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Abstract: In this paper, we establish two kinds of Emden—Fowler typeatéiqns of third order. We investigate the linear and the
nonlinear third-order equations, with specified initiahd@ions, by using the systematic variational iteratiorttme. \We corroborate
this study by investigating several Emden—Fowler type extaswith initial value conditions.
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1 Introduction isothermal gas spheré422] Moreover, the Lane—Emden
equation 2) describes the temperature variation of a

Many scientific applications in the literature of spherical gas cloud under the mutual attraction of its
mathematical physics and fluid mechanics can bemolecules and subject to the laws of thermodynamics. In
distinctively described by the Emden—Fowler equation ~ addition, the Lane-Emden equation of the first kind
. appears also in other context such as in the case of

1 _ _ _ radiatively cooling, self-gravitating gas clouds, in the

y +)—()/+f(x)g(y)_O,y(O)_yo,y(O)_O, (1) mean-field treatment of a phase transition in critical

) ) adsorption and in the modeling of clusters of
wheref(x) andg(y) are some given functions afandy,  gajaxies L7-19].

respectively, andt is called the shape factor. The Emden—
Fowler equationX) describes a variety of phenomena in
fluid mechanics, relativistic mechanics, pattern formatio
population evolution and in chemically reacting systems.
For f(x) = 1 andg(y) = y", Eg. () becomes the

standard Lane—Emden equation of the first order and The L'a'ne—Emden equation was first studied by
indexm, given by astrophysicists Jonathan Homer Lane and Robert Emden,

where they considered the thermal behavior of a spherical
.k cloud of gas acting under the mutual attraction of its
y +)—()/+ym= 0,y(0) = Yo,y (0) =0, (2)  molecules and subject to the classical laws of
thermodynamics. The well-known Lane-Emden equation
The Lane—-Emden equatior?)(models the thermal has been used to model several phenomena in
behavior of a spherical cloud of gas acting under themathematical physics and astrophysics such as the theory
mutual attraction of its moleculed412] and subject to  of stellar structure, the thermal behavior of a spherical
the classical laws of thermodynamics. Moreover, thecloud of gas, isothermal gas spheres, the theory of
Lane—Emden equation of first order is a useful equation inthermionic currents, and in the modeling of clusters of
astrophysics for computing the structure of interiors of galaxies. The Emden—Fowler equation was studied by
polytropic stars. On the other side, fdi(x) = 1 and  Fowler [2] to describe a variety of phenomena in fluid
g(y) = &, Eq. 1) becomes the standard Lane—Emdenmechanics and relativistic mechanics among others. The
equation of the second order that models thesingular behavior that occurs at = 0 is the main
non-dimensional density distributiony(x) in an  difficulty of Equations 1) and @).
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We note that1) was derived by using the equation or equivalently

d d "y Zy  KICLY =0,y(0) = yo,Y(0) =y'(0) =0
i (R )Y+ 1000 = 0y(0) =y (@ 0, ¥ T T IS EONO OO

dx . . _ (10
(3) Notice that the singular poixt= 0 appears twice asand
wherek is called the shape factor. x? with shape factors R and k(k — 1), respectively.

The Lane-Emden equation and the Emden—FowIeMoreo)’er' _the third term vanishes foe= 1 and the shape
equation were subjected to a considerable size ofactorin thiscase reducesto 2.
investigation, both numerically and analytically. A vayie For f(x) = 1, Egs. (0) becomes the Lane-Emden type
of useful methods were used to obtain exact andequation of the third-order given by
approximate solutions as well. Examples of the methods
that were applied are the Adomian decomposition /» | 2./ | kk-1)/ _ _ ) —
method P, 7, 18, the variational iteration Y 5V + Ty +90) = 0.¥(0) = 0.y (0) =¥'(0) (_1(1))
method B, 10, 14, 23, the homotopy perturbation In the other case, we substitute= 1,n = 2 in (4) to
method P27, the rational Legendre pseudospectral obtain
approach17], and other methods as well9, 20]. d [ d?

We aim in this work to establish two kinds of Xk (X W) y+ f(x)g(y) =0. (12)
Emden-Fowler type equations of third-order. Our ) )
approach depends mainly on using different orders of thel'his in turn gives the second kind of Emden—Fowler type
differential operators involved in the Emden—Fowler equation of third order of the form
sense given ind). Our next goal of this work is to apply 3y kdy
the variational iteration method to han'dle the developed_3 +-o5+ f(x)g(y) = 0,y(0) = yo,Y(0) =y"(0) =0,
Emden—Fowler type equations of third-order. SeveraldX — xdx (13)
numerical examples, with specified initial conditions, of or equivalently
each model will be examined to handle the singular point
that exists in each model. m K on
y +3Y +f(99(y) = 0.¥(0) = yo,y (0) = ¥'(0) = 0.

(14)
2 Constructing Emden—Fowler type Unlike the first kind, the singular point in the second case
. . x =0 appears once with shape fadtoMoreover, the first-

equations of third-order order termy’(x) term vanishes in the second kind.

] ] . For f(x) = 1, Egs. (4) becomes the Lane—Emden type
To derive the Emden-Fowler type equations of third-order,equations of the third—order given by

we use the sense dd)(and set

m n mn k " !
xfko(l"—xm (xk:—)@) y+ f(x)g(y) = 0. 4 Yy +3Y +9(Y) =0,y(0) = ¥0.Y(0) =y'(0) = 0. (15)

To determine third-order equations, it is clear that we

should select 3 Analysis of the method

m+n=3mn=>1 () In this section, we will present the analysis for the use of
that leads to the following two choices the variational iteration method (VIM) for a reliable
treatment of the two models of the Emden—Fowler type
m=2n=1, (6) equations of third-order. The main focus will be, as will
be seen later, on the derivation of a variety of Lagrange
and multipliers for each models and investigate several
m=1n=2. (7) examples as well.

Substitutingn=2,n= 1in (4) gives
& g 3.1 The first model: the VIM and the Lagrange
X—kW <Xk&> y+ f(x)g(y) = 0. (8) multipliers

o ) ] ) In this section we will present the essential steps for using
This in turn gives the first Emden—Fowler type equation of the variational iteration method and the determination of

third order in the form the Lagrange multipliers for various valueskofConsider
the differential equation
Oy 2y L (x)g(y) = 0.¥(0) = Yo.Y (0) =y (0) = O,
9) Ly+Ny=h(t), (16)
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where L and N are linear and nonlinear operators

respectively, anti(t) is the source term.

In view of (21)—(26), Eq. 20) becomes

To use the VIM, a correction functional for equation 2 =%

(16) should be used in the form

i) =a(9)+ [ A (Ln(€) +NT,(€)) dE, (17)

whereA is a general Lagrange’s multiplier, which can be —A"(x,t) +

identified optimally via the variational theory, and i a
restricted variation, which mead§,, = 0.
For Eg. (LO) the correction functional reads

X) 3 A060) (v (1) + 290 0) + <y 0) +
whered(d(yn(t))) = 0.

To determine the optimal value af(x,t), we take the
variation for both sides with respectyg(x) to obtain

(D30A()) dt

Ynt1(X) = Yn( )
(18)

1

Syns1(X) = yn(¥)+ 8 J5 A(x) (¥ (1) + Zyi(0) + L2y ) + F(080n(1) ) dt,
(19)
or equivalently

Syns1(X) = Oya(x) + 8 5 A (x ) (v (1) + () + K2y 0)) it
(20)
where we used(g(yn(t))) = 0.

For illustrative purposes, we evaluate the integral at the

right side in steps. We first integrate

Iy = /OXA(x,t)yrg/(t)dt 1)

Integratingl; by parts three times gives
1= (A%0)YE — A (XY + A" (X 0Yn) iex — Jo A" (X,)yn(t) dt.

(22)
We next integrate the second term of the integral2i) (
therefore we set

X 2k,
|2=/ A Zya0 dt 23)
0
Integratingl, by parts twice gives
o 2k 2kt (1) —2KA (x,t)
2 = (A Fop - 2ELEE O ) o

X fé 2kt2/\”(x,t)—4k:g\’(x7t)+4k/\ (xt) yn(t) dt.

We finally integrate the third term of the integral iBQj,
therefore we set

|3:/OXA(x,t)k(ktg Yy 0t

Integratingls by parts once gives

(25)

o ke xt) JDA ) dit.
(26)

Iy = ()\ (x.t) K

Yn) lt=x —

+8 (A O+ O] vi-+ [A70x,8) = 2N (1) + 2Dy Y o
+"3<( A" (x,t) + Ztk)\/r(x t)— 4k+k(k Dy (xt)+ 4k+2tk3(k—1))\(x7t)) Syn.

(27)
For arbitrarydyn, we obtain the stationary condition

+ 2Q(x 1) — BHGD Y (x t) 4 HE2ED ) (1) = 0

(28)
and the boundary conditions
A(X1)|i=x = 0,
KA (x,) — A/ (X,t)|1=x = O,
(24 27060) = 20 t) + ZHEDA (1) ) e = O
(29)

To determine (x,t), three cases will be examined:
(i) For the general case wheke# 1, 2: solving 8)—(29)
gives

t X2 kL2 itk
AXD =~ —Dx—2 k-1 ) i)
(30)
(i) For k = 1: solving £8)—(29) gives
AXE) = —xt4£2 (1—In;[—(). (31)
(i) For k = 2: solving 8)—(29) gives
A(x,t) = —§+t2 (1+|n)5(). (32)

The successive approximatioys 1, for n > 0, of the
solution y(x) will be readily obtained upon using any
selective functioryp(x). Consequently, the solution

y(X) = lim yn(x). (33)

n—oo
In other words, the correction functional8) will give
several approximations, and therefore the exact soluion i
obtained in the Ilimit of the resulting successive
approximations.

3.2 Numerical examples for the first kind of the
Emden—Fowler type equations

+ 2y MY L f(xg(y) =

O,y(O) = d,}/(O) = )//(0) =

(34)
We will study this equation for a variety of values for the
shape factok and for the given function$(x)g(y). For
comparison reasons we will solve the same examples
solved in [l] by using the Adomian decomposition

method.
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Example 1.

We first consider the Emden—Fowler type equation

n 2 4 9 .

Y'Y — g8y °=0y(0)=1y(0)=y'(0)=0,
(35)

obtained by substitutindk = 1 in (34) and by setting

f(x)g(y) = (< +8)y .
From 31), the Lagrange multiplier fok = 1 is given

by
Axt) = —xt+t2(1—|n)5().

The correction functional for35) becomes

(36)

I

Ys10) = Ya0) + 3 (—xt+12(1=InL)) (v (©)+ B¥a(t) — §1°+ 8)y;®) et

(37)
where n > 0. By selecting the zeroth approximation
Yo = 1, we obtain the following calculated solution
approximations

Yo(x) = 1,

yi(x) = 1+ :—ZLX3+ 5i76x9,

ya(X) = 1+%x3— %x6+ 1_16X - 12??38(124_... ,
ya(x) = 1+ %x3 — %x6+ 1—16x9_ %x12+ e

To facilitate the computational work, we used few terms

of the exponentigly(t),n > 1. This in turn gives the series
solution
_ 1 1e, 1o 5 1
y(X) _1+2x3 e gt (39
that converges to the exact solution
y(X) = V1+x3. (39)

Example 2.

We next consider the linear Emden—Fowler type equation

y 42y + 2y —9(4+10C+ 3x0)y = 0,y(0) = 1,¥/(0) = y"(0) =0,
(40)
obtained by substitutindk = 2 in (34) and by setting
f(X)g(y) = —9(4+ 103+ 3xO)y.
From @2), the Lagrange multiplier fok = 2 is given
by

/\(x,t):—§+t2(1+lnf—(). (41)

The correction functional fodQ) becomes
Yn+1(X) = Yn(X)

1 (-5 Y)) (O + $Ya(0) + B¥al0) - 94+ 103+ 3y (1)) o,
(42)

forn>0.
By selecting the zeroth approximation = 1, we
obtain the following calculated solution approximations

Yo(X) = 1,
ST NIV ix9,

y1(x) ViR

Ya2(X) = 1+X3+%x6+ %X9+ %SXH—FM’
y3(x) = 1+X3+%x6+%x9+ %&124_... ,
ya(x) = 1+x3+%x6+%x9+%x12+---,

This in turn gives the series solution

1 1 1
_ 3, 46, T 9, T 12
y(X) =1+4x +2!x +3!x +4!x +ey

that converges to the exact solution

(43)

y(x) =€*. (44)

Example 3.

We now consider the nonlinear Emden—Fowler type
equation

y'+ 8y + 8y —6(10+ 2+ x0)e ¥ = 0,y(0) = 0,y/(0) =y"(0) =0,
(45)
obtained by substitutingk = 3 in (34) and by setting
f(x)g(y) = —6(10+ 233+ x8)e¥.

From 30), the Lagrange multiplier fok = 3 is given

i 2 1 ,/t\4 L t\3
235G ()

The correction functional ford6) becomes

A(x,t) = (46)

Yn+1(X) = Yn(X)

+R (55 R (1)) (Yo )+ Eya() + & valt) — 6(10+ 2%+ t9)e 1)) i,

(47)
for n > 0. By selecting the zeroth approximatigg = 0,
we obtain the following calculated solution
approximations
Yo(x) =0,
_ 1o, 1 o
yi(x) =X+ 28~ + 165°
B 1 1 4 199 4»
yz(X)—X3+2—8X6+E_)X—W02 + -
B 1 ¢ 1 4 3391 45
y3(X) _x3+28x + 162 " Taod T
_ 1 1 o 11
y4(X) —X3+2—8X6+E_)X _ZX +---,
This in turn gives the series solution
_ 16, 1o 1
y(x) =x3 SX T =X (48)

(@© 2015 NSP
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that converges to the exact solution or equivalently

B 3 X " "
y) =In(14+53). (49) 5yn+l(x):5yn(x)+5/0 Axt) (yn(t)+|fyn(t)) dt,

Example 4. (57)
where we used(g(yn(t))) = 0.
We conclude this section by considering the Lane-Emden  proceeding as before, we evaluate the integral at the

type equa‘uon right side in steps. We first integrate
" 8 " X
Y'Y+ 2y +y"=0,y(0) =1,y (0) =y'(0) =0, |1:/ Ay (t) dt. (58)
(50) 0
Jf(x)=1.
From @0), the Lagrange multiplier fok = 4 is given ;= (A (x, )yl — A/ (x,t)yl + A" (% )Yn) [t=x — Jor A" (%, t)yn(t) dt.
by (59)
We next integrate the second term of the integralGin) (
1, 1,/t\> 1,/t\4
— T2y (- x (= therefore we set
AL) = —gt = 3% (x) X (x) S
X
The correction functional fol50) becomes lp = / A (x,t)lf(y,g(t) dt. (60)
0
Yn+1(X) = Yn(X) . . .
+ (7 1212 (1)°1 12 (L) ) (y/r/]«( )+ Byi(t) + %}yﬂ“(t)) dt, Integratingl by parts twice gives
(52)
for n > 0. By selecting the zeroth approximatign = 1, l2 = ( (X, t)k)/n Myn( )) lt=x
we obtain the following calculated solution X KA (x)—2KiA () + 2KA (x,0) (61)
approximations + Jo : T = yn(t) dt.
Yol = 1 L In view of (58)—(61), Eq. 67) becomes
yi(x) = 1— g—ox3
1 m . 5yn+1( ) = 8Yn(X)
Y200 = 1= 55X 5592% ( (x.t)yn+ [ (X t)% =A'( })/ +[ "(x,t) — %)\’(X-,t)ﬂ%)yn}) lt=x
-~ 1 m m(17m—12) A( ka7 (x 272k %()\ 1)) Sy
Vo(X) = 1= o o= e, + I3 (227000 + EA" 0 t) — BA () + FA () ) By .
ya(x) = 1- gioxsyn;oxs - n;gg;zlééxh mﬁf;&;;?gg&zzs) X2, For arbitrarydy,, we obtain the stationary condition
This in turn gives the series solution —A"(x,1) + lg)\”(x,t) - f_g)\’(x,t) + f_;()‘ (x,t) =0 (63)
Y(X) = 1— dC + 33355C — Doaaraoy® + m(ﬁéglfggii%%gf At +(53) and the boundary conditions
Substitutingm = 0 gives the exact solution as A(X0)}i—x = 0
Y = 1 (54) A A XDl =0 (64
90" - (1427068 = 5N () + EA (D) ) e = O.
. To determiné (x,t), three cases will be examined:
3.3 The Secon.d r.nOdel' the VIM and the (i) For the general case wheke# 1,2: solving 63)—(64)
Lagrange multipliers gives
In this section we will follow the analysis presented for the {2 “t 32 N
first kind. For Eqg. 14) the correction functional reads A(xt) = o ko1 K—Dk=2) ()—() . (65)

Y1) = Y000 + 3 A 01) (0 + £330+ FOBOR)) At o £ 3 Soving 63-(64) gives
(55)
whered(g(yn(t))) = 0. _ 42 t
To deternmine the optimal value af(x,t), we ta.ke the Alxt) = —t04xt (1+ In x) (66)
variation for both sides with respectyg(x) to obtain (i) For k — 2: solving 63)~(64) gives
Byni1(9) = SYn(¥)+ 8 [5 A (1) (v (1) + Eyn() + F(©)On(D) ) at, , ¢
(56) Alxt) = —xt+t2 (1-In2). (67)
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The successive approximatioys 1, forn> 0, of the  To facilitate the computational work, we used few terms of
solution y(x) will be readily obtained upon using any the exponentiad=® (1) n> 1. This in turn gives the series

selective functioryp(x). Consequently, the solution solution
T 1 1 1 1
y(X) - r!mo yn(X). (68) y(x) — _)(4 _ ixg — §’)(12_ leﬁ_ §X20_|_ . (73)

In other words', thg correction functiona@@) will give  ihat converges to the exact solution
several approximations, and therefore the exact solusion i
obtained in the limit of the resulting successive y(xX) = In(1—x4). (74)
approximations.

Example 2.
3.4 Numerical examples for th.e second kind of We next consider the nonlinear Emden—Fowler type
the Emden—Fowler type equations equation
In this section, we study several numerical examples fory" + 2y’ + 3y — 2x2(16+52¢5+ 7x1%y’ = 0,y(0) = 1,y'(0) = y"(0) =0,
the second case of the Emden—Fowler type equations of (75)
the third-order in the form obtained by substitutink = 2 in (69) and by setting
f(x)g(y) = —22x2(16+ 52¢5+ 7x10)y".
y + )—ij// + f(X)g(y) =0,y(0) = a,y (0) =y"(0) =0 ] From 67), the Lagrange multiplier fok = 2 is given
y
(69) t
We will study this equation for a variety of values for the A(xt) = —xt+t? (1 —In )—() : (76)

shape factok and for the given function§(x)g(y). The correction functional for75) becomes

Example 1.

Ye1(X) = Yn(X)
We first consider the nonlinear Emden—Fowler type -+ X (—xt+t2(1—Int)) (y/r/,’(t)-s-%y;;(t)—%’tz(16+52ts+7t1°)y;(t)) dt,
equation 77)
P 4 for n> 0. By selecting the zeroth approximatigs = 1,
Y +3y +4x(9+22¢+x)e ¥ =0,y(0)=0Y(0) =y (0)=0, e obtain the following calculated solution

. i . (7,0) approximations
obtained by substitutindk = 1 in (69) and by setting

f(X)g(y) = 4x(9+ 22 +x8)e~¥. Yo(x) =1,

From 66), the Lagrange multiplier fok = 1 is given 1 13 10 1 45

=14+ = —
by : VL0 = 145X+ 25X X
2
AGt) = —t24xt (141 ). 7Dy = 1+%X5+gxlo+ 527976Xl5+""
The correction functional for70) becomes
0 ya(X) = 1+%x5+gx1°+ %x15+ :

Yn+1(X) = Yn(X)
+J5 (—tP4xt(141Ink)) (y;’(t) + %y’,;(t)+4t(9+22t4+t8)e’33’"(‘>) dt, o _ . .
(72) This in turn gives the series solution

for n > 0. By selecting the zeroth approximatigg = 0,

we obtain the following calculated solution  y(x)=1+ le + g'x10+ Ex15+ £x2°+ )
approximations 2 8 16 128
that converges to the exact solution
oo () = —= (79)
11 1 Y(X) = .
= -8 12 1-x8
V() 49" 363"
1 11129 4721
R S : I 12 16,
y2(X) 5X ~ 3574 22200 T Example 3.
1 1 295721 We now consider the nonlinear Emden—Fowler type
e le Llaa 16, . _ yp
¥3(x) 2% 73 " 1185808 ’ equation
1 11 13 W e ,
Ya(x) = =X = 5 = 2x = D04 Y+ + 8y +2(4+x3)y*8:o,y<0):1,>/<0):>/’<0)(:88,)

(@© 2015 NSP
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obtained by substitutindk = 3 in (69) and by setting
f(x)g(y) = 2(4+x°)y~®.

From ©5), the Lagrange multiplier fok = 3 is given
by

Axt) =t%— Zxt— =x?(=)3. 1
(xt) =2 = Sxt— () (81)
The correction functional fol80) becomes

Ynt1(X) = Yn(X)
+ I3 (2= 3= DEL°) (o (©)+ Fyn() + 204+ B)yp®)
(82)
for n > 0. By selecting the zeroth approximatigg = 1,
we obtain the following calculated solution
approximations

Yo(X) = 1,
y1(X) = 1_% _ 1_25)(67
ya(x) = 1— %x3_ %Xe 851)(saJr |

This in turn gives the series solution

1

1 5 10
_q_*3_ -~ 2.9 Y 1>
y(x) =1 3x 9x 81x 243x +---,  (83)
that converges to the exact solution
1
y(x) = (1-x)3. (84)

Example 4.

approximations
Yo(X) =1,

o ls 11 g
yl(X) =1+ §X3+ ﬂx +7—92X s
1 1 19
— 1431 —x8 94 ...
y2(X) +3 +18X +3168X 4+
_q.ts, 16, 1o
y3(X) = 1+3x3+ 18x + 162x ,

This in turn gives the series solution

1 1 1 1
B < ST B 12, .
y(X) +3 + 18x + 162x + 1944x +--, (88)
that gives the exact solution
3
y(x) =e%. (89)

4 Conclusion

In this work, we have presented a framework to establish
two kinds of Emden—Fowler type equations of third-order.
Unlike the standard Emden—Fowler equations where the
shape factor is unique, we showed that there are more
than one shape factor for equations of order greater than
or equal to 3 for one case and only one shape factor for
another case. Similarly, the singular point appears once in
the standard form, whereas in the established cases, the
singular pointx = 0 may appear twice. We used the
variational iteration method for treating linear and
nonlinear problems to illustrate our analysis. A variety of
Lagrange multipliers was derived where the shape factor s
play a major role in its determination. The calculated
results from the recursion scheme are effective for all
shape factor valueg greater than or equal to 1. The
obtained results validate the reliability and rapid

We conclude this section by considering the linear Emden-convergence of the VIM.

Fowler type equation

y'+ 3y — (10+10¢+x0)y = 0,y(0) = 1,y (0) = y(0) = O,
(85
obtained by substitutindk = 4 in (69) and by setting
f(x)g(y) = —(10+ 103+ x0)y.
From ©5), the Lagrange multiplier fok = 4 is given
by
_le L Lol
A(xt) = 2t 3xt &X (X) . (86)

The correction functional foi85) becomes

1"

Yn+1(X) = Yn(X)
+ I3 (32— b= H2LY) (Y )+ $a(0) — (10+ 103 +0)ya(t)) o,
(87)

for n > 0. By selecting the zeroth approximatigp = 1,
we obtain the following calculated solution
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