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Abstract: In this work we consider the Hamiltonian dynamics of a geli\rd Lagrange—Poisson problem whose fixed point performs
high-frequency vertical periodic oscillations of small@litude. Using the generalized Kapitza averaging methodbtain a sufficient
condition for stabilizing the unstable upright position.
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This paper is dedicated to the memory of Professorgyrostatic momentupwhich will be normally regarded

José Sousa Ramos. as a constant. Note that when this constant vector is zero,
the motion of the system is reduced to the motion of a
rigid body.

1 Introduction Vito Volterra was the first to introduce the concept of

a gyrostat in 25], in order to study the motion of the
By a generalized Lagrange—Poisson problé¢see for  Earth’s polar axis and explaining variations in the Earth’s
instance 24] for more details) we are specifically latitude by means of internal movements that do not alter
referring to a mechanical system formed by a symmetricthe planets’s distribution of mass.
gyrostat that has a fixed poiRtand the centre of mass of
the gyrostat lies on its dynamic-symmetry axis. The
forces acting on the gyrostat deriving from a Newtonian
symmetric potential that is to say a potentiglks), being
U a smooth function like to the case of Lagrange-Poisso
for a rigid body with a fixed point. The variablg is the
third component of the Poisson vector of the system.

It is known that a gyrostat is a mechanical syst8
made of a rigid bodyS; to which other bodiess, are
ga?nrﬁﬁt;d’ng]tezi o:ig?élgogéensn?cag; etgl,efcs)'gmte;]t;{? ?r: e”g' é_qu:iIibria gr;]d s]:t_abitljities in rigid bodies ancg) _gyrostats,
movements ofS, with respect toS; do not modify the eit erl wit 1 1|xe2 1p0|r12t or in orbit (see
distribution of mass within the compound syst&m [16],[17).[5].[1].[19.[2].[15],[22],[9]

For instance, we can envision a rigid main bdsly In this work we consider the Hamiltonian dynamics of
designated as theplatformy supporting additional a generalized Lagrange—Poisson problem whose fixed
bodies S, which possess axial symmetry and are point P performs high-frequency vertical periodic
designated amotors These rotors may rotate with respect oscillations of small amplitude. Using the generalized
to the platform in such a way that the mass distributionKapitza averaging method (se&(], [11]) we obtain a
within the system as a whole is not altered; this will sufficient condition for stabilizing the unstable upright
produce an internal angular momentum, designated aposition.

The general study of the dynamics of gyrostats has
been presented extensively in the classic literature about
this topic. Hamiltonian formulations of such dynamics are
he main tools used in the formulation of these problems
see for instance?], or [21]). Various aspects related to
these problems are discused, for example, the existence of
m periodic solutions, bifurcations, or chaos, in various
gyrostat motion problemsZ[)],[8],[6],[23]), integrability
Oand first integrals for the problem (se&Z],[3], [4]) or
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2 Hamiltonian formulation of the problem We will introduce the notatiopy, = a, pg = b for the
constant quantitiespy and py (where a and b are

In the generalized Lagrange—Poisson problem we willconstants). We then have from)

assume that the poinP executes vertical motion in

accordance with the periodic la(t) about a certain d¢ a—bcosf d¢ bl;—I (a—bcosd)cosd
fixed point O. SupposeOXYZis a inertial system of  dt = 29 ~dt I3 Sire 6
coordinates andPxyzis a system of coordinates, rigidly (4)

attached to the gyrostat, whose axes coincide with the The momentumpg, corresponding to the positional
principal axes of inertia of the body for the poiRt We  coordinated, depends on the motion of the poiRtand
will specify the orientation of the system of coordinates given by the equation

Pxyz with respect toOXYZ using the Euler angles

(Lpa¢7e) — @ _ i ﬁ
The kinetic energy of the body is given by the Po =11 dt Mz sin6 dt’ ©)
expression

1 1 From @), (3) and 6) and using the Legendre
7 —ZmlvelZ+mve- (wx PG) + =t lw+1-w (1 transformation we obtain the following expression for the
2 Ivell*+mve ( )+2 N @ Hamilton function of the system. (unimportant terms

whereT —diag(ly, I1, 13) is the diagonal tensor of inertia which are functions of time or are constant are omitted)

andm s the mass. On the other hand, in projections onto

2
the Pxyz axes, we havav= (p,q,r) the vector of the (pe+mze (%) sine) (a—bcosd)?
absolute velocity of rotation and = (0,0,) is the = 1 g U (cosH).
gyrostatic momentum of the gyrostat. The other vectors ! 1 (6)

have the following coordinates The Hamiltonian §) corresponds to a system with one

Tl (0,0,7)! wxPG— (0%, — P2, 0)' and half degree of freedom with generalized coordifate

with
3 The Generalized Kapitza method of
dé
Vp = a(sinesintp,sinecosqb,cose)t. averaging
The potential energy of the system is Let’'s discuss the one-dimensional motion of a classical
particle in the time-independent potentia(x) and under
% (1,6) = mg; (t) +U(cosd). aT —periodical force
The Lagrangian of the systelf = .7 — % are given o
by f(x,t) = z (An(x)cognwt) + Bn(x)sin(nwt))  (7)
n=1
1_[d&\? _(d&\ [dB
Z =M/ ~ mz; sin@ at ) \ar) T which varies in time with a high frequenay (A,, B, are
functions of the coordinates only). If we pidy for a
1 i dy 2 do\? characteristic time of the motion which the particle would
2 l1{sin"6 dt + dt + execute in the field) alone, then by a “high” frequency
2) w = 2n/T we mean such thatw >> 2m/Ty. The
dy do\\? coefficientsA, andBy, are given by
I3 (cose <H> + <a>) +

q q Aa(x) = 2 / " £ (x t) cosnat)dt,
I (cose (—w>+(d—qs)>)—%(t,9). TJo

dt 2 T
Ba(X) = = / f(x,t) sin(nat)dit
The coordinatesyy and ¢ are cyclical, and the 0

momenta corresponding to them are given by The equation of the particle motion are
(A dyg\  do d’>x  du
pw-“(a) Sin? 6 + Izcosd (cose (E)*E + W:_&_Ff()(’t) (8)
| cosB
g g We present the movement as a slow path and at the same
_ dgy  do time execute fast but small oscillations of frequernioy
Po =l (Cose ( dt ) * dt) ! about the path

®3) X(t) = X(t) + £ (t)

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2349-2353 (2015)www.naturalspublishing.com/Journals.asp

2351

N SS ¥

whereé (t) corresponds to these small oscillations. The

mean value of the functioé(t) over its periodT is zero,

and the functiorX(t) changes only slightly in that time.
Denoting this average by a bar, we therefore have
X(t). Under these considerations holds the following

)_( =
result.

Theorem 1(Kapitza). If Xg is a equilibrium of

dZ_x _ dUess
diz ~  dX
with
1 & (AMA(X)+BaX))
Uet1(X) = U(X) + 4—002[;1 n2
then
-3 wi Xo) cos(nat) +B2(Xo) sin(nat))
+h.ot

is a quasi-periodic solution ofg]. If Xg is @ minimum of

Uett the quasi-periodic solution is Lyapunov stable and
if Xo is @ maximum of k¢ the quasi-periodic solution is

unstable.

ProofThe Taylor's expansion in powers &fup to the first
order term provides us

U dU
dx dX dx2
Substituting the above expression 8) (ve have

X dE_ du_ U
diz2  dt dX dx2

+¢&

eI e ©)

[e4] dB]
dX Z (—COS na)t)+Wsm(nwt)>

Then we apply the time averaging

cdf 18 (Ak

dAJ

Ed—x _‘*’ijzl cos(kwt)cos(jwt) +
dA|

kkdx sin(kawt) cos(jwt) +

dB;

Acax
Kk

X cos(kat) sin(jwt) +

B, d8
T(dx S|n(kwt)5|n(1wt)>

Since

sin(kat) cos(jwt) = cos(kwt)sin(jowt) =0
if k+# j and

cos(kawt) cos(jwt) = sin(kwt) sin(jowt) = =

if k= j we obtain

Thus

d?X au 1 A2+ B2
mW“W‘WW(; z )

This equation involves both fast and slow terms, which The previous equation can be written as

must evidently be separately equal. For the fast term we

can put simply
d?é

and the slow term with small oscillations is
eX_ U U df
dt2 — dX " dXx2  CdX’

Integrating (0) with the function f given by (7) and
regardingX as a constant, we get

- wZZ Ancosnwt)+stm(nwt))

Next we average equatior®)(with respect to the time
interval[0, T]. Sinceé = 0 and andf = 0 we obtain

d?X du df

92 - ax T oax

and

d2x dUes¢
Mae ~ ax

where the effective potential energy is defined as

12 AX)+BARX)
27.

4 Main Results

Using the Generalized Kapitza averaging we obtain the
following result.

Theorem 2.We consider a generalized Lagrange—Poisson
problem that the point of suspension P executes vertical
motion about a certain fixed point O in accordance with
the T—periodic law

= wZZ( cognwt) + %sin(nwt))
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, then the effective potential energy of the system obtainet!sing Theorem 1, the effective potential of the problem is

by mean of the Generalized Kapitza averaging is
Uetf(a) = % (a) +Ksirfa

with
(a—bcosa)?
2l sirfa

U (a)= +U(cosa)

and
2

mz; A2+ B2
2hw nZl n2

ProofBy means of the generating function

G(a,pg):—apm—mze(%)cosa
we obtain the following canonical transformation
(8,pg) — (a, p) with

_96G _,
dPe

p= G0 p9+mze(§)sina.

The Hamiltonian §) in the variablega, p) are given by

0G
H= A+

(a—bcosa)?
2l;sirfa

p2
T2

2
mz (%) cosa +U (cosa).

The Hamiltonian differential equations are

da _p
dt I’
dp_d ((a—bcosa)2
dt  da \ 2;sifa
m ﬁ cosa +U (cosa)
%\ ae '
The second order equation in the variablés
d’a du
@~ da @Y
with
1 /(a—bcosa)? )
% (a)=—|——=——+U(cosa
(@) |1( 2l sifa ( )
and
omzg (d2EN
f(a,t) = T (W) sina =

T2 ¥ 71 (Ansina cosnwt) + Bysina sin(nat) ).

Uetf(a) = % (a) +Ksirfa

2 o
mz;
K=[=—
<2|10)> nZl
Corollary 1.We consider a sleeping generalized

Lagrange—Poisson problem on the unstable upright
position. Then

with
A +Bj
nz

(11)

12 /A Bn .
&(t) = 2 zl (? cognwt) + n—gsm(nwt)) (12)
n=
with
mz \ §A5+B%>4Ilg_g|a=o_a2
2hw) & n? 82

has the property of stabilizing the unstable upright
position.

ProofA sleeping generalized Lagrange—Poisson problem

on the unstable upright position verifies the two relations

a=band dU

2

a4, —

a- < 4lp da

, see (R4]). On the other hand, if the suspension point

performs high-frequency vertical periodic oscillatiorfs o
equation 12), then the effective potential is

a=0

a? 1— cosa

1
Uesf(a) = n (Eiljtcosa

+U (cosa)) +Ksira

with K given by (1). The functionUes(a) has a local
extremum ina = O for

2 du
d?Uef :2K+%1_ﬁa:07é0
da? |,_o lh
I du 2
a4l 5= —a
K> _+dala—0o"% ot (13)
1

the pointa = 0 is a minimum ofUg¢s and the sleeping
upright position is Lyapunov stable.
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