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Abstract: In this work we consider the Hamiltonian dynamics of a generalized Lagrange–Poisson problem whose fixed point performs
high-frequency vertical periodic oscillations of small amplitude. Using the generalized Kapitza averaging method weobtain a sufficient
condition for stabilizing the unstable upright position.
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1 Introduction

By a generalized Lagrange–Poisson problem(see for
instance [24] for more details) we are specifically
referring to a mechanical system formed by a symmetric
gyrostat that has a fixed pointP and the centre of mass of
the gyrostat lies on its dynamic-symmetry axis. The
forces acting on the gyrostat deriving from a Newtonian
symmetric potential that is to say a potentialU(k3), being
U a smooth function like to the case of Lagrange-Poisson
for a rigid body with a fixed point. The variablek3 is the
third component of the Poisson vector of the system.

It is known that a gyrostat is a mechanical systemS
made of a rigid bodyS1 to which other bodiesS2 are
connected; these other bodies may be deformable or rigid,
but must not be rigidly connected toS1, so that the
movements ofS2 with respect toS1 do not modify the
distribution of mass within the compound systemS.

For instance, we can envision a rigid main bodyS1,
designated as theplatform, supporting additional
bodies S2, which possess axial symmetry and are
designated asrotors. These rotors may rotate with respect
to the platform in such a way that the mass distribution
within the system as a whole is not altered; this will
produce an internal angular momentum, designated as

gyrostatic momentum, which will be normally regarded
as a constant. Note that when this constant vector is zero,
the motion of the system is reduced to the motion of a
rigid body.

Vito Volterra was the first to introduce the concept of
a gyrostat in [25], in order to study the motion of the
Earth’s polar axis and explaining variations in the Earth’s
latitude by means of internal movements that do not alter
the planets’s distribution of mass.

The general study of the dynamics of gyrostats has
been presented extensively in the classic literature about
this topic. Hamiltonian formulations of such dynamics are
the main tools used in the formulation of these problems
(see for instance [7], or [21]). Various aspects related to
these problems are discused, for example, the existence of
periodic solutions, bifurcations, or chaos, in various
gyrostat motion problems ([20],[8],[6],[23]), integrability
and first integrals for the problem (see [12],[3], [4]) or
equilibria and stabilities in rigid bodies and gyrostats,
either with fixed point or in orbit (see
[16],[17],[5],[1],[19],[2],[15],[22],[9]).

In this work we consider the Hamiltonian dynamics of
a generalized Lagrange–Poisson problem whose fixed
point P performs high-frequency vertical periodic
oscillations of small amplitude. Using the generalized
Kapitza averaging method (see [10], [11]) we obtain a
sufficient condition for stabilizing the unstable upright
position.
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2 Hamiltonian formulation of the problem

In the generalized Lagrange–Poisson problem we will
assume that the pointP executes vertical motion in
accordance with the periodic lawξ (t) about a certain
fixed point O. SupposeOXYZ is a inertial system of
coordinates andPxyz is a system of coordinates, rigidly
attached to the gyrostat, whose axes coincide with the
principal axes of inertia of the body for the pointP. We
will specify the orientation of the system of coordinates
Pxyz with respect to OXYZ using the Euler angles
(ψ ,ϕ ,θ ).

The kinetic energy of the body is given by the
expression

T =
1
2

m‖vP‖
2+mvP ·

(

ω×
−→
PG
)

+
1
2

ωt
Iω + l ·ω (1)

whereI=diag(I1, I1, I3) is the diagonal tensor of inertia
andm is the mass. On the other hand, in projections onto
the Pxyz axes, we haveω = (p,q, r) the vector of the
absolute velocity of rotation andl = (0,0, l) is the
gyrostatic momentum of the gyrostat. The other vectors
have the following coordinates

−→
PG= (0,0,zG)

t , ω×
−→
PG= (qzG,−pzG,0)t

with

vP =
dξ
dt

(sinθ sinϕ ,sinθ cosϕ ,cosθ )t .

The potential energy of the system is

U (t,θ ) = mgξ (t)+U(cosθ ).

The Lagrangian of the systemL = T −U are given
by

L =
1
2

m

(

dξ
dt

)2

−mzGsinθ
(

dξ
dt

)(

dθ
dt

)

+

1
2

(

I1

(

sin2 θ
(

dψ
dt

)2

+

(

dθ
dt

)2
)

+

I3

(

cosθ
(

dψ
dt

)

+

(

dϕ
dt

))2

+

l

(

cosθ
(

dψ
dt

)

+

(

dϕ
dt

)))

−U (t,θ ).

(2)

The coordinatesψ and ϕ are cyclical, and the
momenta corresponding to them are given by

pψ = I1

(

dψ
dt

)

sin2 θ + I3cosθ
(

cosθ
(

dψ
dt

)

+
dφ
dt

)

+

l cosθ

pϕ = I3

(

cosθ
(

dψ
dt

)

+
dφ
dt

)

+ l

(3)

We will introduce the notationpψ = a, pϕ = b for the
constant quantitiespψ and pϕ (where a and b are
constants). We then have from (3)

dψ
dt

=
a−bcosθ

sin2 θ
,

dϕ
dt

=
bI1− l

I3
−

(a−bcosθ )cosθ
sin2 θ

.

(4)
The momentumpθ , corresponding to the positional

coordinateθ , depends on the motion of the pointP and
given by the equation

pθ = I1

(

dθ
dt

)

−mzGsinθ
dξ
dt

. (5)

From (4), (3) and (5) and using the Legendre
transformation we obtain the following expression for the
Hamilton function of the system. (unimportant terms
which are functions of time or are constant are omitted)

H =

(

pθ +mzG
(

dξ
dt

)

sinθ
)2

2I1
+
(a−bcosθ )2

2I1sin2 θ
+U(cosθ ).

(6)
The Hamiltonian (6) corresponds to a system with one

and half degree of freedom with generalized coordinateθ .

3 The Generalized Kapitza method of
averaging

Let’s discuss the one-dimensional motion of a classical
particle in the time-independent potentialU(x) and under
aT−periodical force

f (x, t) =
∞

∑
n=1

(An(x)cos(nωt)+Bn(x)sin(nωt)) (7)

which varies in time with a high frequencyω (An,Bn are
functions of the coordinates only). If we putTU for a
characteristic time of the motion which the particle would
execute in the fieldU alone, then by a “high” frequency
ω ≡ 2π/T we mean such thatω >> 2π/TU . The
coefficientsAn andBn are given by

An(x) =
2
T

∫ T

0
f (x, t)cos(nωt)dt,

Bn(x) =
2
T

∫ T

0
f (x, t)sin(nωt)dt

The equation of the particle motion are

d2x
dt2

=−
dU
dx

+ f (x, t) (8)

We present the movement as a slow path and at the same
time execute fast but small oscillations of frequencyω
about the path

x(t) = X(t)+ ξ (t)
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whereξ (t) corresponds to these small oscillations. The
mean value of the functionξ (t) over its periodT is zero,
and the functionX(t) changes only slightly in that time.
Denoting this average by a bar, we therefore have
x = X(t). Under these considerations holds the following
result.

Theorem 1(Kapitza). If X0 is a equilibrium of

d2X
dt2

=−
dUe f f

dX

with

Ue f f(X) =U(X)+
1

4ω2

∞

∑
n=1

(A2
n(X)+B2

n(X))

n2

then

x(t)=X0−
∞

∑
n=1

1
ω2n2 (A

2
n(X0)cos(nωt)+B2

n(X0)sin(nωt))

+h.o.t

is a quasi-periodic solution of (8). If X0 is a minimum of
Ue f f the quasi-periodic solution is Lyapunov stable and
if X0 is a maximum of Ue f f the quasi-periodic solution is
unstable.

Proof.The Taylor’s expansion in powers ofξ up to the first
order term provides us

dU
dx

=
dU
dX

+ ξ
d2U
dX2

Substituting the above expression in (8) we have

d2X
dt2

+
dξ
dt

=−
dU
dX

− ξ
d2U
dX2 + f (X, t)+ ξ

d f
dX

(9)

This equation involves both fast and slow terms, which
must evidently be separately equal. For the fast term we
can put simply

d2ξ
dt2

= f (X, t) (10)

and the slow term with small oscillations is

d2X
dt2

=−
dU
dX

− ξ
d2U
dX2 + ξ

d f
dX

.

Integrating (10) with the function f given by (7) and
regardingX as a constant, we get

ξ =−
1

ω2

∞

∑
n=1

1
n2 (A

2
ncos(nωt)+B2

nsin(nωt)).

Next we average equation (9) with respect to the time
interval[0,T]. Sinceξ = 0 and andf = 0 we obtain

d2X
dt2

=−
dU
dX

+ ξ
d f
dX

and

d f
dX

=
∞

∑
n=1

(

dAn

dX
cos(nωt)+

dBn

dX
sin(nωt)

)

.

Then we apply the time averaging

ξ
d f
dX

=−
1

ω2

∞

∑
k, j=1

(

Ak
dAj
dX

k2 cos(kωt)cos( jωt) +

Bk
dAj
dX

k2 sin(kωt)cos( jωt) +

Ak
dBj
dX

k2 cos(kωt)sin( jωt) +

Bk
dBj
dX

k2 sin(kωt)sin( jωt)

)

.

Since

sin(kωt)cos( jωt) = cos(kωt)sin( jωt) = 0

if k 6= j and

cos(kωt)cos( jωt) = sin(kωt)sin( jωt) =
1
2

if k= j we obtain

ξ
d f
dX

=−
1

4ω2

∞

∑
n=1

1
n2

(

dA2
n

dX
+

dB2
n

dX

)

.

Thus

m
d2X
dt2

=−
dU
dX

−
1

4ω2

d
dX

(

∞

∑
n=1

A2
n+B2

n

n2

)

.

The previous equation can be written as

m
d2X
dt2

=−
dUe f f

dX
,

where the effective potential energy is defined as

Ue f f(X) =U(X)+
1

4ω2

∞

∑
n=1

A2
n(X)+B2

n(X)

n2 .

4 Main Results

Using the Generalized Kapitza averaging we obtain the
following result.

Theorem 2.We consider a generalized Lagrange–Poisson
problem that the point of suspension P executes vertical
motion about a certain fixed point O in accordance with
the T−periodic law

ξ (t) =−
1

ω2

∞

∑
n=1

(

An

n2 cos(nωt)+
Bn

n2 sin(nωt)

)
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, then the effective potential energy of the system obtained
by mean of the Generalized Kapitza averaging is

Ue f f(α) = U (α)+K sin2 α

with

U (α) =
(a−bcosα)2

2I1sin2 α
+U(cosα)

and

K =

(

mzG
2I1ω

)2 ∞

∑
n=1

A2
n+B2

n

n2 .

Proof.By means of the generating function

G(α, pθ ) =−α pθ +mzG
(

dξ
dt

)

cosα

we obtain the following canonical transformation
(θ , pθ )→ (α, p) with

θ =−
∂G
∂ pθ

= α

p=−
∂G
∂α

= pθ +mzG
(

dξ
dt

)

sinα
.

The Hamiltonian (6) in the variables(α, p) are given by

K = H +
∂G
∂ t

=
p2

2I1
+

(a−bcosα)2

2I1sin2 α
+

mzG

(

d2ξ
dt2

)

cosα +U(cosα).

The Hamiltonian differential equations are

dα
dt

=
p
I1
,

dp
dt

=−
d

dα

(

(a−bcosα)2

2I1sin2 α
+

mzG

(

d2ξ
dt2

)

cosα +U(cosα)

)

.

The second order equation in the variableα is

d2α
dt2

=−
dU

dα
+ f (α, t)

with

U (α) =
1
I1

(

(a−bcosα)2

2I1sin2 α
+U(cosα)

)

and

f (α, t) =
mzG
I1

(

d2ξ
dt2

)

sinα =

mzG
I1

∑∞
n=1 (Ansinα cos(nωt)+Bnsinα sin(nωt)) .

Using Theorem 1, the effective potential of the problem is

Ue f f(α) = U (α)+K sin2 α

with

K =

(

mzG
2I1ω

)2 ∞

∑
n=1

A2
n+B2

n

n2 . (11)

Corollary 1.We consider a sleeping generalized
Lagrange–Poisson problem on the unstable upright
position. Then

ξ (t) =−
1

ω2

∞

∑
n=1

(

An

n2 cos(nωt)+
Bn

n2 sin(nωt)

)

(12)

with

(

mzG
2I1ω

)2 ∞

∑
n=1

A2
n+B2

n

n2 >
4I1

dU
dα
∣

∣

α=0−a2

8I2
1

has the property of stabilizing the unstable upright
position.

Proof.A sleeping generalized Lagrange–Poisson problem
on the unstable upright position verifies the two relations
a= b and

a2 < 4I1
dU
dα

∣

∣

∣

∣

α=0

, see ([24]). On the other hand, if the suspension point
performs high-frequency vertical periodic oscillations of
equation (12), then the effective potential is

Ue f f(α) =
1
I1

(

a2

2I1

1− cosα
1+ cosα

+U(cosα)

)

+K sin2 α

with K given by (11). The functionUe f f(α) has a local
extremum inα = 0 for

d2Ue f f

dα2

∣

∣

∣

∣

α=0
= 2K+

a2

4I1
− dU

dα
∣

∣

α=0

I1
6= 0.

If

K >
4I1

dU
dα
∣

∣

α=0−a2

8I2
1

(13)

the pointα = 0 is a minimum ofUe f f and the sleeping
upright position is Lyapunov stable.
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