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Abstract: In this paper, first, we consider the distribution and swlviunctions. Next, we define intuitionistic randogrinormed
spaces which improve and generalize the definition of aritiotistic Menger space. As an application, we prove thbibta of some
functional equations in intuitionistic randognrnormed spaces by the modified method which provides a lestenation.
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1 Introduction Definition 1.A function p : R — [0,1] is called a
distribution function if it is left continuous on R,

Distribution and survival functions are important in hon-decreasing and

probability theory. We use these functions to define inf u(t) =0, supu(t) =1

intuitionistic random ¢-normed spaces and find an th“ - teRp“ o

application about stability of some functional equations.

The study of stability problems for functional equationsis ~ We denote byD the family of all measure distribution

related to a question of Ulan2§] concerning the stability ~ functions and byq a special element dd defined by

of group homomorphisms and affirmatively answered for .
Banach spaces by Hyers1]. Subsequently, the result of H(t) = 0, if t<0,
Hyers was generalized by Aok®] for additive mappings 1 if t>0.

and by Rassia®p) for linear mappings by considering an

unbounded Cauchy difference. The pagd] [of Rassias Forward,u(x) is denoted byuy.

has provided a lot of influence in the developmentof what ) . .

we now call Hyers-Ulam-Rassias stability of functional Definition 2.A functionv : R — [0, 1] is called asurvival
equations. We refer the interested readers for mordunctionifitis right continuous ok, non-increasing and
information on such problems to the pape#st[12,15, infu(t) =0, supy(t) =1

23]. teR teR

We denote by the family of all survival functions and

2 Preliminaries by G a special element d@ defined by

1, if t<0,
Now, we give some definitions and lemmas for our main G(t) = 0. if t>0.
results in this paper. ’

Forward,v(x) is denoted byy.
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Lemma 1([8]) Consider the set’Land the operatior< «
defined by:

L* = {(x1, %) : (X1,%2) € [0,1]2and x + xp < 1},

(X1, %2) <1 (Y1,¥2) <= X1 <Y1, X2 > Yo,

for all (X1,%2),(Y1,Y2) € L*. Then(L*, < «) is a complete
lattice.

Definition 5.A negatoron L* is any decreasing mapping
N L* — L* satisfying. 4" (0.+) = 1.+ and A (11+) =
O+

If A4 (A (x))=xforall xeL* then./ is called an
involutive negator

A negator on [0,1] is a decreasing mapping
N : [0,1] — [0,1] satisfyingN(0) = 1 andN(1) = 0. Ns
denotes thatandard negatoon [0, 1] defined by

Ns(X) =1—x

We denote the bottom and the top elements of lattices

by O+ = (0,1) and 1: = (1,0). Classically, the
triangular norm = = T on [0,1] is defined as an
increasing, commutative, associative
T:[0,1]2 — [0,1] satisfying

T(1,X) =1xx=X

for all x € [0,1]. Thetriangular conorm S= ¢ is defined

mapping

forall x € [0,1].

Let ¢ be a function defined on the real fieRl into
itself with the following properties:

@ ¢(—t)=9¢(t) forallt e R;

(b) (1) =1;

(c) ¢ is strictly increasing and continuous ¢@ ),
#(0)=0and limy_e @ (ar) = 0.

as an increasing, commutative, associative mapping

S: (0,12 — [0,1] satisfyingS(0,x) = 0o x = x for all
x e [0,1].

Using the lattice(L*, <.+), these definitions can be
straightforwardly extended.

Definition 3.([8]) A triangular norm(t—norm) on L* is a
mapping .7 : (L*)2 — L* satisfying the following
conditions:

(@ for all x € L*, T(x,1+) =X
condition);

(b) for all (xy) € (L) Z(xy) = T(¥x) (
commutativity);

(c) for all xy,z) €
T X T (V,2)) = 7 (T(xY),z) (:associativity);

(d) for all (x,x,yy) € (L)% x <~ ¥ and
y<iry = 7(x,y) <1+ Z(X,¥) (: monotonicity).

(: boundary

(L),

In this paper(L*,<.+,.7) has an Abelian topological
monoid with the top elemeni 1and so.7 is acontinuous
t—norm

Definition 4.A continuoust—norm.7 on L* is said to be
continuous representable t-nornif there exist a
continuoust—norm * and a continuous—conorm< on
[0,1] such that, for alk = (x1,X2),y = (y1,¥2) € L*,

T (XY) = (X1 *Y1,%20Y2).
For example,
7 (a,b) = (aiby, min{ay + by, 1})

and
M (a,b) = (min{ag, b1}, max{ay, b,})

for all a= (a3,az), b = (b1,by) € L* are the continuous
representablenorm.

Some examples of such functions agg(t) = [t[;
9 (t) = [t|P, pe (0,0); §(t) = 2 foraline N,

3 Intuitionistic random space

The notation of intuitionistic Menger space was
introduced in 6] and the notation of random-normed
spaces introduced i9[18].

In the sequel, we adopt the usual terminology,
notations and conventions of the theory of intuitionistic
random¢-normed spaces as i6,[L0,16,17,24,25].

Definition 6.Let 4 andv be a distribution function and a
survival function fromX x (0,4) to [0,1] such that
Px(t) + w(t) < 1 for all x e X andt > 0. The 3-tuple
(X,Zuyv,7) is said to be anintuitionistic random
¢-normed spacdbriefly ¢-IRN-space) ifX is a vector
space,” is a continuous representaltl@orm and2?,
is @ mappingX x (0,+) — L* satisfying the following
conditions: for allx,y € X andt,s> 0,

() Py v(x,0) =0u;

(b) Zuv(x,t) =1+ ifand only if x=0;

(©) Zuv(axt) =Py (X, ﬁ) foralla #0;

(d) Zuv(X+y,t+s) > T(Puv(Xt), Zuv(y,9)).

In this case,?,, is called anintuitionistic random
norm Here,

Puv(t) = (Kx(t), k(1))

Note that, if (X, 2,,v,7) is a ¢-IRN-space and
define 2, (X — Yit) = A v(X,Y,t), then (X, #yv, T)
is an intuitionistic Menger spaces.

Example 1Let (X,|| - ||) be a normed space. Let
J(a,b) = (abi,min(az + by,1)) for all
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a= (ag,a), b= (bg,by) € L* and u,v be a distribution
function and a survival function defined by

_ _(_t [1X]IP
Puv(x8) = ((0:%0) = (57 T3 175
forallt e R* and 0< p < 1. Then(X, Zy,7) is a¢-
IRN-space.

Definition 7.(1) A sequence{x,} in a ¢-IRN-space
(X, Zuv,7) is called aCauchy sequencd, for any
€ > 0 andt > 0, there existsiy € N such that
yuvv(Xn _Xm,t) >|_* (NS(E),&')
for all n,m > ng, whereNs is the standard negator.
(2) Asequencéxy} is said to beconvergento a point

X € X (denoted by, ‘ﬁ? X) if Py (X
n—; oo forallt > 0.

(3) A ¢-IRN-space (X,Z,y,7) is said to be
completeif every Cauchy sequence K is convergent to
a pointx € X.

—xt) — 1.+ as

4 Applications

The functional equation
f(2x+y)+ f(2x—y)

= 2f(x+y)+2f(x—y) +12f (x)

is said to be thecubic functional equatiorsince the

function f(x) = o is its solution. Every solution of the
cubic functional equation is said to becabic mapping

1)

The stability problem for the cubic functional equation

was proved by Jun and Kim 1B for mappings
f: X — Y, whereX is a real normed space aidis a

for all x,y € X and t> 0. Let(Y, #,v,M) be a complete
¢-IRN-space. If £ X — Y is a mapping such that

Puy(f(2x+y) + f(2x—y) - 2f(x+Y)
—2f(x—y)—12f(x),t)
2L ‘gzll,v((p(xvy)vt)

for all x,y € X and t> 0, then there exists a unique cubic
mapping C. X — Y such that

Zuv(f(x) = C(x),1)
> Zu(9(%,0),6(2)(6(8) — a)t))
forallx,ye X andt>0

)

(4)

Proof Puttingy = 0 in (3), we get

P ( f(SX)

for all x e X andt > 0. Replacingcby 2"xin (5), we obtain
f(2"1x)  f(2"%)

gzlh"( g+l gn ’t)

> Py (9(27%,0),t9(16)9(8"))

/ t9(16)¢(8")

> '92[17\/ ((0(X,O), an )

for all x € X andt > 0. It follows from %:X) -

Spo3(H2X 125 and 6) that

£(27%)
Puv(—or = ~ (0),)

t
>0 Py (9000
210 (169 (@)

—1(0.t) 21 2/,,(9(x.0), $(16)1) (5)

(6)

f(x) =

(7)

for all x e X andt > 0. By replacingk with 2™x in (7), we
observe that

Banach space. Later, a number of mathematicians have

worked on the stability of some types of the cubic

equation [4,22]. In addition, Mirmostafaee, Mirzavaziri
and Moslehian 19,20], Alsina [1], Mihet and Radu 17]

investigated the stability in the settings of fuzzy, =

probabilistic and random normed spaces.
We start our work with the main result in ¢-IRN-
space with an additional condition forgai.e.,

p(st) = ()9 (1)
forallt,s> 0.
Theorem 1Let X be a linear space/Z, 32/ v,M) be ag-

IRN-space ang: X x X — Z be afunctlon such that, for
somed < a < ¢(8),

‘@[lly(qo(zxao)at) > @;jy(a(p(xvy)at)

and

(@)

lim 22/, ,(@(2"%,2"y), ¢ (8")t) = 1.+

n—oo

for all x e X andt

n+m
Py ( f(2"Mx) (®)

gn+m

f(2Mx)
-8 ’t)
tp(8")

n—1 ak
S5 aee®

t

ak+m

n-1
2k=0 §(16)¢ )9 (8")

o
(
P (#000) )
(
(

n-1
2k=0 3(16)p (&™)

in (Y, Zuv,M). Since(Y, Z,.v,M) is a completep-IRN-
space, this sequence convergent to a poix) € Y. Fix
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x € X and putm= 0 in (8). Then we obtain

(122

> gzl/,ly ((p(x7 0)7

for all x e X andt > 0 and so, for alp > 0,

Py (CX) — F(X),t+8) (10)
S M{%V(C(x)— f(s:x),é)

ﬁuv( X),t }
> M { V(C ,6)

P (9(x,0), MW);(&R

for all x € X andt > 0. Taking the limit asn — « and
using @0), we get

Puv(C(x) — f(x),t+0)
> 2, (9(%,0),6(2)(¢(8) —a))

(11)

for all x € X andt > 0. Sinced was arbitrary, by taking
0 — 0in (12), we get

Puv(C(x) = F(x),1)
> Py (9(x,0),6(2)(¢(8) —a))

for all x € X andt > 0. Replacingc andy by 2'x and 2y
in (3), respectively, we get

f(2"(2x+y))
Pun( =g
f(2"(2x—y)) 2f(2"(x+y))
* 8n a 8n
2f(2"(x—y)) 12f(2"(x))
e e ’t) (12)
> Py (@(27%,2%), ¢(8M)t)
for  all xy e X and t > 0. Since
limn—w 2, (@(2"%,2"), ¢ (8")t) = 1+, it follows that
Cfu|f|||s(4f

To prove the uniqueness of the cubic functi@n
assume that there exists a cubic functbn X — Y
which satisfies4). Fix x € X. Clearly,C(2"x) = 8"C(x)
andD(2"x) = 8"D(x) for all n € N. It follows from (4)

(P57~ 53}

> Py (9(2'%,0),6(2) x ¢(8")(¢(8) —a)t)

> 2, (fp(X, 0), 2 x ¢(8a)n(¢(8) - G)t)
forall x € X andt > 0. Since lim ¢<2)X¢(8;>,§¢<8)‘“)‘ -
w0, we get

A@mg (qo(x, 0), 0 (2) x ¢(8;)n(¢(8) - a)t) 1

for all x € X andt > 0. Therefore, it follows that
Puv(C(X) — D(x),t) = 1« for all t > 0 and so
C(x) = D(x). This completes the proof.

Corollary 1.Let X be a linear spaceZ, #,,,,M) be a
¢-IRN-space(Y, 2, v,M) be a completg-IRN-space in
which¢(t) =t and p g be nonnegative real numbers and
letzpe Z. If f: X =Y is a mapping such that
Puy(f(2x+y) + f(2x—y)

=2f(x+y) —2f(x—y) — 12f (x),1)

P ((IXI°+ Y% 20,1)

forallx,y e X andt> 0, f(0) =0and pqg< 3, then there
exists a unique cubic mapping:X — Y such that

Puv(t(x) Py ([IX[P20,2(8 - 2°)t))

forallx € X andt> 0.

=L

—C(x),t) >

ProofLet ¢ : X x X — Z be defined by (x,y) = (||x||P+
[lY[|9)zo. Then the corollary is followed from Theorehby
a=2P.

Corollary 2.Let X be a linear spacgZ, &,

v-M) be a
¢-IRN-space(Y, 2, v,M) be a completg-IRN-space in

which¢(t) =tandletg e Z. If f : X = Y is a mapping
such that

Puv(f(2x+y)+ f(2x-y)
—2f(x+y)—2f(x—y) —12f(x),t)
2L 9”;;,\/(5207'[)

for all x,y € X and t> 0 and f(0) = O, then there exists a
unigue cubic mapping €CX — Y such that

gu,v(f(x) —C(X),t) 2L Q;IAN

forallx € X and t> 0.

(€20,14)
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ProofLet ¢ : X x X — Z be defined by (x,y) = £2.
Then the corollary is followed from Theoretrby a = 1.

Theorem 2Let X be a linear spacéZ, 7/, ,,M) be a¢-
IRN-space an@: X x X — Z be a function such that, for
somed < a < ¢(16),

Puv(@(2%,0),1) > P, (a@(x,Y),1)
forallx,ye X andt> 0, f(0)=0and
rll_rgo P 0(9(2"%,2"), ¢ (16")t) = 1.+

(13)

for all x,y € X and t> 0. Let (Y, Z,,,,M) be a complete
¢-IRN-space. If £ X —Y is a mapping such that

Puv(f(2X+y)+ f(2x-y) (14)
—4f (x+y) —4f (x—y) — 24f (x) + 6f(y),t)
>L* ‘@[il,v(qo(xay)vt)a (15)

forall x,y € X and t> 0, then there exists a unique quartic
mapping Q@ X — Y such that

Puv(f(x) —Q(x),1)
> P0(9(x.0),6(2)(¢(16) — a)t))
forallx,ye X andt>0

(16)
(17)

ProofThe proof is similar with the proof of Theorein

Corollary 3.Let X be a linear spaceZ, &, ,,M) be a
¢-IRN-space(Y, &, ,,M) be a completg-IRN-space in
which varph{t) =t and p g be nonnegative real numbers
andletg e Z. If f : X — Y is a mapping such that
Puv(f(2x+y) + f(2x—y)
—A4f (x+y) —4f(x—y) — 24f (x) + 6f(y),t)
> Z (X + [yl 920, 1)
x,y € X andt> 0, f(0) =0and pq < 4, then there exists
a unique quartic mapping QX — 'Y such that

Puv(f(x) —Q(X),t)
> Py u([XP20,2(16—2P)))
forallx e X andt> 0.

ProofLet ¢ : X x X — Z be defined by (x,y) = (||x||P+
ly||*)zo. Then the corollary is followed from Theorediy
a=2P,

Corollary 4.Let X be a linear spaceZ, &}, ,,M) be a
¢-IRN-space,Y, Z,v,M) be a completep-IRN-space
in which varphit) =t andletgcZ. If f: X =Y isa

mapping such that
Puv(f(2X+y)+ f(2x-y)
—4f (x+y) —4f (x—y) — 24f (x) + 6f(y),t)
>L* 9,{1,\/(8207':)

for all x,y € X and t> 0 and f(0) = O, then there exists a
unique quartic mapping CX — Y such that

Zuv(f(x) —Q(x),1)
> 2, (620,300)

forallx € X andt> 0.

ProofLet ¢ : X x X — Z be defined by (x,y) = £2.
Then the corollary is followed from Theore?by a = 1.
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