν(εz0, t)

for all x,y∈ X and t> 0 and f(0) = 0, then there exists a
unique quartic mapping C: X →Y such that

Pµ,ν( f (x)−Q(x), t)

≥L∗ P
′
µ,ν(εz0,30t)

for all x ∈ X and t> 0.

Proof.Let ϕ : X × X −→ Z be defined byϕ(x,y) = εz0.
Then the corollary is followed from Theorem2 by α = 1.
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