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Abstract: In this paper, we establish two kinds of Emden–Fowler type equations of third order. We investigate the linear and the
nonlinear third-order equations, with specified initial conditions, by using the systematic variational iteration method. We corroborate
this study by investigating several Emden–Fowler type examples with initial value conditions.

Keywords: Emden–Fowler equation; variational iteration method; Lagrange multipliers.

1 Introduction

Many scientific applications in the literature of
mathematical physics and fluid mechanics can be
distinctively described by the Emden–Fowler equation

y′′+
k
x

y′+ f (x)g(y) = 0,y(0) = y0,y
′(0) = 0, (1)

where f (x) andg(y) are some given functions ofx andy,
respectively, andk is called the shape factor. The Emden–
Fowler equation (1) describes a variety of phenomena in
fluid mechanics, relativistic mechanics, pattern formation,
population evolution and in chemically reacting systems.

For f (x) = 1 and g(y) = ym, Eq. (1) becomes the
standard Lane–Emden equation of the first order and
indexm, given by

y′′+
k
x

y′+ ym = 0,y(0) = y0,y
′(0) = 0, (2)

The Lane–Emden equation (2) models the thermal
behavior of a spherical cloud of gas acting under the
mutual attraction of its molecules [1–12] and subject to
the classical laws of thermodynamics. Moreover, the
Lane–Emden equation of first order is a useful equation in
astrophysics for computing the structure of interiors of
polytropic stars. On the other side, forf (x) = 1 and
g(y) = ey, Eq. (1) becomes the standard Lane–Emden
equation of the second order that models the
non-dimensional density distributiony(x) in an

isothermal gas sphere [9–22] Moreover, the Lane–Emden
equation (2) describes the temperature variation of a
spherical gas cloud under the mutual attraction of its
molecules and subject to the laws of thermodynamics. In
addition, the Lane-Emden equation of the first kind
appears also in other context such as in the case of
radiatively cooling, self-gravitating gas clouds, in the
mean-field treatment of a phase transition in critical
adsorption and in the modeling of clusters of
galaxies [17–19].

The Lane-Emden equation was first studied by
astrophysicists Jonathan Homer Lane and Robert Emden,
where they considered the thermal behavior of a spherical
cloud of gas acting under the mutual attraction of its
molecules and subject to the classical laws of
thermodynamics. The well-known Lane-Emden equation
has been used to model several phenomena in
mathematical physics and astrophysics such as the theory
of stellar structure, the thermal behavior of a spherical
cloud of gas, isothermal gas spheres, the theory of
thermionic currents, and in the modeling of clusters of
galaxies. The Emden–Fowler equation was studied by
Fowler [2] to describe a variety of phenomena in fluid
mechanics and relativistic mechanics among others. The
singular behavior that occurs atx = 0 is the main
difficulty of Equations (1) and (2).
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We note that (1) was derived by using the equation

x−k d
dx

(

xk d
dx

)

y+ f (x)g(y) = 0,y(0) = y0,y
′(0) = 0,

(3)
wherek is called the shape factor.

The Lane–Emden equation and the Emden–Fowler
equation were subjected to a considerable size of
investigation, both numerically and analytically. A variety
of useful methods were used to obtain exact and
approximate solutions as well. Examples of the methods
that were applied are the Adomian decomposition
method [6, 7, 18], the variational iteration
method [8, 10, 14, 23], the homotopy perturbation
method [22], the rational Legendre pseudospectral
approach [17], and other methods as well [19,20].

We aim in this work to establish two kinds of
Emden–Fowler type equations of third-order. Our
approach depends mainly on using different orders of the
differential operators involved in the Emden–Fowler
sense given in (3). Our next goal of this work is to apply
the variational iteration method to handle the developed
Emden–Fowler type equations of third-order. Several
numerical examples, with specified initial conditions, of
each model will be examined to handle the singular point
that exists in each model.

2 Constructing Emden–Fowler type
equations of third-order

To derive the Emden-Fowler type equations of third-order,
we use the sense of (3) and set

x−k dm

dxm

(

xk dn

dxn

)

y+ f (x)g(y) = 0. (4)

To determine third-order equations, it is clear that we
should select

m+n= 3,m,n≥ 1 (5)

that leads to the following two choices

m= 2,n= 1, (6)

and
m= 1,n= 2. (7)

Substitutingm= 2,n= 1 in (4) gives

x−k d2

dx2

(

xk d
dx

)

y+ f (x)g(y) = 0. (8)

This in turn gives the first Emden–Fowler type equation of
third order in the form

d3y
dx3 +

2k
x

d2y
dx2 +

k(k−1)
x2

dy
dx + f (x)g(y) = 0,y(0) = y0,y′(0) = y′′(0) = 0,

(9)

or equivalently

y
′′′
+ 2k

x y
′′
+ k(k−1)

x2 y
′
+ f (x)g(y) = 0,y(0) = y0,y′(0) = y′′(0) = 0.

(10)
Notice that the singular pointx= 0 appears twice asx and
x2 with shape factors 2k and k(k − 1), respectively.
Moreover, the third term vanishes fork = 1 and the shape
factor in this case reduces to 2.

For f (x) = 1, Eqs. (10) becomes the Lane–Emden type
equation of the third-order given by

y
′′′
+ 2k

x y
′′
+ k(k−1)

x2 y
′
+g(y) = 0,y(0) = y0,y′(0) = y′′(0) = 0.

(11)
In the other case, we substitutem= 1,n= 2 in (4) to

obtain

x−k d
dx

(

xk d2

dx2

)

y+ f (x)g(y) = 0. (12)

This in turn gives the second kind of Emden–Fowler type
equation of third order of the form

d3y
dx3 +

k
x

d2y
dx2 + f (x)g(y) = 0,y(0) = y0,y

′(0) = y′′(0) = 0,

(13)
or equivalently

y
′′′
+

k
x

y
′′
+ f (x)g(y) = 0,y(0) = y0,y

′(0) = y′′(0) = 0.

(14)
Unlike the first kind, the singular point in the second case
x= 0 appears once with shape factork. Moreover, the first-
order termy′(x) term vanishes in the second kind.

For f (x) = 1, Eqs. (14) becomes the Lane–Emden type
equations of the third–order given by

y
′′′
+

k
x

y
′′
+g(y) = 0,y(0) = y0,y

′(0) = y′′(0) = 0. (15)

3 Analysis of the method

In this section, we will present the analysis for the use of
the variational iteration method (VIM) for a reliable
treatment of the two models of the Emden–Fowler type
equations of third-order. The main focus will be, as will
be seen later, on the derivation of a variety of Lagrange
multipliers for each models and investigate several
examples as well.

3.1 The first model: the VIM and the Lagrange
multipliers

In this section we will present the essential steps for using
the variational iteration method and the determination of
the Lagrange multipliers for various values ofk. Consider
the differential equation

Ly+Ny= h(t), (16)
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where L and N are linear and nonlinear operators
respectively, andh(t) is the source term.

To use the VIM, a correction functional for equation
(16) should be used in the form

yn+1(x) = yn(x)+
∫ x

0
λ (Lyn(ξ )+N ỹn(ξ )) dξ , (17)

whereλ is a general Lagrange’s multiplier, which can be
identified optimally via the variational theory, and ỹn is a
restricted variation, which meansδ ỹn = 0.

For Eq. (10) the correction functional reads

yn+1(x) = yn(x)+
∫ x
0 λ (x, t)

(

y
′′′
n (t)+

2k
t y

′′
n(t)+

k(k−1)
t2

y
′
n(t)+ f (t)g̃(yn(t))

)

dt,

(18)
whereδ (g̃(yn(t))) = 0.

To determine the optimal value ofλ (x, t), we take the
variation for both sides with respect toyn(x) to obtain

δyn+1(x) = δyn(x)+ δ
∫ x

0 λ (x, t)
(

y
′′′
n (t)+

2k
t y

′′
n(t)+

k(k−1)
t2

y
′
n(t)+ f (t)g̃(yn(t))

)

dt,

(19)
or equivalently

δyn+1(x) = δyn(x)+ δ
∫ x

0 λ (x, t)
(

y
′′′
n (t)+

2k
t y

′′
n(t)+

k(k−1)
t2

y
′
n(t)

)

dt,

(20)
where we usedδ (g̃(yn(t))) = 0.

For illustrative purposes, we evaluate the integral at the
right side in steps. We first integrate

I1 =
∫ x

0
λ (x, t)y′′′n (t)dt. (21)

IntegratingI1 by parts three times gives

I1 = (λ (x, t)y′′n −λ ′(x, t)y′n+λ ′′(x, t)yn) |t=x−
∫ x
0 λ ′′′(x, t)yn(t)dt.

(22)
We next integrate the second term of the integral in (20),
therefore we set

I2 =
∫ x

0
λ (x, t)

2k
t

y′′n(t)dt. (23)

IntegratingI2 by parts twice gives

I2 =
(

λ (x, t)2k
t y′n− 2ktλ ′(x,t)−2kλ (x,t)

t2
yn(t)

)

|t=x

+
∫ x

0
2kt2λ ′′(x,t)−4ktλ ′(x,t)+4kλ (x,t)

t3
yn(t)dt.

(24)

We finally integrate the third term of the integral in (20),
therefore we set

I3 =
∫ x

0
λ (x, t)

k(k−1)
t2 y′n(t)dt. (25)

IntegratingI3 by parts once gives

I3 =
(

λ (x, t) k(k−1)
t2

yn

)

|t=x−
∫ x

0
k(k−1)tλ ′(x,t)−2k(k−1)λ (x,t)

t3
yn(t)dt.

(26)

In view of (21)–(26), Eq. (20) becomes

δyn+1(x) = δyn(x)

+δ
(

λ (x, t)y′′n +
[

λ (x, t)2k
t −λ ′(x, t)

]

y′n+
[

λ ′′(x, t)− 2k
t λ ′(x, t)+ 2k+k(k−1)

t2
)yn

])

|t=x

+
∫ x

0

(

−λ ′′′(x, t)+ 2k
t λ ′′(x, t)− 4k+k(k−1)

t2
λ ′(x, t)+ 4k+2k(k−1)

t3
λ (x, t)

)

δyn.

(27)
For arbitraryδyn, we obtain the stationary condition

−λ ′′′(x, t)+ 2k
t λ ′′(x, t)− 4k+k(k−1)

t2
λ ′(x, t)+ 4k+2k(k−1)

t3
λ (x, t) = 0

(28)
and the boundary conditions

λ (x, t)|t=x = 0,
2k
t λ (x, t)−λ ′(x, t)|t=x = 0,

(

1+λ ′′(x, t)− 2k
t λ ′(x, t)+ 2k+k(k−1)

t2
λ (x, t)

)

|t=x = 0.

(29)
To determineλ (x, t), three cases will be examined:

(i) For the general case wherek 6= 1,2: solving (28)–(29)
gives

λ (x, t) =− t2

(k−1)(k−2)
− x2

k−1

( t
x

)k+1
+

x2

k−2

( t
x

)k
.

(30)
(ii) For k= 1: solving (28)–(29) gives

λ (x, t) =−xt+ t2
(

1− ln
t
x

)

. (31)

(iii) For k= 2: solving (28)–(29) gives

λ (x, t) =− t3

x
+ t2

(

1+ ln
t
x

)

. (32)

The successive approximationsyn+1, for n≥ 0, of the
solution y(x) will be readily obtained upon using any
selective functiony0(x). Consequently, the solution

y(x) = lim
n→∞

yn(x). (33)

In other words, the correction functional (18) will give
several approximations, and therefore the exact solution is
obtained in the limit of the resulting successive
approximations.

3.2 Numerical examples for the first kind of the
Emden–Fowler type equations

y
′′′
+ 2k

x y
′′
+ k(k−1)

x2 y
′
+ f (x)g(y) = 0,y(0) = α,y′(0) = y′′(0) = 0

(34)
We will study this equation for a variety of values for the
shape factork and for the given functionsf (x)g(y). For
comparison reasons we will solve the same examples
solved in [1] by using the Adomian decomposition
method.
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Example 1.

We first consider the Emden–Fowler type equation

y
′′′
+

2
x

y
′′ − 9

8
(x6+8)y−5 = 0,y(0) = 1,y′(0) = y′′(0) = 0,

(35)
obtained by substitutingk = 1 in (34) and by setting
f (x)g(y) =− 9

8(x
6+8)y−5.

From (31), the Lagrange multiplier fork = 1 is given
by

λ (x, t) =−xt+ t2
(

1− ln
t
x

)

. (36)

The correction functional for (35) becomes

yn+1(x) = yn(x)+
∫ x
0

(

−xt+ t2
(

1− ln t
x

))

(

y
′′′
n (t)+

2
t y

′′
n(t)− 9

8(t
6+8)y−5

n

)

dt,

(37)
where n ≥ 0. By selecting the zeroth approximation
y0 = 1, we obtain the following calculated solution
approximations

y0(x) = 1,

y1(x) = 1+
1
2

x3+
1

576
x9
,

y2(x) = 1+
1
2

x3− 1
8

x6+
31
576

x9− 2705
101376

x12+ · · · ,

y3(x) = 1+
1
2

x3− 1
8

x6+
1
16

x9− 3935
101376

x12+ · · · ,

y4(x) = 1+
1
2

x3− 1
8

x6+
1
16

x9− 5
128

x12+ · · · ,
. . . .

To facilitate the computational work, we used few terms
of the exponentialyn(t),n≥ 1. This in turn gives the series
solution

y(x) = 1+
1
2

x3− 1
8

x6+
1
16

x9− 5
128

x12+ · · · , (38)

that converges to the exact solution

y(x) =
√

1+ x3
. (39)

Example 2.

We next consider the linear Emden–Fowler type equation

y
′′′
+ 4

xy
′′
+ 2

x2 y
′ −9(4+10x3+3x6)y= 0,y(0) = 1,y′(0) = y′′(0) = 0,

(40)
obtained by substitutingk = 2 in (34) and by setting
f (x)g(y) =−9(4+10x3+3x6)y.

From (32), the Lagrange multiplier fork = 2 is given
by

λ (x, t) =− t3

x
+ t2

(

1+ ln
t
x

)

. (41)

The correction functional for (40) becomes

yn+1(x) = yn(x)

+
∫ x

0

(

− t3
x + t2

(

1+ ln t
x

)

)(

y
′′′
n (t)+

4
t y

′′
n(t)+

2
t2

y′n(t)−9(4+10t3+3t6)yn(t)
)

dt,

(42)

for n≥ 0.
By selecting the zeroth approximationy0 = 1, we

obtain the following calculated solution approximations

y0(x) = 1,

y1(x) = 1+ x3+
5
14

x6+
1
30

x9
,

y2(x) = 1+ x3+
1
2

x6+
101
630

x9+
44

1365
x12+ · · · ,

y3(x) = 1+ x3+
1
2

x6+
1
6

x9+
1361
32760

x12+ · · · ,

y4(x) = 1+ x3+
1
2

x6+
1
3!

x9+
1
4!

x12+ · · · ,
. . . .

This in turn gives the series solution

y(x) = 1+ x3+
1
2!

x6+
1
3!

x9+
1
4!

x12+ · · · , (43)

that converges to the exact solution

y(x) = ex3
. (44)

Example 3.

We now consider the nonlinear Emden–Fowler type
equation

y
′′′
+ 6

xy
′′
+ 6

x2 y
′ −6(10+2x3+ x6)e−3y = 0,y(0) = 0,y′(0) = y′′(0) = 0,

(45)
obtained by substitutingk = 3 in (34) and by setting
f (x)g(y) =−6(10+2x3+ x6)e−3y.

From (30), the Lagrange multiplier fork = 3 is given
by

λ (x, t) =
t2

2
− 1

2
x2
( t

x

)4
+ x2

( t
x

)3
. (46)

The correction functional for (45) becomes

yn+1(x) = yn(x)

+
∫ x

0

(

t2
2 − 1

2x2
(

t
x

)4
+ x2

(

t
x

)3
)(

y
′′′
n (t)+

6
t y

′′
n(t)+

6
t2

y
′
n(t)−6(10+2t3+ t6)e−3yn(t)

)

dt,

(47)
for n ≥ 0. By selecting the zeroth approximationy0 = 0,
we obtain the following calculated solution
approximations

y0(x) = 0,

y1(x) = x3+
1
28

x6+
1

165
x9
,

y2(x) = x3+
1
28

x6+
1

165
x9− 199

2002
x12+ · · · ,

y3(x) = x3+
1
28

x6+
1

165
x9− 3391

14014
x12+ · · · ,

y4(x) = x3+
1
28

x6+
1

165
x9− 1

4
x12+ · · · ,

. . . .

This in turn gives the series solution

y(x) = x3− 1
2

x6+
1
3

x9− 1
4

x12+ · · · , (48)
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that converges to the exact solution

y(x) = ln(1+ x3). (49)

Example 4.

We conclude this section by considering the Lane–Emden
type equation

y
′′′
+

8
x

y
′′
+

12
x2 y

′
+ ym = 0,y(0) = 1,y′(0) = y′′(0) = 0,

(50)
obtained by substitutingk= 4 in (34) and by settingg(y)=
ym

, f (x) = 1.
From (30), the Lagrange multiplier fork = 4 is given

by

λ (x, t) =−1
6

t2− 1
3

x2
( t

x

)5
+

1
2

x2
( t

x

)4
. (51)

The correction functional for (50) becomes

yn+1(x) = yn(x)

+
∫ x

0

(

− 1
6t2− 1

3x2
(

t
x

)5
+ 1

2x2
(

t
x

)4
)(

y
′′′
n (t)+

8
t y

′′
n(t)+

12
t2

ym
n (t)

)

dt,

(52)
for n ≥ 0. By selecting the zeroth approximationy0 = 1,
we obtain the following calculated solution
approximations
y0(x) = 1,

y1(x) = 1− 1
90

x3
,

y2(x) = 1− 1
90

x3 m

2592
x6
,

y3(x) = 1− 1
90

x3 m
3880

x6− m(17m−12)
230947200

x9
,

y4(x) = 1− 1
90

x3 m
3880

x6− m(17m−12)
230947200

x9+
m(679m2−1182m+528)

2909934720000
x12

,

. . . .

This in turn gives the series solution

y(x) = 1− 1
90x3+ m

38880x
6− m(17m−12)

230947200x
9+ m(679m2−1182m+528)

2909934720000 x12+ · · · .
(53)

Substitutingm= 0 gives the exact solution as

y(x) = 1− 1
90

x3
. (54)

3.3 The second model: the VIM and the
Lagrange multipliers

In this section we will follow the analysis presented for the
first kind. For Eq. (14) the correction functional reads

yn+1(x) = yn(x)+
∫ x
0 λ (x, t)

(

y
′′′
n (t)+

k
t y

′′
n(t)+ f (t)g̃(yn(t))

)

dt,

(55)
whereδ (g̃(yn(t))) = 0.

To determine the optimal value ofλ (x, t), we take the
variation for both sides with respect toyn(x) to obtain

δyn+1(x) = δyn(x)+ δ
∫ x

0 λ (x, t)
(

y
′′′
n (t)+

k
t y

′′
n(t)+ f (t)g̃(yn(t))

)

dt,

(56)

or equivalently

δyn+1(x) = δyn(x)+ δ
∫ x

0
λ (x, t)

(

y
′′′
n (t)+

k
t

y
′′
n(t)

)

dt,

(57)
where we usedδ (g̃(yn(t))) = 0.

Proceeding as before, we evaluate the integral at the
right side in steps. We first integrate

I1 =
∫ x

0
λ (x, t)y′′′n (t)dt. (58)

IntegratingI1 by parts three times gives

I1 = (λ (x, t)y′′n −λ ′(x, t)y′n+λ ′′(x, t)yn) |t=x−
∫ x
0 λ ′′′(x, t)yn(t)dt.

(59)
We next integrate the second term of the integral in (57),
therefore we set

I2 =
∫ x

0
λ (x, t)

k
t
y′′n(t)dt. (60)

IntegratingI2 by parts twice gives

I2 =
(

λ (x, t) k
t y′n− ktλ ′(x,t)−kλ (x,t)

t2
yn(t)

)

|t=x

+
∫ x

0
kt2λ ′′(x,t)−2ktλ ′(x,t)+2kλ (x,t)

t3
yn(t)dt.

(61)

In view of (58)–(61), Eq. (57) becomes

δyn+1(x) = δyn(x)

+δ
(

λ (x, t)y′′n +
[

λ (x, t) k
t2
= λ ′(x, t)

]

y′n+
[

λ ′′(x, t)− k
t λ ′(x, t)+ k

t2
)yn

])

|t=x

+
∫ x

0

(

−λ ′′′(x, t)+ k
t λ ′′(x, t)− 2k

t2
λ ′(x, t)+ 2k

t3
λ (x, t)

)

δyn.

(62)
For arbitraryδyn, we obtain the stationary condition

−λ ′′′(x, t)+
k
t

λ ′′(x, t)− 2k
t2 λ ′(x, t)+

2k
t3 λ (x, t) = 0 (63)

and the boundary conditions

λ (x, t)|t=x = 0,
k
t2

λ (x, t)+λ ′(x, t)|t=x = 0,
(

1+λ ′′(x, t)− k
t λ ′(x, t)+ k

t2
λ (x, t)

)

|t=x = 0.
(64)

To determineλ (x, t), three cases will be examined:
(i) For the general case wherek 6= 1,2: solving (63)–(64)
gives

λ (x, t) =
t2

k−2
− xt

k−1
− x2

(k−1)(k−2)

( t
x

)k
. (65)

(ii) For k= 1: solving (63)–(64) gives

λ (x, t) =−t2+ xt
(

1+ ln
t
x

)

(66)

(iii) For k= 2: solving (63)–(64) gives

λ (x, t) =−xt+ t2
(

1− ln
t
x

)

. (67)
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The successive approximationsyn+1, for n≥ 0, of the
solution y(x) will be readily obtained upon using any
selective functiony0(x). Consequently, the solution

y(x) = lim
n→∞

yn(x). (68)

In other words, the correction functional (56) will give
several approximations, and therefore the exact solution is
obtained in the limit of the resulting successive
approximations.

3.4 Numerical examples for the second kind of
the Emden–Fowler type equations

In this section, we study several numerical examples for
the second case of the Emden–Fowler type equations of
the third-order in the form

y
′′′
+

k
x

y
′′
+ f (x)g(y) = 0,y(0) = α,y′(0) = y′′(0) = 0

(69)
We will study this equation for a variety of values for the
shape factork and for the given functionsf (x)g(y).

Example 1.

We first consider the nonlinear Emden–Fowler type
equation

y
′′′
+ 1

xy
′′
+4x(9+22x4+ x8)e−3y = 0,y(0) = 0,y′(0) = y′′(0) = 0,

(70)
obtained by substitutingk = 1 in (69) and by setting
f (x)g(y) = 4x(9+22x4+ x8)e−3y.

From (66), the Lagrange multiplier fork = 1 is given
by

λ (x, t) =−t2+ xt
(

1+ ln
t
x

)

. (71)

The correction functional for (70) becomes

yn+1(x) = yn(x)

+
∫ x

0

(

−t2+ xt
(

1+ ln t
x

))

(

y
′′′
n (t)+

1
t y

′′
n(t)+4t(9+22t4+ t8)e−3yn(t)

)

dt,

(72)
for n ≥ 0. By selecting the zeroth approximationy0 = 0,
we obtain the following calculated solution
approximations

y0(x) = 0,

y1(x) = −x4− 11
49

x8− 1
363

x12
,

y2(x) = −x4− 1
2

x8− 11129
35574

x12− 4721
24200

x16+ · · · ,

y3(x) = −x4− 1
2

x8− 1
3

x12− 295721
1185800

x16+ · · · ,

y4(x) = −x4− 1
2

x8− 1
3

x12− 1
4

x16+ · · · ,
. . . .

To facilitate the computational work, we used few terms of
the exponentiale−3yn(t)

,n≥ 1. This in turn gives the series
solution

y(x) =−x4− 1
2

x8− 1
3

x12− 1
4

x16− 1
5

x20+ · · · , (73)

that converges to the exact solution

y(x) = ln(1− x4). (74)

Example 2.

We next consider the nonlinear Emden–Fowler type
equation

y
′′′
+ 2

xy
′′
+ 2

x2 y
′ − 25

8 x2(16+52x55+7x10)y7 = 0,y(0) = 1,y′(0) = y′′(0) = 0,

(75)
obtained by substitutingk = 2 in (69) and by setting
f (x)g(y) =− 25

8 x2(16+52x5+7x10)y7.
From (67), the Lagrange multiplier fork = 2 is given

by

λ (x, t) =−xt+ t2
(

1− ln
t
x

)

. (76)

The correction functional for (75) becomes

yn+1(x) = yn(x)

+
∫ x

0

(

−xt+ t2
(

1− ln t
x

))

(

y
′′′
n (t)+

2
t y

′′
n(t)− 25

8 t2(16+52t5+7t10)y7
n(t)

)

dt,

(77)
for n ≥ 0. By selecting the zeroth approximationy0 = 1,
we obtain the following calculated solution
approximations

y0(x) = 1,

y1(x) = 1+
1
2

x5+
13
72

x10+
1

144
x15

,

y2(x) = 1+
1
2

x5+
3
8

x10+
377
1296

x15+ · · · ,

y3(x) = 1+
1
2

x5+
3
8

x10+
5
16

x15+ · · · ,
. . . .

This in turn gives the series solution

y(x) = 1+
1
2

x5+
3
8

x10+
5
16

x15+
35
128

x20+ · · · , (78)

that converges to the exact solution

y(x) =
1√

1− x5
. (79)

Example 3.

We now consider the nonlinear Emden–Fowler type
equation

y
′′′
+ 3

xy
′′
+ 6

x2 y
′
+2(4+ x3)y−8 = 0,y(0) = 1,y′(0) = y′′(0) = 0,

(80)
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obtained by substitutingk = 3 in (69) and by setting
f (x)g(y) = 2(4+ x3)y−8.

From (65), the Lagrange multiplier fork = 3 is given
by

λ (x, t) = t2− 1
2

xt− 1
2

x2(
t
x
)3
. (81)

The correction functional for (80) becomes

yn+1(x) = yn(x)

+
∫ x

0

(

t2− 1
2xt− 1

2x2( t
x)

3
)

(

y
′′′
n (t)+

3
t y

′′
n(t)+2(4+ t3)y−8

n

)

dt,

(82)
for n ≥ 0. By selecting the zeroth approximationy0 = 1,
we obtain the following calculated solution
approximations

y0(x) = 1,

y1(x) = 1− 1
3

x3− 1
105

x6
,

y2(x) = 1− 1
3

x3− 1
9

x6− 83
1575

x9+ · · · ,

y3(x) = 1− 1
3

x3− 1
9

x6− 5
81

x9+ · · · ,
. . . .

This in turn gives the series solution

y(x) = 1− 1
3

x3− 1
9

x6− 5
81

x9− 10
243

x12+ · · · , (83)

that converges to the exact solution

y(x) = (1− x3)
1
3
. (84)

Example 4.

We conclude this section by considering the linear Emden–
Fowler type equation

y
′′′
+ 4

xy
′′ − (10+10x3+ x6)y= 0,y(0) = 1,y′(0) = y′′(0) = 0,

(85)
obtained by substitutingk = 4 in (69) and by setting
f (x)g(y) =−(10+10x3+ x6)y.

From (65), the Lagrange multiplier fork = 4 is given
by

λ (x, t) =
1
2

t2− 1
3

xt− 1
6

x2(
t
x
)4
. (86)

The correction functional for (85) becomes

yn+1(x) = yn(x)

+
∫ x

0

(1
2t2− 1

3xt− 1
6x2( t

x)
4
)

(

y
′′′
n (t)+

4
t y

′′
n(t)− (10+10t3+ t6)yn(t)

)

dt,

(87)
for n ≥ 0. By selecting the zeroth approximationy0 = 1,
we obtain the following calculated solution

approximations

y0(x) = 1,

y1(x) = 1+
1
3

x3+
1
24

x6+
1

792
x9
,

y2(x) = 1+
1
3

x3+
1
18

x6+
19

3168
x9+ · · · ,

y3(x) = 1+
1
3

x3+
1
18

x6+
1

162
x9
,

. . . .

This in turn gives the series solution

y(x) = 1+
1
3

x3+
1
18

x6+
1

162
x9+

1
1944

x12+ · · · , (88)

that gives the exact solution

y(x) = e
x3
3
. (89)

4 Conclusion

In this work, we have presented a framework to establish
two kinds of Emden–Fowler type equations of third-order.
Unlike the standard Emden–Fowler equations where the
shape factor is unique, we showed that there are more
than one shape factor for equations of order greater than
or equal to 3 for one case and only one shape factor for
another case. Similarly, the singular point appears once in
the standard form, whereas in the established cases, the
singular pointx = 0 may appear twice. We used the
variational iteration method for treating linear and
nonlinear problems to illustrate our analysis. A variety of
Lagrange multipliers was derived where the shape factor s
play a major role in its determination. The calculated
results from the recursion scheme are effective for all
shape factor valuesk greater than or equal to 1. The
obtained results validate the reliability and rapid
convergence of the VIM.
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