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Abstract: A new, elementary proof of a well-known result, stating tiwetset of zeros of a two-variable analytic real functioclly
a star with an even number of branches, is given. In contoasther proofs available in the literature, ours is mainlgdzhin some
standard Poincaré-Bendixson theory.
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This paper is dedicated to the memory of Professor  Another interesting application of the “star structure”
José Sousa Ramos. theorem can be found inl], Chapter X]: just with the
help of some standard Poincaré-Bendixson techniques,
one can prove what is arguably the key property of
1 Introduction analytic dynamics in dimension two, namely, the local
phase portrait at an isolated singular point (in the absence
t of periodic orbits in its vicinity and assuming that it is
gleither an attractor nor a repeller) consists of a finite
union of hyperbolic, parabolic, and elliptic sectors.
Remarkably enough, in the recent monograghapd [9]

In 1971, Dennis Sullivan discovered an importan
obstruction for a topological space to be the set of zero
of a holomorphic function 15, Corollary 2]: it must be
locally homeomorphic to the cone over a polyhedron with ;" - i . J
even Euler characteristic. As a corollary, Sullivan provedthiS decomposition theorem is proved using highly
that any plane analytic set (that is, the set of zeros of Jron-trivial and sophisticated desingularization methods
two-variable real analytic function) is locally, up to some ~ To describe the topological structure of planar
trivial cases, a topological star with evenly many analytic sets, one can proceed in two steps: first, the local
branches. star structure is proved (this is the so-called Lojasiewicz
As it turns out, this is a very useful tool when dealing theorem L0, Theorem 6.3.3, p. 168]); then one shows
with topological dynamics of bidimensional analytic (Sullivan’s theorem) that the number of branches is even.
flows. Two relatively recent examples ark3[ and [14]. Lojasiewicz's theorem is a corollary of two classical
For instance, in13] the star structure of analytic sets is results on real analyticity: the Weierstrass preparation
needed to prove thab-limit sets of analytic flows on the theorem and the Hensel lemma. Their proofs, if somewhat
plane, the sphere or the projective plane are, roughlygumbersome (especially in the case of Hensel's lemma),
speaking, finite unions of topological circles. It is worth are elementary, seel(]. In contrast, all proofs of
emphasizing that parity is critical as well, as it guarastee Sullivan’s theorem we are aware of, including the original
that, in these specific surfaces and for this type of flows,0ne, require advanced tools of algebraic topolog$,[7,
orbits cannot visit arcs of singular points in thexlimit 8], and hence are hard to follow for the non-specifically
sets from both sides (this is not longer true in the torus ortrained reader. The aim of this paper is to present a
in proper subsets of the plane, for instance). Thissimple, dynamically based proof, of both Lojasiewicz’s
important point was missed in§ and, as a consequence, and Sullivan’s theorems.
some of the results stated there are not correct (this gap The paper is organized as follows. In Subsection 2.1
has been amended ihZ]). we introduce some notation and basic facts on analytic
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functions. Subsection 2.2 is devoted to collect thedifferentiable and any partial derivative of first order at
elementary results on qualitative theory of planarany point of its domain can be computed differentiating
differential equations our proof is based on. The mainformally each term of its representation as an absolutely
theorem is precisely stated and proved in the last section.convergent power series, and we obtain again an
absolutely convergent power series. In particular, any
analytic function is of clas€”. We refer the reader to
2 Notation and elementary results [10] for the details. _
Two important (and also elementary) properties of
In this section we fix the notation and collect some €@l analytic functions are presented below; we will used
definitions and properties which will be of use later. them repeatedly in the sequel. The first of them works for
analytic functions defined on any open subseRbf the
second one is true only in the one-dimensional case.

R"is connected and vanishes at an open subsebf U,
We denote byN and Z* the sets of non-negative and thenitvanishes at the wholé.
positive integers, respectively. Given anyc Z*, any  Proof. It follows, after using a standard connectedness
z=(z1,...,2z) € R"and anya = (a1,...,an) € N", we  argument, from the relation between the coefficients of a

write 2% = Z*... 28 and|Z” = |z| ™ ... |z| ™", power series representing an analytic function and its
A real power series in n real variables centered gtz partial derivatives, sed ), Remark 2.2.4[1.
R"is a formal expression of the type Proposition 2.3.Let f : | — R be an analytic function
defined on an open intervdlC R. If f vanishes at a
z aa(2—20)” 1) sequence of points accumulatinglinthen f vanishes at
aeln the whole interval .

with a; € R. We say that the seriesl)(is absolutely  Proof. This is an easy application of Rolle’s theorem, see
convergentat z € R" if for a bijection ¢ : N — N" the ~ [10, pp. 11-14]1. _ . .

series Xﬁfo‘aq)(nﬂ |Z_ZO|<p(n) is convergent (as a The result closing thl$ subsechon, Wh|_le elemerjtary
numerical series). Recall that if a numerical series@S Well and already mentioned in the seminal Bendixson
converges absolutely then it also convergesPaPer Bl, is of an altogether different calibre. It relies on

unconditionally; hence, if the seried)(is absolutely thg fact that the ri_ng of Ioca] convergent power series is a
convergent then the numerical series Unique factorization domain; a detailed proof can be

Y08y (z — 20)?™ converges for any bijection found, for instance, in13.

@ N — N' and its sum does not depend on the Theorem 2.4.Let f = (fy, f2) : U ¢ R* — R? be an
rearrangement. Thus, if a power series likg ¢onverges analytic function andv € U be a zero off. Then there are
absolutely at a poirg, then we can speak about#smat @ Open neighbourhood of, W C U, and analytic
that point. functionsk, hy,hy : W — R such that:

Analytic functions are those which can be expressed (j) f, = kh, andf, = kh, in W;
?s a plf)wer series around any point in their domain. More (jij) h = (hy, h,) has no zeros iV ~. {w}.
ormally:

Definition 2.1.Let f : U — R be a function defined on an

open subsdat) c R". The functionf is said to beanalytic 2.2 Analytic differential equations
at a pointzg € U if there exist an open neighbourhood of

2, V C U, and a sequence of real numbgeg Jacnn,  Next we list some basic, well-known results on analytic
such that the power serigs,cnaq (2—2) is absolutely  plane vector fields (that is, analytic functions mapping
convergent at anyg € V and its sum coincides withi(z).  open subsets dk? into R2) and their associated flows.
We say thatf is analytic (on U)if it is analytic at any  Much of what we are going to say is also true @ or
point ofU. even locally Lipschitz vector fields, but we are only

Typically, functionsf : U C R" — R™are described as  interested in the analytic case. Good referencesiaf, [

vectorsf = (fy, f2,..., fm), with eachfi :U — R beinga  among others. In what follows, the analytic vector field
real function. We say that such a vector functioanslytic -y - R2 — R2 will remain fixed.

if all its componentd; are analytic according to the above Consider the autonomous system
definition.

Analytic functions behave well under algebraic 2= 1(2). 2)
operations: the sum, the product, the division and the
composition of analytic functions are analytic (where they The zeros off are also called theingular pointsof (2);
are well defined). The same can be said about theithe rest of the points are calleegular. Given anyz € U,
calculus: any analytic function is continuously the system %) admits a unique maximal solution
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¢; : 1; — U satisfying¢,(0) = z The intervall, is open
and the functionp, is analytic; moreover, th#ow of (2)
defined by (whenever it makes sengg},z) = ¢,(t) is
analytic as well. The image df, ., = ¢(l,), is called
the orbit of (2) through z If J is a subinterval of;, then
we say thatp,(J) is asemi-orbitof (2). If zis a singular
point of (2), thenl, =R andy, = {z}. If zis regular and
¢, is a periodic function, then we say thatis aperiodic
orbit. The orbits of the systen®] foliate the phase space
U, that is, two distinct orbits do not intersect each other.

Foranyze U, I, = (az,b;), thew-limit setof the point
z (or of the orbity,) is the set

Wi (2) = wi (y,) = {weU : 3ty — b, such thaty(tn) — w}.

The previous definition is a good one: y§ = y;, then
wy(2) = wyp(Z). The a-limit set af(z) = as(y) is
analogously defined replacing— b, by t, — az. Points
in ay(z) and inwy(z) are calledimit points of the orbit
¥z. In generalw-limit sets (respectivelyr-limit sets) are
closed subsets & and are the union sets of some orbits
of (2). If the cw-limit set of z is nonempty, thef, = o,
and the analogous statement holds fonitBmit set.

An analytic embedding : J — U of an open interval
J C Ris called an analytitransverse local sectioaf f if
the vectorsi (s) and f (A (s)) are linearly independent for
anyse J. Of course, ifw € U is a regular point ofZ) and
f(w) is linearly independent toc R?, thenA : (—¢, &) —
U defined byA (s) = w+ svis an analytic transverse local
section provided that > 0 is small enough.

Let f1 : Uy — R?, 5 : U, — R? be two analytic vector
fields and letg, : Ay — R? and ¢ : Ay — R? their
associated flows. We say thhtis analytically conjugate
to f, if there is an analytic diffeomorphisim: U; — U,
such that the domairlg ; for ¢1; andlz ;) for g2, are
equal andh(¢1(t,2)) = ¢2(t,h(z)) for every(t,z) € A;.
Theorem 2.5 (the flow box theorem)LetA : J— U be an
analytic transverse local section @j(assume thdt,d] C
J andc < 0 < d, and writeA (0) = w. Then there exist
€ >0, an open neighbourhodd of win U and an analytic
diffeomorphismh: W — (—¢,€) x (c,d) such that:

MA(I)NW =A((c,d)) andh(A(s)) = (0,s) for anys e

(c.d);

(iNh is an analytic conjugacy betweef|, and the
constant vector field): (—¢,€) x (c,d) — R? given

by g(x,y) = (1,0).

Proof. See for exampleg, Theorem 1.12[1.
Remark 2.6 ([2, Theorem 1.1, p. 45]).Let ze U be a

regular point whose orbit is not periodic, et b be two
points inl; and consider the semi-orhjt;([a,b]). Then,

Poincaré-Bendixson theorem. It deals with the

asymptotical behaviour of the orbits &)(

Theorem 2.7 (the Poincae-Bendixson theorem).Let
ze U and suppose that the sgt = {¢,(t) : t > O}
(respectivelyy, = {¢,(t) : t < 0}) is contained in a
compact subset ofu. Then either the setwy(z)
(respectivelytry (z)) contains some singular point or it is a
periodic orbit itself.

Proof. See for instance 6f Theorem 1.25] or 1,
Theorem 13, p. 92]1.

The following classical corollary  of
Poincaré-Bendixson theorem is of special interest:

Theorem 2.8.If yis a periodic orbit of2) enclosing (as a
Jordan curve) a regioB C U, thenB contains a singular
point of (2).

Proof. See B, Theorem 1.31] or], Theorem 16, p. 97].

In standard proofs of the Poincaré-Bendixson
Theorem the result below is stated as a preliminary
lemma. Its proof can be found for example i, [
Lemma 1.29] or], Theorem 11, p. 90].

Theorem 2.9.Letz€ U and assume tha™ (respectively,
¥;') is contained in a compact subsetWf If the co-limit
or thea-limit set of an orbity C ws(z) (respectivelyy C
0y (2)) contains some regular point, thers periodic and
wy (z) = y (respectivelyay (z) = y).

The proof of our last lemma is very simple, so we
include it:

Lemma 2.10.Letk: U — R be an analytic function and
consider the systerm = g(z), with g = kf. Let z be a
regular point ofz= g(z) and ¢, : J; — U be the maximal
solution ofZ= g(z) passing through. Then there exist an
open interval Oc¢ L ¢ R and an analytic function
7:L — R such thatr(0) = 0 and¢,(t) = g(1(t)) for all
tel.
Proof. If zis a regular point o = g(z), then it cannot be
a zero ofk. Therefore, there is an open intervaEQl C
J; where the functior = 1/(ko ¢,) is well defined and
analytic.

Let us consider now the maximal solution of Cauchy’s

T=F(1)

problem
{T(O) =0.

This maximal solution is a function defined in an open
intervallL containing 0 and whose evaluations belongs to
It is easy to check that the compositigye T is a solution

of
{'z(t) = f(2)

the

2(0) =z

using compactness and the previous theorem, itis possiblgence we have c I, and,(t) = @((t)) forall t € L O.

to find a neighbourhoo® of ¢,([a,b]) in U and a small
€ > 0 such thatf is (analytically) conjugate ifW to the
constantvector field: (a—&,b+¢) x (—1,1) — R? given
by g(x,y) = (1,0).

One of the landmarks of bidimensional qualitative
theory of differential equations is the famous

3 The local structure of analytic sets

We devote this final section to state and prove the main
result of the paper.
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Given any positive integer € Z*, we say that a
topological space is an-star if it is homeomorphic to
S ={zeC:Z €[0,1)}. If Xis anr-star anch: § — X

is an homeomorphism, then the image of the origin under

h is called avertex of the starNote that the vertex of a
star is uniquely defined except in the cases1,2, when

Obviously there are two options fag: either it is an
isolated singular point of3) or it is a regular one. We will
distinguish these two cases in the following reasoning.

We first handle the case when all points \0f are
regular for B). According to the flow box theorerdy can
be chosen in such a way that all the orbits & (

X is just a closed arc and the vertexes are, respectively, it§cumulate at the boundary\af and intersect (the image

endpoints (for = 1) or its interior points (for = 2).

of) a transverse local sectioh: J — W with 0 € J and

Theorem 3.1.Let U c R? be open and connected and A (0) = zg at exactly one point. Let € J and consider the

f : U —- R be an analytic function. Let
C={zeU: f(z) = 0} be the set of zeros of. Then
eitherC = U or given any non-isolated point €f, z € C,
there exists a neighbourho®dof zand ann € Z* such
thatV NCis a -star with vertexz

Remark 3.2 For the sake of simplicity the above result
has been stated for analytic functions on the real plan
but, obviously, the same local obstruction works as well

for analytic functions defined on analytic surfaces.

Proof. If C has non-empty interior (as a subsetlf then
f is identically zero (Proposition 2.2). In what follows we
will assume that inC) = 0.

Let zp € U be a non-isolated point of. We will
construct an analytic system

2=h(z) @3)

in a specific open neighbourho®d of z, such that either
all its points are regular points for(and then we will see
that, in a neighbourhood @, C reduces to an arc with
in its interior), orzy is the only singular point of3) in W
and there is a compact neighbourhoodgfv C W, that

can be written as a finite union of evenly many sectors,

with the additional property th&nNV is the union of{ zp}
and the orbits separating the adjoining sectors.

maximal solution of ) passing throughs = A (S), ¢(t).

The compositionf o ¢, is constant; whers = 0 that

constant is necessarily zero. Taking into account

Theorem 2.3 and the fact th@thas empty interior, we get

that f o ¢, do not vanish ifs € J~ {0} is close enough to

0. Thus, choosing if necessary a smaller neighbourhood
of z5, we get that the zeros df in W are exactly the

points of the orbity,.

Now we consider the case whep is an isolated
singularity of h (in fact, because of the way we have
definedw, it is the only singularity oh). Sincef is a first
integral, if thea-limit set or thew-limit set of a solution
Z(t) of (3) containszy, then the functionf o z must be
identically zero. As a consequendey} cannot be, at the
same time, the-limit and thew-limit set of any solution
z(t) of (3), that is, the system3] admits no homoclinic
orbits (except{z} itself). Indeed, if we suppose the
contrary, then the image aft) (together withzy) defines
a Jordan curve. Therefore, the Poincaré-Bendixson
theorem and Theorem 2.8 imply that all orbits in the
region enclosed by this Jordan curve are homoclinic as
well andC has non-empty interior, a contradiction.

We claim that the systen8) admits no sequences of
periodic orbits(Jn)nen satisfyingd, C B(z,1/n) NW for
all n. We argue to a contradiction by assuming that such a

To define this system we proceed in two steps. Firstly,sequence does exist. Recall that any periodic orbit/in

we consider the systemz = g(z) given by
92 = (-%(2,5(2). Secondly, by virtue of

Theorem 2.4, there exist a neighbourhood®fwW C U,
and analytic functionsk,hi,h, : W — R such that
g1 = khy, g2 = khp and h = (hy,hz) has no zeros in
W ~ {z}. The functionh is the vector field we are
looking for.

Notice that, replacing by f? if needed, there is no
loss of generality in assuming th%(z) = ‘;—;(z) =0 for
all ze C. Moreover,f is a first integral for the systen3),
thatis, ifz: J C R — W is any of its solutions, theffio z
is constant. Indeed, if € J is such that(t) is a singular
point of Z= g(z), then both partial derivatives of first
order of f vanish atz(t); otherwise we apply Lemma 2.10
to guarantee tha(t) andg(z(t)) are proportional vectors.
Therefore, we getin any case

< (%(z(t))a %(Z(t))) 7z(t)> _o,

where(-,-) denotes the scalar productf.

d(fo2)
dt

(t)

encloses (by Theorem 2.8), so given any two of them
one encloses the other; in particular we can assume that
Jn encloses), 1 for everyn. Besides, sincegp is not an
isolated zero off, given an arbitrary one finds az # zy

in the region enclosed hj, such thatf (z) = 0. Say thar
belongs to the annulus between consecutive culyesd
Jms1, m> n. By the Poincaré-Bendixson theorem, two
possibilities arise for the orbit of either it is a periodic
orbit consisting of zeros of or it spirals towards two
periodic orbits (both consisting of zeros Bf included in
the fixed annulus. Therefore, one can also consider a new
sequence of periodic orbit6),)nen such that eachl)
consists of zeros of and verifies thafl, encloses), and

Jy enclosesJ;, ;. Consequently, the analytic function
T— f(z0+1(1,0)) vanishes at a sequence of poi(is)n
converging to 0 so, by Proposition 2.3, it vanishes in a full
open interval containing O, sdy-9, ). Now realize that
any orbit of any point near enough @ must spiral
around z5, hence it must intersect the segment
{zo0+1(1,0): 7 € (—9,9)}. We conclude thaf vanishes

in a neighbourhood ofy, contradicting thaC has empty
interior.
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As a consequence of the above claim, there is a smalDbserve that the points, are reversely ordered as those
neighbourhoodV' of zy such that the systenB8), when in the sequencép,)n, hence they converge to a point
restricted towW’, has no periodic orbits. (Note that this q € A. Let t, be the escaping time off, that is
does not exclude the possibility that the initial system haspp, (tn) = gn. Since g (t) is well defined (and insid¥)

a sequence of periodic orbits accumulatingsahowever,  for any t > 0, the continuity of the flow at; implies

since their diameters cannot be too small, they becom&, — o asn — . Finally, the continuity of the flow aq

non-periodic after being “cut off” byW'.) To ease the guarantees thapq(t) is well defined, and insid¥, for

notation we still call the new neighbourhood and theanyt < 0O, that is,q = z,1 and ;1 is outward (see
corresponding systelV and @), respectively. Remark 2.6). This finishes the proaf.

Next, let us consider a small enough- 0 such that  Remark 3.3. Note that the two last paragraphs of the
V = Cl(B(z,r)) C W. In the absence of homoclinic and apove argument can be disposed of: sihtecontains
periodic orbits, taking into account thag is the only  neither homoclinic nor periodic orbits, and only finitely
singular point of §), and using the Poincaré-Bendixson many heteroclinic orbitszy must admit a neighbourhood
theorem and Theorem 2.9, the semi-orbits of the systengonsisting of a finite number of hyperbolic sectors. The
in V can be easily described. Namelyzif int(V) ~ {20} point 7 is, alternatively, then-limit set and theco-limit
andy, is the orbit of @) throughz then the connected get of the orbits limiting these sectors, hencés even
component of GV) Ny, containingz is either a closed  (instead, we can use the Poincaré index formua [
arc with endpointirgV’ or (together withzo) a closed arc  proposition 6.32] to deduce that the topological index of
whose endpoints am and a point obV. More precisely, is the integer - n/2, son is even).
letze int(V) \ {z}, let ¢, : (&, b;) — W be the maximal Yet, as indicated at the beginning of the paper, the only
solution of @) with ¢-(0) = z and write¢;((a,bz)) = V> elementary proof of the “sectors” theorem we are aware of
Then/ tr)e compongnt of; NV containing z is /elther is based on the “star structure” theorem. Thus, in order to
¢2([8, b)), ¢z((@ b)) (with 3 = —c), Of ¢2([82:b2))  avoid a circular argument, we are bound to (implicitly) use
(with b, = o) for somea, < & < 0 < b, < by points  gesingularization and, in a sense, the simple profile of our
¢z(a;), ¢2(0;) belong to oV; and we have roofisost.
limi__o @2(t) = 2o and lim_, @;(t) = 2o, respectively, in
the last two cases.

Among the semi-orbits of3) in V, those havindz}
as theira-limit or w-limit sets consist of zeros of. We
claim that there are only finitely many of them. If the
opposite is true, then any circle centeredgrwith radius
s less thanr would contain infinitely many zeros of.
Applying Proposition 2.3 to the analytic function
T — f(z+ (scosrt,ssinT)), we get thatf vanishes in the
whole circle and, sincs is arbitrary, in the wholé/. A
similar argument allows us to assume (using if necessar
a smaller) that the zeros of contained irvV (apart from
Zp) are exactly those in the semi-orbits havipags a limit
point. Sincezy is not an isolated point o, the family of
these special semi-orbits cannot be empty: we denot&keferences
them by Iq,[,,...n and assume that they are
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