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Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

Received: 18 Jan. 2015, Revised: 19 Apr. 2015, Accepted: 20 Apr. 2015
Published online: 1 Sep. 2015

Abstract: A new, elementary proof of a well-known result, stating thatthe set of zeros of a two-variable analytic real function is locally
a star with an even number of branches, is given. In contrast to other proofs available in the literature, ours is mainly based in some
standard Poincaré-Bendixson theory.
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1 Introduction

In 1971, Dennis Sullivan discovered an important
obstruction for a topological space to be the set of zeros
of a holomorphic function [15, Corollary 2]: it must be
locally homeomorphic to the cone over a polyhedron with
even Euler characteristic. As a corollary, Sullivan proved
that any plane analytic set (that is, the set of zeros of a
two-variable real analytic function) is locally, up to some
trivial cases, a topological star with evenly many
branches.

As it turns out, this is a very useful tool when dealing
with topological dynamics of bidimensional analytic
flows. Two relatively recent examples are [13] and [14].
For instance, in [13] the star structure of analytic sets is
needed to prove thatω-limit sets of analytic flows on the
plane, the sphere or the projective plane are, roughly
speaking, finite unions of topological circles. It is worth
emphasizing that parity is critical as well, as it guarantees
that, in these specific surfaces and for this type of flows,
orbits cannot visit arcs of singular points in theirω-limit
sets from both sides (this is not longer true in the torus or
in proper subsets of the plane, for instance). This
important point was missed in [13] and, as a consequence,
some of the results stated there are not correct (this gap
has been amended in [12]).

Another interesting application of the “star structure”
theorem can be found in [11, Chapter X]: just with the
help of some standard Poincaré-Bendixson techniques,
one can prove what is arguably the key property of
analytic dynamics in dimension two, namely, the local
phase portrait at an isolated singular point (in the absence
of periodic orbits in its vicinity and assuming that it is
neither an attractor nor a repeller) consists of a finite
union of hyperbolic, parabolic, and elliptic sectors.
Remarkably enough, in the recent monographs [6] and [9]
this decomposition theorem is proved using highly
non-trivial and sophisticated desingularization methods.

To describe the topological structure of planar
analytic sets, one can proceed in two steps: first, the local
star structure is proved (this is the so-called Lojasiewicz
theorem [10, Theorem 6.3.3, p. 168]); then one shows
(Sullivan’s theorem) that the number of branches is even.
Lojasiewicz’s theorem is a corollary of two classical
results on real analyticity: the Weierstrass preparation
theorem and the Hensel lemma. Their proofs, if somewhat
cumbersome (especially in the case of Hensel’s lemma),
are elementary, see [10]. In contrast, all proofs of
Sullivan’s theorem we are aware of, including the original
one, require advanced tools of algebraic topology [4,5,7,
8], and hence are hard to follow for the non-specifically
trained reader. The aim of this paper is to present a
simple, dynamically based proof, of both Lojasiewicz’s
and Sullivan’s theorems.

The paper is organized as follows. In Subsection 2.1
we introduce some notation and basic facts on analytic
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functions. Subsection 2.2 is devoted to collect the
elementary results on qualitative theory of planar
differential equations our proof is based on. The main
theorem is precisely stated and proved in the last section.

2 Notation and elementary results

In this section we fix the notation and collect some
definitions and properties which will be of use later.

2.1 Power series and analytic functions

We denote byN and Z+ the sets of non-negative and
positive integers, respectively. Given anyn ∈ Z+, any
z= (z1, . . . ,zn) ∈ Rn and anyα = (α1, . . . ,αn) ∈ Nn, we
write zα = zα1

1 . . .zαn
n and|z|α = |z1|

α1 . . . |zn|
αn.

A real power series in n real variables centered at z0 ∈
R

n is a formal expression of the type

∑
α∈Nn

aα(z− z0)
α (1)

with aα ∈ R. We say that the series (1) is absolutely
convergentat z ∈ R

n if for a bijection φ : N → N
n the

series ∑∞
n=0

∣

∣aφ(n)
∣

∣ |z− z0|
φ(n) is convergent (as a

numerical series). Recall that if a numerical series
converges absolutely then it also converges
unconditionally; hence, if the series (1) is absolutely
convergent, then the numerical series
∑∞

n=0aφ ′(n)(z − z0)
φ ′(n) converges for any bijection

φ ′ : N → Nn and its sum does not depend on the
rearrangement. Thus, if a power series like (1) converges
absolutely at a pointz, then we can speak about itssumat
that point.

Analytic functions are those which can be expressed
as a power series around any point in their domain. More
formally:

Definition 2.1.Let f : U → R be a function defined on an
open subsetU ⊂ R

n. The functionf is said to beanalytic
at a pointz0 ∈ U if there exist an open neighbourhood of
z0, V ⊂ U , and a sequence of real numbers(aα)α∈Nn,
such that the power series∑α∈Nn aα(z−z0)

α is absolutely
convergent at anyz∈ V and its sum coincides withf (z).
We say thatf is analytic (on U) if it is analytic at any
point ofU .

Typically, functionsf : U ⊂Rn →Rm are described as
vectorsf = ( f1, f2, . . . , fm), with eachfi : U → R being a
real function. We say that such a vector function isanalytic
if all its componentsfi are analytic according to the above
definition.

Analytic functions behave well under algebraic
operations: the sum, the product, the division and the
composition of analytic functions are analytic (where they
are well defined). The same can be said about their
calculus: any analytic function is continuously

differentiable and any partial derivative of first order at
any point of its domain can be computed differentiating
formally each term of its representation as an absolutely
convergent power series, and we obtain again an
absolutely convergent power series. In particular, any
analytic function is of classC∞. We refer the reader to
[10] for the details.

Two important (and also elementary) properties of
real analytic functions are presented below; we will used
them repeatedly in the sequel. The first of them works for
analytic functions defined on any open subset ofRn, the
second one is true only in the one-dimensional case.

Proposition 2.2.If f : U →R is an analytic function,U ⊂
R

n is connected andf vanishes at an open subsetV of U ,
then it vanishes at the wholeU .

Proof. It follows, after using a standard connectedness
argument, from the relation between the coefficients of a
power series representing an analytic function and its
partial derivatives, see [10, Remark 2.2.4]�.

Proposition 2.3. Let f : I → R be an analytic function
defined on an open intervalI ⊂ R. If f vanishes at a
sequence of points accumulating inI , then f vanishes at
the whole intervalI .

Proof. This is an easy application of Rolle’s theorem, see
[10, pp. 11–14]�.

The result closing this subsection, while elementary
as well and already mentioned in the seminal Bendixson
paper [3], is of an altogether different calibre. It relies on
the fact that the ring of local convergent power series is a
unique factorization domain; a detailed proof can be
found, for instance, in [13].

Theorem 2.4. Let f = ( f1, f2) : U ⊂ R2 → R2 be an
analytic function andw∈U be a zero off . Then there are
an open neighbourhood ofw, W ⊂ U , and analytic
functionsk,h1,h2 : W →R such that:

(i) f1 = kh1 and f2 = kh2 in W;
(ii)h= (h1,h2) has no zeros inWr {w}.

2.2 Analytic differential equations

Next we list some basic, well-known results on analytic
plane vector fields (that is, analytic functions mapping
open subsets ofR2 into R2) and their associated flows.
Much of what we are going to say is also true forC1 or
even locally Lipschitz vector fields, but we are only
interested in the analytic case. Good references are [1,6],
among others. In what follows, the analytic vector field
f : U ⊂ R

2 →R
2 will remain fixed.

Consider the autonomous system

ż= f (z). (2)

The zeros off are also called thesingular pointsof (2);
the rest of the points are calledregular. Given anyz∈U ,
the system (2) admits a unique maximal solution
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ϕz : Iz → U satisfyingϕz(0) = z. The intervalIz is open
and the functionϕz is analytic; moreover, theflow of (2)
defined by (whenever it makes sense)ϕ(t,z) = ϕz(t) is
analytic as well. The image ofϕz, γz = ϕz(Iz), is called
theorbit of (2) through z. If J is a subinterval ofIz, then
we say thatϕz(J) is a semi-orbitof (2). If z is a singular
point of (2), thenIz = R andγz = {z}. If z is regular and
ϕz is a periodic function, then we say thatγz is aperiodic
orbit. The orbits of the system (2) foliate the phase space
U , that is, two distinct orbits do not intersect each other.

For anyz∈U , Iz= (az,bz), theω-limit setof the point
z (or of the orbitγz) is the set

ω f (z)=ω f (γz)= {w∈U : ∃ tn→ bz such thatγz(tn)→w}.

The previous definition is a good one: ifγz′ = γz, then
ωϕ(z) = ωϕ(z′). The α-limit set α f (z) = α f (γz) is
analogously defined replacingtn → bz by tn → az. Points
in αϕ (z) and inωϕ(z) are calledlimit points of the orbit
γz. In general,ω-limit sets (respectivelyα-limit sets) are
closed subsets ofU and are the union sets of some orbits
of (2). If the ω-limit set of z is nonempty, thenbz = ∞,
and the analogous statement holds for itsα-limit set.

An analytic embeddingλ : J →U of an open interval
J ⊂ R is called an analytictransverse local sectionof f if
the vectorṡλ (s) and f (λ (s)) are linearly independent for
anys∈ J. Of course, ifw∈U is a regular point of (2) and
f (w) is linearly independent tov∈R2, thenλ : (−ε,ε)→
U defined byλ (s) = w+ sv is an analytic transverse local
section provided thatε > 0 is small enough.

Let f1 : U1 → R2, f2 : U2 → R2 be two analytic vector
fields and letϕ1 : ∆1 → R2 and ϕ2 : ∆2 → R2 their
associated flows. We say thatf1 is analytically conjugate
to f2 if there is an analytic diffeomorphismh : U1 → U2
such that the domainsI1,z for ϕ1,z andI2,h(z) for ϕ2,h(z) are
equal andh(ϕ1(t,z)) = ϕ2(t,h(z)) for every(t,z) ∈ ∆1.
Theorem 2.5 (the flow box theorem).Let λ : J→U be an
analytic transverse local section of (2), assume that[c,d]⊂
J and c < 0 < d, and writeλ (0) = w. Then there exist
ε > 0, an open neighbourhoodW of w in U and an analytic
diffeomorphismh : W → (−ε,ε)× (c,d) such that:

(i)λ (J)∩W = λ ((c,d)) andh(λ (s)) = (0,s) for anys∈
(c,d);

(ii)h is an analytic conjugacy betweenf |W and the
constant vector fieldg : (−ε,ε)× (c,d) → R2 given
by g(x,y) = (1,0).

Proof. See for example [6, Theorem 1.12]�.
Remark 2.6 ([2, Theorem 1.1, p. 45]).Let z∈ U be a
regular point whose orbit is not periodic, leta< b be two
points in Iz and consider the semi-orbitϕz([a,b]). Then,
using compactness and the previous theorem, it is possible
to find a neighbourhoodW of ϕz([a,b]) in U and a small
ε > 0 such thatf is (analytically) conjugate inW to the
constant vector fieldg : (a−ε,b+ε)×(−1,1)→R2 given
by g(x,y) = (1,0).

One of the landmarks of bidimensional qualitative
theory of differential equations is the famous

Poincaré-Bendixson theorem. It deals with the
asymptotical behaviour of the orbits of (2).
Theorem 2.7 (the Poincaŕe-Bendixson theorem).Let
z ∈ U and suppose that the setγ+z = {ϕz(t) : t ≥ 0}
(respectivelyγ−z = {ϕz(t) : t ≤ 0}) is contained in a
compact subset ofU . Then either the setωϕ(z)
(respectivelyαϕ (z)) contains some singular point or it is a
periodic orbit itself.
Proof. See for instance [6, Theorem 1.25] or [1,
Theorem 13, p. 92]�.

The following classical corollary of the
Poincaré-Bendixson theorem is of special interest:
Theorem 2.8.If γ is a periodic orbit of (2) enclosing (as a
Jordan curve) a regionB ⊂ U , thenB contains a singular
point of (2).
Proof. See [6, Theorem 1.31] or [1, Theorem 16, p. 97]�.

In standard proofs of the Poincaré-Bendixson
Theorem the result below is stated as a preliminary
lemma. Its proof can be found for example in [6,
Lemma 1.29] or [1, Theorem 11, p. 90].
Theorem 2.9.Let z∈U and assume thatγ+z (respectively,
γ−z ) is contained in a compact subset ofU . If the ω-limit
or theα-limit set of an orbitγ ⊂ ω f (z) (respectively,γ ⊂
αϕ(z)) contains some regular point, thenγ is periodic and
ωϕ(z) = γ (respectivelyαϕ (z) = γ).

The proof of our last lemma is very simple, so we
include it:
Lemma 2.10.Let k : U → R be an analytic function and
consider the system ˙z = g(z), with g = k f . Let z be a
regular point of ˙z= g(z) andφz : Jz → U be the maximal
solution ofż= g(z) passing throughz. Then there exist an
open interval 0∈ L ⊂ R and an analytic function
τ : L → R such thatτ(0) = 0 andϕz(t) = φz(τ(t)) for all
t ∈ L.
Proof. If z is a regular point of ˙z= g(z), then it cannot be
a zero ofk. Therefore, there is an open interval 0∈ J ⊂
Jz where the functionF = 1/(k◦ φz) is well defined and
analytic.

Let us consider now the maximal solution of Cauchy’s
problem

{

τ̇ = F(τ)
τ(0) = 0.

This maximal solution is a functionτ defined in an open
intervalL containing 0 and whose evaluations belongs toJ.
It is easy to check that the compositionφz◦ τ is a solution
of

{

ż(t) = f (z)
z(0) = z,

hence we haveL ⊂ Iz andϕz(t) = φz(τ(t)) for all t ∈ L �.

3 The local structure of analytic sets

We devote this final section to state and prove the main
result of the paper.
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Given any positive integerr ∈ Z+, we say that a
topological space is anr-star if it is homeomorphic to
Sr = {z∈ C : zr ∈ [0,1]}. If X is anr-star andh : Sr → X
is an homeomorphism, then the image of the origin under
h is called avertex of the star. Note that the vertex of a
star is uniquely defined except in the casesr = 1,2, when
X is just a closed arc and the vertexes are, respectively, its
endpoints (forr = 1) or its interior points (forr = 2).

Theorem 3.1.Let U ⊂ R2 be open and connected and
f : U → R be an analytic function. Let
C = {z ∈ U : f (z) = 0} be the set of zeros off . Then
eitherC = U or given any non-isolated point ofC, z∈ C,
there exists a neighbourhoodV of z and ann ∈ Z

+ such
thatV ∩C is a 2n-star with vertexz.

Remark 3.2 For the sake of simplicity the above result
has been stated for analytic functions on the real plane
but, obviously, the same local obstruction works as well
for analytic functions defined on analytic surfaces.

Proof. If C has non-empty interior (as a subset ofU), then
f is identically zero (Proposition 2.2). In what follows we
will assume that int(C) = /0.

Let z0 ∈ U be a non-isolated point ofC. We will
construct an analytic system

ż= h(z) (3)

in a specific open neighbourhoodW of z0 such that either
all its points are regular points forh (and then we will see
that, in a neighbourhood ofz0, C reduces to an arc withz0
in its interior), orz0 is the only singular point of (3) in W
and there is a compact neighbourhood ofz0, V ⊂ W, that
can be written as a finite union of evenly many sectors,
with the additional property thatC∩V is the union of{z0}
and the orbits separating the adjoining sectors.

To define this system we proceed in two steps. Firstly,
we consider the system ˙z = g(z) given by
g(z) = (− ∂ f

∂y (z),
∂ f
∂x (z)). Secondly, by virtue of

Theorem 2.4, there exist a neighbourhood ofz0, W ⊂ U ,
and analytic functionsk,h1,h2 : W → R such that
g1 = kh1, g2 = kh2 and h = (h1,h2) has no zeros in
W r {z0}. The function h is the vector field we are
looking for.

Notice that, replacingf by f 2 if needed, there is no
loss of generality in assuming that∂ f

∂x (z) =
∂ f
∂y (z) = 0 for

all z∈C. Moreover,f is a first integral for the system (3),
that is, if z : J ⊂ R →W is any of its solutions, thenf ◦ z
is constant. Indeed, ift ∈ J is such thatz(t) is a singular
point of ż = g(z), then both partial derivatives of first
order of f vanish atz(t); otherwise we apply Lemma 2.10
to guarantee that ˙z(t) andg(z(t)) are proportional vectors.
Therefore, we get in any case

d( f ◦ z)
dt

(t) =

〈(

∂ f
∂x

(z(t)),
∂ f
∂y

(z(t))

)

, ż(t)

〉

= 0,

where〈·, ·〉 denotes the scalar product ofR2.

Obviously there are two options forz0: either it is an
isolated singular point of (3) or it is a regular one. We will
distinguish these two cases in the following reasoning.

We first handle the case when all points ofW are
regular for (3). According to the flow box theorem,W can
be chosen in such a way that all the orbits of (3)
accumulate at the boundary ofW and intersect (the image
of) a transverse local sectionλ : J → W with 0 ∈ J and
λ (0) = z0 at exactly one point. Lets∈ J and consider the
maximal solution of (3) passing throughzs = λ (s), ϕzs(t).
The compositionf ◦ ϕzs is constant; whens = 0 that
constant is necessarily zero. Taking into account
Theorem 2.3 and the fact thatC has empty interior, we get
that f ◦ϕzs do not vanish ifs∈ Jr {0} is close enough to
0. Thus, choosing if necessary a smaller neighbourhood
W of z0, we get that the zeros off in W are exactly the
points of the orbitγz0.

Now we consider the case whenz0 is an isolated
singularity of h (in fact, because of the way we have
definedW, it is the only singularity ofh). Sincef is a first
integral, if theα-limit set or theω-limit set of a solution
z(t) of (3) containsz0, then the functionf ◦ z must be
identically zero. As a consequence,{z0} cannot be, at the
same time, theα-limit and theω-limit set of any solution
z(t) of (3), that is, the system (3) admits no homoclinic
orbits (except{z0} itself). Indeed, if we suppose the
contrary, then the image ofz(t) (together withz0) defines
a Jordan curve. Therefore, the Poincaré-Bendixson
theorem and Theorem 2.8 imply that all orbits in the
region enclosed by this Jordan curve are homoclinic as
well andC has non-empty interior, a contradiction.

We claim that the system (3) admits no sequences of
periodic orbits(Jn)n∈N satisfyingJn ⊂ B(z0,1/n)∩W for
all n. We argue to a contradiction by assuming that such a
sequence does exist. Recall that any periodic orbit inW
enclosesz0 (by Theorem 2.8), so given any two of them
one encloses the other; in particular we can assume that
Jn enclosesJn+1 for everyn. Besides, sincez0 is not an
isolated zero off , given an arbitraryn one finds az 6= z0
in the region enclosed byJn such thatf (z) = 0. Say thatz
belongs to the annulus between consecutive curvesJm and
Jm+1, m ≥ n. By the Poincaré-Bendixson theorem, two
possibilities arise for the orbit ofz: either it is a periodic
orbit consisting of zeros off or it spirals towards two
periodic orbits (both consisting of zeros off ) included in
the fixed annulus. Therefore, one can also consider a new
sequence of periodic orbits(J′n)n∈N such that eachJ′n
consists of zeros off and verifies thatJn enclosesJ′n and
J′n enclosesJ′n+1. Consequently, the analytic function
τ 7→ f (z0+ τ(1,0)) vanishes at a sequence of points(τn)n
converging to 0 so, by Proposition 2.3, it vanishes in a full
open interval containing 0, say(−δ ,δ ). Now realize that
any orbit of any point near enough toz0 must spiral
around z0, hence it must intersect the segment
{z0+ τ(1,0) : τ ∈ (−δ ,δ )}. We conclude thatf vanishes
in a neighbourhood ofz0, contradicting thatC has empty
interior.
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As a consequence of the above claim, there is a small
neighbourhoodW′ of z0 such that the system (3), when
restricted toW′, has no periodic orbits. (Note that this
does not exclude the possibility that the initial system has
a sequence of periodic orbits accumulating atz0; however,
since their diameters cannot be too small, they become
non-periodic after being “cut off” byW′.) To ease the
notation we still call the new neighbourhood and the
corresponding systemW and (3), respectively.

Next, let us consider a small enoughr > 0 such that
V = Cl(B(z0, r)) ⊂ W. In the absence of homoclinic and
periodic orbits, taking into account thatz0 is the only
singular point of (3), and using the Poincaré-Bendixson
theorem and Theorem 2.9, the semi-orbits of the system
in V can be easily described. Namely, ifz∈ int(V)r {z0}
and γz is the orbit of (3) throughz, then the connected
component of Cl(V)∩ γz containingz is either a closed
arc with endpoint in∂V or (together withz0) a closed arc
whose endpoints arez0 and a point of∂V. More precisely,
let z∈ int(V)r {z0}, let ϕz : (az,bz)→W be the maximal
solution of (3) with ϕz(0) = z, and writeϕz((az,bz)) = γz.
Then the component ofγz ∩ V containing z is either
ϕz([a′z,b

′
z]), ϕz((az,b′z]) (with az = −∞), or ϕz([a′z,bz))

(with bz = ∞) for someaz < a′z < 0 < b′z < bz; points
ϕz(a′z),ϕz(b′z) belong to ∂V; and we have
limt→−∞ ϕz(t) = z0 and limt→∞ ϕz(t) = z0, respectively, in
the last two cases.

Among the semi-orbits of (3) in V, those having{z0}
as theirα-limit or ω-limit sets consist of zeros off . We
claim that there are only finitely many of them. If the
opposite is true, then any circle centered inz0 with radius
s less thanr would contain infinitely many zeros off .
Applying Proposition 2.3 to the analytic function
τ 7→ f (z0+(scosτ,ssinτ)), we get thatf vanishes in the
whole circle and, sinces is arbitrary, in the wholeV. A
similar argument allows us to assume (using if necessary
a smallerr) that the zeros off contained inV (apart from
z0) are exactly those in the semi-orbits havingz0 as a limit
point. Sincez0 is not an isolated point ofC, the family of
these special semi-orbits cannot be empty: we denote
them by Γ1,Γ2, . . .Γm and assume that they are
counterclockwise ordered. It only rests to show thatm is
even.

Let zi ∈ Γi ∩ ∂V, i = 1,2. . . ,m. Taking advantage of
analyticity once more, there is no loss of generality in
assuming that∂V is locally transverse to (3) at these
points andΓi r {zi} ⊂ int(V) for anyi. We callΓi outward
or inward according to, respectively, limt→−∞ ϕzi (t) = z0
or limt→∞ ϕzi (t) = z0. We prove thatm is even by showing
that the semi-orbitsΓi are consecutively outward and
inward.

Assume, for instance, thatΓi is inward. LetA be the
counterclockwise arc in∂V with endpointszi and zi+1
(here, we identifym+ 1 and 1; ifm= 1, thenA = ∂V).
Let (pn)n be a sequence of points inA monotonically
converging tozi . Since∂V is locally transverse to (3) at
zi , we can assume that there are semi-orbitsϒn enteringV
at pn and escaping fromV at corresponding pointsqn ∈ A.

Observe that the pointsqn are reversely ordered as those
in the sequence(pn)n, hence they converge to a point
q ∈ A. Let tn be the escaping time ofϒn, that is
ϕpn(tn) = qn. Sinceϕzi (t) is well defined (and insideV)
for any t ≥ 0, the continuity of the flow atzi implies
tn → ∞ asn → ∞. Finally, the continuity of the flow atq
guarantees thatϕq(t) is well defined, and insideV, for
any t ≤ 0, that is, q = zi+1 and Γi+1 is outward (see
Remark 2.6). This finishes the proof.�.

Remark 3.3. Note that the two last paragraphs of the
above argument can be disposed of: sinceW contains
neither homoclinic nor periodic orbits, and only finitely
many heteroclinic orbits,z0 must admit a neighbourhood
consisting of a finite numbern of hyperbolic sectors. The
point z0 is, alternatively, theα-limit set and theω-limit
set of the orbits limiting these sectors, hencen is even
(instead, we can use the Poincaré index formula [6,
Proposition 6.32] to deduce that the topological index of
z0 is the integer 1−n/2, son is even).

Yet, as indicated at the beginning of the paper, the only
elementary proof of the “sectors” theorem we are aware of
is based on the “star structure” theorem. Thus, in order to
avoid a circular argument, we are bound to (implicitly) use
desingularization and, in a sense, the simple profile of our
proof is lost.
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