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Weibull-Gompertz-Fr échet’s Growth Models

J. Leonel Rocha1,∗, Abdel-Kaddous Taha2 and Danìele Fournier-Prunaret3
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Abstract: In this paper, motivated by the interest and relevance of thestudy of tumor growth models, a central point of our investigation
is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet’s functions: a class of continuous-
defined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that dependingon the
properties of this class of functions in a neighborhood of a bifurcation pointPBB, in a two-dimensional parameter space, there exists
an order regarding how the infinite number of periodic orbitsare born: the Sharkovsky ordering. Consequently, the corresponding
symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that undersome
sufficient conditions, Weibull-Gompertz-Fréchet’s functions have a particular bifurcation structure: a big bang bifurcation pointPBB.
This fractal bifurcations structure is of the so-called “box-within-a-box” type, associated to a boxēΩ1, where an infinite number of
bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques.
The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.

Keywords: Weibull-Gompertz-Fréchet’s growth models, symbolic dynamics, kneading sequences, big bang bifurcation, fold and flip
bifurcation curves
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1 Introduction, preliminaries and motivation

In the last decades, the study of growth models has been
one of the research topics of greatest relevance. Classical
growth models such as the logistic, exponential,
Gompertz, Richards, Von Bertalanffy and Blumberg
equations continue to be widely and frequently used with
success to describe several demographic, economic,
ecological, biological and medical processes. In addition
to these types of models, we can consider all special cases
of the generalized logistic model and also of the
Tsoularis-Wallace-Schaefer model, among other models
studied, see for example [13], [14], [29], [31], [36] and
references therein. In particular, the Gompertzian growth
model was initially introduced as an actuarial function for
the study of aging processes. Nowadays, the Gompertz

function is widely used in several studies. Its application
is highlighted in gene expression, enzyme kinetics,
oxygenation of hemoglobin, intensity of photosynthesis
and in the growth of organisms, cells, organs, tissues,
tumours or populations, among other topics of
investigation, see for example [9], [10], [30], [34], [35]
and [37].

In [24], Rocha et al present a new dynamical
approach to Weibull-Gompertz-Fréchet’s growth models,
defined by ordinary differential equations, whose
particular solutions are extreme value distributions of
Weibull, Gompertz and Fréchet type. For more details in
extreme value distribution see for example [20]. In that
work, the difference equations correspondent to
Weibull-Gompertz-Fréchet’s growth models are
interpreted as non-linear coupling of probabilities, which
determine Frechetzian, Gompertzian and Weibullzian
dynamics, respectively. We remark that the dynamical
study of these growth laws, defined as a family of
unimodal maps, depends on two biological parameters:
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the intrinsic growth rate of the number of individuals or
cells and the growth-retardation factor. This
characterization reflects the natural history of the
malignant tumour.

The growth models of Weibull type are defined by the
next normalized differential equation,

d fN(t)
dt

= c fN(t) (− ln fN(t))
1− 1

α , with 0<
1
α

< 1, (1)

where fN(t) is the normalized number or size of the
population at an arbitrary timet > t0 and t0 > 0 is an
initial time. The parameterc is an intrinsic growth rate or
a retardation factor andα is a shape parameter or a
growth-retardation factor. This model has light left tail
and finite right endpoint, see Fig.1(a). This ordinary
differential equation has a particular real solution, for
c = 1, which is defined by the Weibull−α extreme value
distribution, i.e.,

fN(t) =

{

e−(−t)α
if t < 0

1 if t ≥ 0
.

On the other hand, in [24] are also studied growth
models of Fréchet type, which are established by the
normalized differential equation,

d fN(t)
dt

= c fN(t) (− ln fN(t))
1+ 1

α , with
1
α

> 0. (2)

Laws in the extreme value Fréchet domain of attraction
for maxima must have infinite right endpoint, and can be
severely heavy-tailed. Its right tail is heavier than in the
standard gaussian, which is in the Gumbel domain of
attraction, see Fig.1(c). A particular real solution of
Eq.(2), for c = 1, is given by the Fréchet−α extreme
value distribution, i.e.,

fN(t) =

{

0 if t ≤ 0
e−t−α

if t > 0
.

In particular, when 1
α → 0+ in Eqs.(1) and (2) is

obtained the Gompertz growth model. This model has
been extensively studied and used for compare dynamics
of tumour growth in several host organisms, see for
example [9], [10], [30], [37] and references therein. The
differential equations (1) and (2) can be considered as
particular cases of the Hyper-Gompertz growth model,
introduced by Turneret al in 1976, see [34] and [35].
These models are also seen as a generalization of
ecological growth function, or simply generalized
Gompertz function.

Presently, the study and treatment of tumors is one of
the most current and worrying problems in biological and
medical research. In fact, the disease of cancer continues
to be the scourge of humanity; being a leading cause of
early death, and resistant to therapies aimed at its
eradication. In this work, motivated by the interest and
relevance of the study of tumor growth models, we

investigated the chaotic dynamics and the bifurcations
structure of Weibull-Gompertz-Fréchet’s growth models.
The purpose of this paper is to present an original
contribution within the framework of growth models,
simultaneously using techniques of symbolic dynamics
and bifurcations theory.

The plan of the work is as follows. In Sec.2 we
consider Weibull-Gompertz-Fréchet’s functions and study
their dynamical behavior. These families of unimodal
maps are proportional to the right hand side of Eqs.(1)
and (2), as stated in [24]. In Lemma 1 are presented
sufficient conditions for the occurrence of stability of the
fixed point, period doubling, chaos, chaotic semistability
and non admissibility of Weibull-Gompertz-Fréchet’s
dynamics, dependent on the variation of the intrinsic
growth rate.

In Sec.3, using iteration theory and symbolic
dynamics techniques, the complex dynamical behavior of
these functions is developed and investigated. Such as in
Sec.2, this different approach allowed us to identify
several population dynamics regimes. This study is
completely characterized by the symbolic sequences
associated to the critical point itinerary. In Table1 can be
seen a topological order for several symbolic sequences
and their corresponding topological entropies, depending
on the variation of the growth-retardation factor and of
the intrinsic growth rate. See Appendix for details on
symbolic dynamics theory.

Sec.4 is devoted to the study of bifurcation structures
of Weibull-Gompertz-Fréchet’s functions, in the
two-dimensional(α, r) parameter space. This analysis is
done in Subsec.4.1, based on the configurations of the
fold and flip bifurcation curves. In Subec.4.2 we provide
and discuss conditions for the existence of a big bang
bifurcation point for these families of continuous
functions. Typically, the big bang bifurcations are studied
in the context of piecewise-smooth discontinuous
dynamics. Moreover, this big bang bifurcation point is
associated to the “box-within-a-box” fractal bifurcations
structure. However, the sufficient conditions required by
Mira in [17] for the existence of “box-within-a-box”
fractal bifurcations structure are not satisfied for
Weibull-Gompertz-Fréchet’s functions throughout a
parameter region. For this reason we consider Conjecture
1 to prove Proposition1. In addition to the results
obtained by symbolic dynamics techniques in Sec.3, to
support our study in Sec.4, we present fold and flip
bifurcations curves and a numerical simulation of the
bifurcation diagram associated. Finally, in Sec.5, we
discuss our results and provide some relevant conclusions.

2 Dynamical approach to growth models of
Weibull-Gompertz-Fr échet (WGF) type

The aim of this section is to study a dynamical approach
to Weibull-Gompertz-Fréchet’s growth models,
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(a) Weibull functions(α = 1.2) (b) Gompertz functions(α = 2) (c) Fréchet functions(α = 5)
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Fig. 1: Graphics of the Weibull-Gompertz-Fréchet’s (WGF) functions f (x; r,α) for several parameters values of the intrinsic growth
rate(r) and of the growth-retardation factor(α): Weibull functions atα = 1.2 andr = 1.1,1.2,1.3,1.5,1.68; Gompertz functions at
α = 2 andr = 2,2.15,2.3,2.5,2.71 and Fréchet functions atα = 5 andr = 0.07,0.1,0.13,0.16,0.21. Remark that some values of the
intrinsic growth rates were chosen in order to illustrate the results presented in Table1.

designated by Weibull-Gompertz-Fréchet’s functions,
which we will denote by WGF functions. This class of
unimodal maps were firstly defined in [24]. Consider the
family of functionsf : ]0,1]→ [0,1], defined by

f (x; r,α) = r x (− lnx)α−1 (3)

where x is the normalized number of tumour cells or
tumour size,r > 0 is an intrinsic growth rate of the
number of cells (individual contribution), that
summarizes mutual inhibitions between cells and the
competition for nutrients, and it is sometimes viewed as a
retardation factor, andα > 1 is a shape parameter, that is
sometimes called the growth-retardation factor.
Considering the particular solutions of the differential
equations given by Eqs.(1) and (2), we will say that: if
1 < α < 2, then f (x; r,α) are Weibull’s functions; if
α = 2, then f (x; r,α) are Gompertz’s functions; and if
α > 2, then f (x; r,α) are Fréchet’s functions. We request
claim particular attention to the diversity and complexity
of these families of functions, which are exemplified in
Fig.1.

The WGF functions satisfies the following conditions:

(A1) f (x; r,α) is continuous on]0,1];
(A2) f (x; r,α) has a critical pointc∈ ]0,1[, wherec= e1−α ;
(A3) f ′(x; r,α) 6= 0,∀x ∈ ]0,1[\{c}, f ′(c; r,α) = 0 and

f ′′(c; r,α) < 0;
(A4) f (x; r,α) ∈C3 (]0,1[);
(A5) the Schwarzian derivative off (x; r,α) given by

S( f (x; r,α)) =
f ′′′(x; r,α)

f ′(x; r,α)
−

3
2

(

f ′′(x; r,α)

f ′(x; r,α)

)2

,

verifies:
(i) S( f (x; r,α)) < 0,∀x∈ ]x1,x2[\{c}, with

S( f (x1; r,α)) = S( f (x2; r,α)) = 0, ∀1< α < 2;

(ii) S( f (x; r,α)) < 0,∀x∈ ]x1,1[\{c}, with

S( f (x1; r,α)) = 0, ∀α ≥ 2.

Remark that in condition (i) of(A5) it is verified that
S( f (x; r,α)) ≥ 0, ∀x ∈ ]0,x1] ∪ [x2,1]. This constraints
cause problems that are analyzed in Sec.4. On the other
hand, in condition (ii) of (A5) it is verified that
S( f (x; r,α)) ≥ 0, ∀x ∈ ]0,x1]. In this case, if we restrict
the WGF functions to the interval

[

x1,max{ f−1(y1; r,α)}
]

, with y1 = f (x1; r,α)

then this failure not disturb the dynamical behavior of this
family of functions, as usual unimodal maps. The
negative Schwarzian derivative ensures a “good” dynamic
behavior of the models: continuity and monotonicity of
topological entropy, order in the succession of
bifurcations, the existence of an upper limit to the number
of stable orbits and the non-existence of wandering
intervals, [15] and [33]. See [32] to a topological
dynamics approach of unimodal maps. The unimodal
maps theory has proved to be useful in many branches of
science. In population dynamics, aiming to model the
growth of a certain species, the use of these families has
been frequent. A similar approach is used at [1], [23],
[24], [25], [26], [27] and [28].

We note that the WGF functions only have one fixed
point, given by

Ar,α = e−r(1−α)−1

. (4)
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The existence of this unique fixed point implies that these
growth models do not contemplate directly a region of
extinction, becausex∈ ]0,1] andx= 0 is not a fixed point
of the WGF functionsf . However, this issue is debatable
as we can see in [24], where is presented a regression or
spontaneous extinction region that characterizes growth
models of very small tumors, possibly unable to outwit
immune surveillance.

The WGF functions also verify that,

lim
α→1+

f (x; r,α) = rx. (5)

In fact, when we consider the limit caseα → 1+, we have a
degenerated case for this class of functions. This property
will be the subject of study in Sec.4.

In the next result we provide sufficient conditions for
the occurrence of stability, period doubling, chaos and
non admissibility of WGF dynamics, dependent on the
variation of the intrinsic growth rater. This result is
illustrated in Fig.2, at the(α, r) parameter plane.

Lemma 1.Let f(x; r,α) be the WGF functions, defined by
Eq.(3), with r > 0, α > 1 and satisfying(A1)− (A5). It is
verified that:

(i) (Stability region of Ar,α ) if r < [2−1(α −1)]1−α , then
there is a linearly stable fixed point Ar,α ∈ ]0,1[ whose
basin of attraction is]0,1[;

(ii) (Period doubling and chaotic regions) if
[2−1(α − 1)]1−α < r < [e−1(α − 1)]1−α , then the
interval [ f 2(c; r,α), f (c; r,α)] is forward invariant
with basin of attraction]0,1[;

(iii) (Chaotic semistability curve) if r= [e−1(α −1)]1−α ,
then]0,1] is invariant and verifies that

⋃

n≥0

f n(x; r,α) = [0,1]

and

lim
n→∞

1
n
|D f n(x; r,α)| > 0,

for Lebesgue almost every x∈]0,1].

Proof. If r < [2−1(α − 1)]1−α and considering that by
definitionr > 0, Eq.(3), then| f ′(Ar,α ; r,α)|< 1. Thus, the
fixed point Ar,α , given by Eq.(4), is linearly stable. By
Modified Singer’s Theorem, see [33], the pointAr,α is the
only linearly stable fixed point in]0,1[ and the immediate
basin of Ar,α includes the orbit of the critical pointc.
Thus, the interval [c, f (c; r,α)] is contained in the
immediate basin ofAr,α . As the pointAr,α is the only
fixed point in ]0,1[, this implies that f (x; r,α) > x on
]0,Ar,α [. Thus, the interval]0, f (c; r,α)] is also contained
in the basin of attraction ofAr,α . Considering that the
WGF functions f map the interval[ f (c; r,α),1[ into
]0, f 2(c; r,α)] and

]0, f 2(c; r,α)] ⊂]0, f (c; r,α)[,

then]0,1[ is the basin of attraction ofAr,α .
If [2−1(α − 1)]1−α < r < [e−1(α − 1)]1−α , then the

fixed point Ar,α is not linearly stable. In this case, it is
verified that f (x; r,α) > x on x ∈]0,c] and f has no fixed
point at ]0,c]. This implies that all the orbits of every
x∈]0,1[ enters on the interval[ f 2(c; r,α), f (c; r,α)], after
a finite time of iterations. Asf ′(x; r,α) < 0 on x ∈]c,1],
then f maps the interval [c, f (c; r,α)] into
[ f 2(c; r,α), f (c; r,α)]. On the other hand, considering that
f (x; r,α) > x on x ∈]0,c], then f maps the interval
[ f 2(c; r,α),c] into [ f 2(c; r,α), f (c; r,α)]. Thus,

f
(

[ f 2(c; r,α), f (c; r,α)]
)

⊆ [ f 2(c; r,α), f (c; r,α)],

i.e., the interval[ f 2(c; r,α), f (c; r,α)] is forward invariant
with basin of attraction]0,1[.

Finally, if r = [e−1(α − 1)]1−α , or in an equivalent
way, f (c; r,α) = 1, then there is anr > 0 such that the
maximum size growth of the population is equal to the
critical density. Clearly, the fixed pointAr,α is linearly
unstable. Since it is verified thatf ′(x; r,α) > 0 on
x ∈]0,c[, the WGF functions f maps ]0,c] into
]0, f (c; r,α)]. Also, since f ′(x; r,α) < 0 on
x ∈]c, f (c; r,α)] and f (c; r,α) = 1, f maps[c, f (c; r,α)]
into [0,1]. Hence, ]0,1] is invariant, which is called
invariant absorbing segment of level one, see [18]. To
show that this interval admits complex dynamics it
suffices to check the conditions for which the WGF
functions f on ]0,1] admits an ergodic absolutely
continuous invariant measure, see the theorem presented
in [19]. In fact, the WGF functions satisfy(A1)− (A5)
conditions. Also, it is verified thatf 2(c; r,α) = 0 and
f (0;r,α) is not defined, then it follows thatf n(c; r,α) is
not defined forn > 2. Thus, f n(c; r,α) 6= c, ∀n > 2.
Considering that,

lim
x→0+

f ′(x; r,α)> 1 and f 2(c; r,α) = 0,

the Modified Singer Theorem, [33], implies that the WGF
functions on]0,1] has no attracting periodic points. Thus,
from the theorem presented by Misiurewicz in [19] and
Birkhoff’s Ergodic Theorem follows the properties of(iii ).

We note that similar results to Lemma1 are obtained
to Blumberg’s, Richards’ and von Bertalanffy’s growth
models, in [26], [27] and [28], respectively.

Remark.Note that for WGF functionsf (x; r,α), whenr
varies monotonically in the interval]0, r̄[, where ¯r is such
that f (c; r̄ ,α) =1, there exist a fixed pointAr,α such that its
multiplier (λ = f ′ calculated at the fixed point) decreases
monotonically from+1, and a fixed point withλ which
increases monotonically from+1.

Fig.2 shows the bifurcation diagram of WGF
functions f (x; r,α), at (α, r) ∈ ]0,5]×]0,3] parameter
plane. The white region is the spontaneous extinction
region, see Remark3 of Sec.3. The blue region is the
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Fig. 2: Bifurcation diagram of WGF functions in the(α, r)
parameter plane. The white region is the spontaneous extinction
region, see Remark3 of Sec.3. The blue region is the
stability region. The region between the blue and the gray
ones corresponds to period doubling region and chaotic region
(existence region of cycles as shown on top of figure). The gray
region is the non admissible region.

stability region of the fixed pointAr,α , stated in Lemma1
(i), that is upper bounded by the curve

r̃(α) = [2−1(α −1)]1−α
. (6)

The region between the blue and the gray ones
corresponds to period doubling region and chaotic region,
also stated in Lemma1 (ii). The period doubling region is
well evidenced, highlighting in particular the cycles of
order 2 and 4. The chaotic region is upper bounded by the
curve

r̄(α) = [e−1(α −1)]1−α
, (7)

as stated in Lemma1 (iii ). This curve separates the chaotic
region and the non admissible region; it is also designated
by semi-stability curve, see also [31]. The gray region is
the no admissible region. At this region the graphic of any
WGF function is no longer totally in the invariant set]0,1].
Almost all trajectories off (beasides a hyperbolic set of
zero measure) leave the interval]0,1] and either escape
to infinity. The maps under these conditions are not good
models for tumor or population dynamics. The curves ˜r(α)
and ¯r(α) are bifurcations curves and are studied in detail
on Sec.4.

3 Symbolic Dynamics of WGF functions

This section is also devoted to the study of the dynamical
behavior of the proposed models. However, this study is

done based on symbolic dynamics techniques, see the
Appendix for more details. The complexity of these
models, described by the WGF functions, is displayed as
a function at the (α, r) parameter plane. Different
population dynamics regimes are identified, when the
intrinsic growth rater and the shape parameter or the
growth-retardation phenomenaα are modified.
Generically, the dynamics of the WGF functions
f (x; r,α), at the two-dimensional(α, r) parameter space,
split in the following categories: stability, period
doubling, chaos, chaotic semistability and non
admissibility.

From the point of view of the population dynamics, a
behavior of stability is defined when a population persists
for intermediate initial densities and otherwise goes
extinct. Theper capitagrowth rate of the population is
greater than one for a subinterval of population densities,
see [23], [24], [25] and [31]. On the other hand, the
symbolic dynamics techniques prove to be a good
alternative to determine an approximation to the stability
region. Generically, in the(α, r) parameter plane, the
stability region is characterized by the iterates of the
critical point that are always attracted to the positive fixed
point Ar,α , given by Eq.(4). The case whereAr,α ≡ c
corresponds to the superstability, the pointAr,α is super
stable or super attractive when it is merging withc. Thus,
we have,

lim
n→∞

f n(c; r,α) = Ar,α , for 0< r(α) < r̂(α)

where ˆr(α) represents the super stable curve of the cycle
of order 2, given in implicit form byf 2(c; r,α) = c. Note
that the curve ˆr(α) is distinct from the curve ˜r(α), given
by Eq.(6), as stated in Lemma1 (i).

In the(α, r) parameter plane, the set of the super stable
or super attractive points defines the super stable curves of
the cycle of ordern= 1. In the region before reaching the
super stable curve, the symbolic sequences associated to
the critical points orbits are of the typeCL∞. After this
super stable curve, the symbolic sequences are of the type
CR∞, see Table1. In this parameter region, the topological
entropy off (x; r,α) is null, see for example [12], [16], [24]
and [25].

Remark.For some applications of these models, such as
tumor growths, it is convenient to consider in the stability
region a subregion designated by spontaneous extinction
or tumour regression region, see [24]. This region is
characterized by growths models of very small tumours,
possibly unable to outwit immune surveillance. In this
region, the iterates of the WGF functionsf (x; r,α) are
always attracted to a fixed pointx0 sufficiently close to
zero, withα > 1 and

0< r(α)< r1(α) = (− ln(x0))
1−α

.

In this context, the concept of the fixed pointx0
“sufficiently close to zero” must be related to the
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Table 1: Topological order: symbolic sequences or kneading sequences associated tok–periodic orbit of the critical pointc, the growth-
retardation factor atα = 1.01,1.02,1.05,1.1,1.2,1.6,2,3.5,5, and topological entropy (htop( f )) for several values of the intrinsic
growth rate (r). Figs.1 and4 illustrate graphics of the WGF functions corresponding to some values considered in this table.

k S(r) α = 1.01 α = 1.02 α = 1.05 α = 1.1 α = 1.2 α = 1.6 α = 2 α = 3.5 α = 5 htop

2 (CR)∞ 1.05550 1.09875 1.20879 1.36334 1.61809 2.1914 2.2184 0.7417 0.0946 0.000
4 (CRLR)∞ 1.05648 1.10079 1.21442 1.37606 1.64842 2.3170 2.4342 0.9355 0.1371 0.000
8 (CRLR3LR)∞ 1.05667 1.10119 1.21551 1.37853 1.65436 2.3421 2.4784 0.9786 0.1474 0.000
6 (CRLR3)∞ 1.05728 1.10169 1.21690 1.38168 1.66193 2.3744 2.5356 1.0360 0.1614 0.241
8 (CRLR5)∞ 1.05728 1.10194 1.21758 1.38323 1.66565 2.3904 2.5641 1.0654 0.1688 0.304
5 (CRLR2)∞ 1.05728 1.10245 1.21900 1.38646 1.67344 2.4241 2.6246 1.1294 0.1853 0.414
3 (CRL)∞ 1.05747 1.10285 1.22011 1.38899 1.67956 2.4508 2.6730 1.1821 0.1994 0.481
6 (CRL2RL)∞ 1.05748 1.10288 1.22019 1.38916 1.67997 2.4526 2.6763 1.1858 0.2004 0.481
5 (CRL2R)∞ 1.05758 1.10308 1.22074 1.39042 1.68302 2.4660 2.7007 1.2130 0.2078 0.544
7 (CRL2R3)∞ 1.05760 1.10323 1.22087 1.39071 1.68372 2.4691 2.7062 1.2192 0.2095 0.562
8 (CRL2R2LR)∞ 1.05763 1.10317 1.22106 1.39114 1.68458 2.4728 2.7132 1.2270 0.2117 0.591
∞ CRL∞ 1.05765 1.10322 1.22114 1.39133 1.68520 2.4756 2.7182 1.2328 0.2133 ln2

specificity of the tumours growths investigation and
clinical therapy. Thus, the spontaneous extinction region
illustrated in Fig.2 is upper bounded by the curver1(α),
considering x0 = 10−8. The symbolic sequences
associated to the critical point orbits of these maps are of
the type CL∞, an aperiodic orbit, and its topological
entropy keeps null. In Fig.4 are presented graphics of the
WGF functions f (x; r,α) at α = 1.01 andr = 0.9 and
r = 0.5, which illustrate this special case.

The period doubling region corresponds to the
parameters values in the(α, r) parameter plane, to which
the population size oscillates asymptotically between 2n

states, withn∈ N. A cascade of sudden changes provokes
the oscillation of the (two possible) values of population
size in several limit cycles of period 2n. In period
doubling cascade, the symbolic sequences corresponding
to the iterates of the critical point are determined by the
iterations f 2n

(c; r,α) = c, with c the critical point of
f (x; r,α). Analytically, these equations define the
super-stability curves of the cycle of order 2n. In the
(α, r) parameter plane, the period doubling region is
bounded below by the curve of the intrinsic growth rate
values where the period doubling starts, ˜r(α), given by
Eq.(6), correspondent to the 2-period symbolic sequences
(CR)∞, see Table1. Usually, the upper limit of this region
is determined using values of intrinsic growth rater(α),
corresponding to the first symbolic sequence with non
null topological entropy. Commonly, in the numerical
results, the symbolic sequence that identifies the
beginning of chaos is

(

CRLR3
)∞

, a 6-periodic orbit, see
Table 1, [24] and [25]. However, can be identified
symbolic sequences whose period is less in Sharkovsky’s
ordering, see [32], for example the 10-periodic orbit
(

CRLR3LRLR
)∞

. We remark that the symbolic dynamics
techniques to determine this upper limit is an
approximation as good as we want. The unimodal maps

in this region also have null topological entropy, see for
example [12], [16], [24] and [25].

In the chaotic region, the symbolic dynamics is
characterized by iterates of the WGF functionsf (x; r,α)
that originate orbits of several types, which already
present patterns of chaotic behavior, as stated in Lemma1
(ii). In this region the topological entropy is a
non-decreasing function related to the parameterr, until
reaches the maximum value ln 2, see [15]. This result is a
consequence of the negative Schwartzian derivative and is
observed for some parameter values in the last column of
Table1. In the (α, r) parameter plane, the chaotic region
is bounded below by the curve of the intrinsic growth rate
values where the chaos starts, as discussed in Sec.4. The
upper limit is the curve of the intrinsic growth rate values
for which the chaotic semi-stability curve appears.

In the chaotic semistability curve the dynamical
behavior of the WGF functionsf (x; r,α) is chaotic and
this curve is defined byf (c; r,α) = 1, given by Eq.(7) and
stated in Lemma 1 (iii). The symbolic sequence
associated to the chaotic semistability curve is of the type
CRL∞, with topological entropy ln2, see Table1. After
the chaotic region we have a non admissible region. In
this case, there is no essential extinction region as in the
cases of existence of Allee effect, see [23] and [26]. The
non admissible region includes the values of the
parameters for which the intrinsic growth rates
r(α) > r̄(α), see Eq.(7) and Fig.2. The graphic of any
WGF function is no longer totally in the invariant set
]0,1]. The maps under these conditions not already belong
to the studied families of the WGF functions and are not
good models for populations dynamics.

Table 1 illustrate the application of the iteration
theory and the symbolic dynamics techniques to the WGF
functions. In this table can be seen a topological order for
several symbolic sequences and their corresponding
topological entropies, depending on the variation of the
growth-retardation factor (α) and of the intrinsic growth
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rate (r). From these numerical results, it was concluded
that exists a monotonicity of the topological entropy and
isentropic curves. This results are also verified in others
growth models, see for example [24] and [25].

Remark. The numerical values obtained allow us to
establish that whenα → 1+ it is verified thatr → 1+. The
symbolic sequences follow the usual unimodal kneading
sequences in the topological ordered tree, see [11], [21]
and [22]. Thus, depending on the properties of the WGF
functions in a neighborhood of the point
(α → 1+, r → 1+), which we will denote byPBB, there
exist an order regarding how the infinite number of
periodic orbits are born: the Sharkovsky ordering, [32].
See [5] for the discontinuous case. On the other hand, the
numerical results obtained via the symbolic dynamics are
in agreement with the results given by Eq.(5). This
special behavior in the neighborhood of the pointPBB, in
the(α, r) parameter plane, is the motivation for the study
presented in the next section: a global fractal bifurcation
organization generated by the WGF functions.

4 Bifurcation structures of WGF functions

The study of bifurcations is made to investigate behaviors
of the system on the parameter plane in order to know
which cycles are observed to the variation of parameters.
In Subsec.4.1 we recall briefly some fundamental
definitions in bifurcation theory, we will employ the
classical fold and flip bifurcations. For more details on
bifurcation theory see for example [7], [17] and [18]. In
Subsec.4.2, another kind of bifurcation point is evidenced
for WGF functions, in the two-dimensional(α, r)
parameter space. This point is called big-bang bifurcation
point and is associated with a particular bifurcation
structure. Subsec.4.2 is devoted to the study of this
special type of bifurcation, where we provide and discuss
sufficient conditions for the existence of a big bang
bifurcation point for WGF functions.

4.1 Fold and flip bifurcations of WGF functions

In this section we investigate in detail the bifurcation
structure of the WGF functions, in the two-dimensional
(α, r) parameter space. We say that an ordern cycle
(x1,x2, ...,xn) is stable (or attractive) iff

∣

∣

∣

∣

∂ f n

∂x
(x j ; r,α)

∣

∣

∣

∣

< 1, ∀ j = 1,2, ...,n.

Thefold bifurcation corresponds to the appearance of two
ordern cycles, one stable and the other unstable, when it
is verified

∂ f n

∂x
(x j ; r,α) = 1, ∀ j = 1,2, ...,n.
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Fig. 3: Bifurcation curves of WGF functions in the(α, r)
parameter plane.Λ1, Λ2, Λ3, Λ4 andΛ5 are the flip bifurcation
curves of the cycles of ordern= 1,2,3,4,5, respectively;ΛNA is
the bifurcation curve of non admissibility (chaotic semistability
curve) andPBB is the big bang bifurcation point.

On the other hand, the flip bifurcation corresponds to the
change of stability of an ordern cycle and the appearance
of an order 2n cycle. Before the bifurcation, the ordern
cycle is stable, after the bifurcation, the ordern cycle is
unstable and the 2n cycle is stable. At the bifurcation it is
verified that,

∂ f n

∂x
(x j ; r,α) =−1, ∀ j = 1,2, ...,n.

Generically, to WGF functionsf (x; r,α), defined by
Eq.(3), with r > 0 andα > 1, the fold and flip bifurcation
curves relative to a cycle of ordern are determined as
follows. If x ∈ ]0,1[ is a point of an ordern cycle that
satisfies the equations

f n(x; r,α) = x and
∂ f n

∂x
(x; r,α) = 1 (8)

then there exists a solutionϕn, such that the fold
bifurcation curves relative to a cycle of ordern ∈ N are
given by r = ϕn(x;α), and are denoted byΛ(n)0. On the
other hand, ifx∈ ]0,1[ is such that,

f n(x; r,α) = x and
∂ f n

∂x
(x; r,α) =−1 (9)

then exists a solutionψn, such that the flip bifurcation
curves relative to a cycle of ordern ∈ N are given by
r = ψn(x;α), and are denoted byΛn, see some examples
in Fig.3.

In particular, to WGF functionsf (x; r,α), defined by
Eq.(3), with r > 0 andα > 1, the fold bifurcation curve
of the fixed pointAr,α , corresponding to Eq.(8) for n= 1,
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has no meaning at the(α, r) parameter plane. Reason why
for these models does not exist an extinction region. Note
that the fold bifurcation curveΛ(1)0 is the bifurcation curve
which defines the transition between the extinction region
and the stability region, see also [23] and [26].

On the other hand, the flip bifurcation curveΛ1
correspondent to Eq.(9) for n= 1, i.e., the flip bifurcation
curve of the nonzero stable fixed pointAr,α , is defined by

x= e−r(1−α)−1

and ψ1(x;α) = [2−1(α −1)]1−α
. (10)

Note that the flip bifurcation curveΛ1 is the bifurcation
curve which defines the transition between the stability
region and the period doubling region, such as established
in Lemma1 (i) and Eq.(6). In Fig.3 is presented in detail
some flip bifurcation curves for the WGF functions.

So, the period doubling region is bounded below by the
flip bifurcation curveΛ1, of the stable fixed pointAr,α . The
upper limit of this region is defined by the accumulation
value of the flip bifurcation curves of the cycle of order
2n, of the stable fixed points nonzero, see [17] and [18].
This bifurcation curve is denoted byΛ∞, from Eq.(9) and
consideringx∈ ]0,1[ a fixed point, we have,

Λ∞ = lim
n→∞

ψ2n (x;α) .

The chaotic region is upper bounded by the chaotic
semistability curve or fullshift curve, as stated in Lemma
1 (iii ) and Eq.(7). This bifurcation curve is denoted by
ΛNA and is given by

ΛNA =
{

(α, r) ∈ R
2 : f (c; r,α) = 1

}

=
{

(α, r) ∈ R
2 : r = ζ (α),ζ (α) = [e−1(α −1)]1−α} .

(11)
Note that this curve defines the transition from the chaotic
region to the non admissible region, see Fig.3.

In order to discuss the new kind of bifurcations for
WGF functions, in the next section, the big bang
bifurcation point in the (α, r) parameter plane, the
following property is needed.

Property 1.Let f (x; r,α) be the WGF functions, defined
by Eq.(3), with α > 1, r > 0 and satisfying(A1)− (A5),
Λ1 be the flip bifurcation curve forn = 1, given by
r = ψ1(x;α), Eq.(10), and ΛNA be the semi-stability
curve, given byr = ζ (α), Eq.(11). In the limit case, when
α → 1+, it is verified that the flip bifurcation curveΛ1
and the chaotic semi-stability curveΛNA converge to the
bifurcation pointPBB= (α → 1+, r → 1+).

Proof. Considering the limit case, whenα → 1+ and
∀r > 0, in the equation that defines the chaotic
semistability curveΛNA, given by Eq.(11), one has

lim
α→1+

ζ (α) = lim
α→1+

[e−1(α −1)]1−α = 1+.

Thus, the convergence of the bifurcation curveΛNA to the
bifurcation pointPBB= (α → 1+, r → 1+) follows.

On the other hand, given the flip bifurcation curve for
n = 1, Eq.(10), consideringα → 1+ and ∀r > 0, the
bifurcation curveΛ1 verifies

lim
α→1+

ψ1(x;α) = lim
α→1+

[2−1(α −1)]1−α = 1+,

and consequently, we obtain the following value for the
respective fixed point

lim
r→1+

lim
α→1+

e−r(1−α)−1

= 1.

This means that, in this limit case, the flip bifurcation curve
Λ1 and the chaotic semi-stability curveΛNA intersect on
the pointPBB= (α → 1+, r → 1+), as we wished to prove.
See also Fig.3.

4.2 Big bang bifurcation of WGF functions

Big bang bifurcations occur typically in the context of
piecewise-smooth discontinuous dynamics, whenever two
fixed points cross simultaneously the boundary and
become virtual. These kinds of bifurcation points are
evidenced in the two-dimensional parameter space,
characterizing particular regions always associated with
cycles of different periods. At our knowledge, this
bifurcation point was identified for the first time in [6],
but the designation of “big bang”’ was not given. In [2] it
was proposed that these specific bifurcations be
designated as big bang bifurcations. For more details
about big bang bifurcations see for example [3], [4] [5],
[8] and references therein. In the cited references it was
shown that there are several types of big bang
bifurcations, which cause different kinds of bifurcation
scenarios. We remark that in [26] are given sufficient
conditions for the occurrence of big bang bifurcations for
a class of continuous maps: Blumberg’s functions.

As previously indicated in Sec.2, the WGF functions
f (x; r,α) satisfy the conditions(A1)− (A5) and Remark
2. In particular, it is also verified thatf (x; r,α) are
continuous with respect to the parameterr > 0. However,
as noted in(i) of (A5), the Schwarzian derivative of the
WGF functions is not negative throughout the interval
]0,1], for the parameters values 1< α < 2. See some
examples of graphics of the WGF functionsf (x; r,α)
under these conditions at Fig.4. As is known in other
studies, this disturbance alters some of the classical
properties in the behavior of bifurcations, see for example
[26] and [32]. These special characteristics lead us to
predict some changes in bifurcation structure of the WGF
functions, restricted to the parameter region

R=
{

(α, r) ∈ R2 : 1< α < 2, r > 0
}

.

Thus, the sufficient conditions required by Mira in
[17] for the existence of “box-within-a-box” fractal
bifurcations structure are not satisfied for WFG functions,
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Fig. 4: Graphics of the WGF functionsf (x; r,α) at the
degenerated case forα = 1.01 andr = 2.5,1.05,1.005,0.9,0.5.
Remark that some values of the intrinsic growth rates were
chosen in order to illustrate the results presented in Table1.

restricted toR. The fractal “box-within-a-box” structure
concerns all types of smooth unimodal maps, with
correctly chosen parameter variation.

Nevertheless, an interval of existence of an attractive
limit set at a finite distance can be defined by,

Ω̄1 = [0, r∗1], wherer∗1 = ζ (α), ∀r > 0 and∀α > 1, (12)

with r∗1 given by Eq.(11). This set is called box̄Ω1, inside
which occurs all the possible bifurcations of the WGF
functions. We note that the first real positive bifurcation
value is obtained forr1

1 = ψ1(x;α), given by Eq.(10), and
that the value of fold bifurcation forn= 1 is real negative,
see Fig.3. Considering the restriction to the parameter
regionR, the bifurcation curves are limited inferiorly by
the flip bifurcation curveΛ1 and superiorly by the chaotic
semi-stability curveΛNA. However, we can not omit the
restrictions caused by(i) of (A5), which are also reflected
in definitions given by Eq.(12). Remark that this
constraint does not exist forα ≥ 2, see also [26].

From the above considerations, the bifurcation
analysis made (from fold and flip bifurcations curves,
Fig.3, and numerical simulations of the bifurcation
diagram, Fig.2) and the behavior of the symbolic
sequences associated to parameters variation, Table1 and
Remark3, allow us to formalize the following conjecture:

Conjecture 1. Let f (x; r,α) be the WGF functions,
defined by Eq.(3), with 1 < α < 2, r > 0 and satisfying

(A1)− (A5), Λ(n)0 be the fold bifurcation curves, given by
r = ϕn(x;α), Eq.(8), andΛn be the flip bifurcation curves,
given byr = ψn(x;α), Eq.(9), with all bifurcation curves
relative to a cycle of ordern∈ N. In the limit case, when
α → 1+, it is verified that the fold bifurcation curves
Λ(n)0, for n > 1, and the flip bifurcation curvesΛn, for
n ≥ 1, intersect on the bifurcation point
PBB = (α → 1+, r → 1+), following the
“box-within-a-box” fractal bifurcations structure in the
box Ω̄1.

Proposition 1. Let f(x; r,α) be the WGF functions,
defined by Eq.(3), with α > 1, r > 0 and satisfying
(A1)− (A5), Λ(n)0 be the fold bifurcation curves, given by
r = ϕn(x;α), Eq.(8), andΛn be the flip bifurcation curves,
given by r= ψn(x;α), Eq.(9), with all bifurcation curves
relative to a cycle of order n∈ N. If Conjecture1 is
satisfied, then it is verified that in the limit case, when
α → 1+, the point PBB = (α → 1+, r → 1+) is a big bang
bifurcation point for WGF functions f(x; r,α), from which
the fold bifurcation curvesΛ(n)0, for n > 1, the flip
bifurcation curves Λn, for n ≥ 1, and the chaotic
semi-stability curveΛNA are issuing, following the
“box-within-a-box” fractal bifurcations structure in the
boxΩ̄1.

Proof.From Eq.(4), the WGF functionsf (x; r,α) have one
fixed point given by,

Ar,α = e−r(1−α)−1

. (13)

If α → 1+, for eachr > 0 fixed, it is verified that,

lim
α→1+

f (x; r,α) = rx. (14)

Thus, whenα → 1+ andr → 1+, from Eqs.(13) and (14)
the WGF functions are a degenerated case defined by,

f (x; r → 1+,α → 1+) = x,

and the fixed pointAr,α converges tox = 1. In this limit
case, the dynamics cannot escape from the interval]0,1]
(besides a hyperbolic set of zero measure), see Fig.4.
These conditions are sufficient to state the existence of
the big bang bifurcation pointPBB = (α → 1+, r → 1+).
Therefore, from Conjecture1 and Property1 the desired
result follows.

So, in the studied parameters regionR we have a big
bang bifurcation pointPBB with the “box-within-a-box”
fractal bifurcations structure, associated to the boxeΩ̄1,
where an infinite number of bifurcation curves issue from.
Now, we are ready to formulate the concept of big bang
bifurcation point for the WGF functions, described and
characterized on the previous results.

Definition 1. Let f(x; r,α) be the WGF functions, defined
by Eq.(3), with α > 1, r > 0 and satisfying(A1)− (A5).
The point PBB = (α → 1+, r → 1+) is the big bang
bifurcation point of the WGF functions, with a fractal
structure of “box-within-a-box” type.
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5 Conclusions and discussion

The present work is an original contribution to the
knowledge of the dynamical behavior of the class of
WGF’s continuous functions, which can be used in the
study of tumor growth models. Moreover, we investigated
and characterized the bifurcation structure of the WGF
functions: the big bang bifurcation point of the so-called
“box-within-a-box” type occurs, in the two-dimensional
(α, r) parameter space. The existence of this particular
type of bifurcation is evidenced through the use of
symbolic dynamics techniques and bifurcation theory.
However, such as analyzed in Subsec.4.2 and also in
paper [26], the presence of big bang bifurcation points is
associated with loss of negative Schwarzian derivative.

It is still an open question for which class of maps
similar results can be obtained. However, it is well known
that the big bang bifurcations occur in the context of
piecewise-smooth discontinuous dynamics, whenever two
fixed points cross simultaneously the boundary and
become virtual, see [3], [4], [5], [8] and references
therein. Surely in the sequence of the paper [26], this
work is also a new contribution in the big bang
bifurcation analysis for continuous maps. It can be
expected, that the phenomena of big bang bifurcations for
continuous-defined one-dimensional maps is directly
related to the derivative, at a fixed point or in its
pre-image, not be defined.
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Appendix: Symbolic dynamics

Symbolic dynamics is a research topic of discrete
dynamical systems which has been widely investigated by
Professor Sousa Ramos, by his research group and
collaborators. This theory is composed by a set of results,
methods and techniques, which have a primordial role in
the study of qualitative and quantitative properties of
discrete dynamical systems. The topological complexity
of a dynamical system is usually measured by its
topological entropy. This numerical and topological
invariant is associated to the growth rate of the several
states of dynamical systems. For more details on these
topics see for example [11], [12], [15], [16], [21], [22],
[32] and references therein.

Consider for each value of the parameterr > 0, the
orbit of the critical pointc= e1−α , with α > 1, is given by

Or(c) =
{

xk : xk = f k(c; r,α), k∈ N0

}

(15)

defined by an iterative process, where

xk = f k(c; r,α) = f k(xk−1; r,α).

Thus, for each value of the intrinsic growth rate is
considered the orbit of the number of cells when the
growth rate is maximum. In order to study the topological
properties of these orbits, we associate to each orbitOr(c)
a sequence of symbols, corresponding to the critical point

itinerary, denoted byS(r) = S(r)0 S(r)1 S(r)2 . . .S(r)k . . ., with

k∈ N0, whereS(r)k belongs to the alphabetA = {L,C,R},
with each symbol defined by

S(r)k =



















L if f k(c; r,α) < c

C if f k(c; r,α) = c

R if f k(c; r,α) > c

.

Note that the alphabetA is an ordered set of symbols,
corresponding to the intervals of monotonicity and to the
critical point of the WGF functionsf (x; r,α). The real line
order induces naturally an order relation in the alphabet
A , soL ≺C≺ R. The space of all symbolic sequences of
the alphabetA is denoted byA N.

The expansive maps admit Markov partitions, whose
existence is implicit in the works of Bowen and Ruelle. In
this study, we consider the existence of Markov partitions,
which are characterized by the orbit of the critical point
of the function f (x; r,α), see for example [22]. Consider
the set of points corresponding to thek-periodic orbit or
kneading sequence of the critical point

S(r) = (CS(r)1 S(r)2 . . .S(r)k−1)
∞ ∈ A

N
.

This set of points determines the Markov partition of the
interval I =

[

f 2(c; r,α), f (c; r,α)
]

in a finite number of
subintervals, denoted byPI = {I1, I2, . . . , Ik−1}. The
dynamics of the WGF functionsf (x; r,α) are completely
characterized by the symbolic sequenceS(r) associated to
the critical point itinerary. The WGF functionsf (x; r,α)
and the Markov partitions associated induce subshifts of
finite type whose Markov transition matrices
A= [ai j ],(k−1)× (k−1), are defined by

ai j =







1, if int (I j)⊆ f (int (Ii) ; r,α)

0, otherwise
. (16)

Usually, the subshift is denoted by(∑A,σ), whereσ is a
shift map in∑N

k−1 defined byσ (S1S2 . . .) = S2S3 . . ., with
∑k−1 = {1, . . . ,k−1} corresponding to thek−1 subshifts
states.
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The topological entropy of the WGF functions
f (x; r,α), in the phases space, is defined in the associated
symbolic space as the asymptotic growth rate of the
admissible words (finite symbolic sequences) in relation
to the length of the words, i.e.,

htop( f ) = lim
n→∞

lnN(n)
n

(17)

whereN (n) is the number of admissible words of length
n. For a subshift of finite type, unidirectional or
bidirectional, described by the Markov transition matrix
A, the topological entropy is given byhtop(σ) = ln(λA),
whereλA is the spectral radius of the transition matrixA.
For a more detailed approach about subshifts of finite type
and the Perron-Frobenius Theorem for Markov transition
matrix, see [12], [15], [22] and references therein.

References

[1] S.M. Aleixo, J.L. Rocha, J. Comput. Inf. Technol.20, 201-
207 (2012).

[2] V. Avrutin, G. Wackenhut, M. Schanz, in Proc. Int.
Conf. Tools for Mathematical Modelling (Mathtols’99), St.
Petersburg, 4-20 (1999).

[3] V. Avrutin, M. Schanz, Nonlinearity19, 531-552 (2006).
[4] V. Avrutin, M. Schanz, S. Banerjee, Nonlinearity19, 1875-

1906 (2006).
[5] V. Avrutin, A. Granados, M. Schanz, Nonlinearity24, 2575-

2598 (2011).
[6] J-P. Carcasses, Sur Quelques Structures Complexes de

Bifurcations de Systemes Dynamiques, Doctorat de
L’Universite Paul Sabatier, INSA, Toulouse (1990)

[7] D. Fournier-Prunaret, Int. J. Bifurc. Chaos1, 823-838 (1991).
[8] L. Gardini, U. Merlone, F. Tramontana, J. Econ. Behav.

Organ.80, 153-167 (2011).
[9] F. Kozusko, Z. Bajzer, Math. Biosci.185, 153-167 (2003).
[10] A.K. Laird, S.A. Tyler, A.D. Barton, Growth29, 233-248

(1965).
[11] J.P. Lampreia, J. Sousa Ramos, Portugaliae Math.54 (1),

1-18 (1997).
[12] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics

and Codings, Cambridge University Press, Cambridge, 1995.
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