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Abstract: lterations of odd piecewise continuous maps with two difiooities, i.e., symmetric discontinuous bimodal mapg ar
studied. Symbolic dynamics is introduced. The tools of kiveg theory are used to study the homology of the discretauhyeal
systems generated by the iterations of that type of mapsn\Wiege is a Markov matrix, the spectral radius of this matrithe inverse
of the least root of the kneading determinant.
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This paper is dedicated to the memory of Professorand Markov partitions. We relate these concepts with lap
José Sousa Ramos. growth number. We tried to define with great detail all the
concepts presented. Since good definitions are essential
for the constructive proof of the main result, which is
1 Introduction actually done along the full length of the paper, section
two is relatively long.

In this paper we apply techniques of Markov partitions and In s_ection three, we present the main res“". o_f the
kneading theory to the study of iterates of discontinuousP@P€r i-€., the spectral radius of the Markov matrix is the
maps of the interval (or the real line) in itself. We show NVerse of the least root of the kneading determinant for
that these systems can be studied with a proper frameworiPat kind of maps. We point out that the introduction of

which is related to kneading theory and Markov matrices. the linear operatop in section three is one of the main
We cite, as examples of discontinuous one ideas of this paper along with the matié relating the

dimensional cases, the Lorenz maps, Newton maps, Cirdgneading and the Markov data. The linear transformation

and tree maps, se&,p, 3,7] among other literature. M, representing the symmetry of this type of
In [9] Lampreia and Sousa Ramos studied symbolicnOn-continuous maps, is completely different of its
dynamics of continuous bimodal maps on the compacOntinuous counterparg]. We think that the proof of the
interval. Using similar techniques, we study in this paperresu.It can be instructive giving me'ghods that can be
the case of symmetric (odd) discontinuous maps in the?PPlied to other non-continuous mappings.
real line or some suitable interval with two discontinuity
points and three maximal intervals (laps) of continuity,
which are as well maximal in.tervals of mon_oton_icity. We 1.1 Motivation
call to this type of mapping asymmetric bimodal
discontinuous magpbecause of the existence of exactly
three laps as in the continuous bimodal case. The iterates of the complex tangent familytanz,
In section two, we introduce the notation, the main introduced in §] and [8], when the parametex = if is
definitions and revision of basic results. We include aspure imaginary and the initial conditiory is a real
well, the notions of symbolic dynamics, kneading theory number can be identified with the iterates of the real
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alternating map{flﬁ, fzﬁ] [4] in the real line Definition 1 applies to maps with infinite jumps at
andc; as we can see in the next example. Actually, as we
x1 = 15 (x0) = Btan(xo) see in the next example, any such map is smoothly
L o conjugated to a map with finite jumps via a
X = Top (1) = —Btanh(x) diffeomorphism.
X3 = fl,B (Xz) . .
Example 2Zonsideru : R — R such that
Xg = f1p(Xs).

N

—1if x<-1
u(x)z{ 0if -3 <x<1,
N . 1 if 3<x
The composition magp is
the family
X — —Btanh(Btan(x)), @ X s g2 — a u(x)

. ) is a family of bimodal symmetric discontinuous maps
which can be interpreted as the second return map to thgith p — o L= _% o — % anda = +. Any map in

real axis for the mapping tan(z). Knowingxo andgg, We  this family satisfies definitionl and is smoothly
obtain aI'I the even iterates of the or!glnal system. To abtai conjugated to a map with finite jumps using for instance
the odd iterates knowing the even iterates is easy the diffeomorphisni(x) = arctar(x) such that

Xon+1 = Bltan(xzn) . Gy (X) =hoGqo h™1 (x),xe€ (—g, g) .
The geometric behavior of the magg in this family
depends on the paramefér The map is periodic and the
real line is mapped on the interval= (—f3,8). We
restrict the map only to t.he intgrv!a.! WhenZ < B < 37" lim hoGgo h‘l(x)
the mapsgg have two discontinuities. The study of the x-+%
real projection of the complex tangent map is a good clue
to the dynamics in the complex plane, similarly to the
case of quadratic maps. 2.2 Symbolic dynamics
In this paper, we center our study on the symbolic - ]
dynamics of the iterates of maps with the same For sake of completeness and readability we introduce
geometrical properties @fz. Considering that the tangent here briefly notions well known like orbit, periodic orbit
family was an initial motivation and a good example, we and symbolic itinerary among other concepts, see for
point out that the results are independent on the choice dinstance ].

The map Gy can be prolonged by continuity to the
endpointstJ of the interval, since

= Xirjrgw ho Gq (X) = Farctana).

the family. Definition 2.We define the orbit of a real poingxas a
sequence of numbers (&) = {Xj},_, such that
) Xj = Fl (x0) where F is the j-th composition of F with
2 Basics itself.

Definition 3.Any point x is periodic with period O if

2.1 Bimodal symmetric discontinuous map the condition ! (x) = x is fulfilled with n minimal.

Definition 1.Bimodal symmetric discontinuous map of _ Because of conditioft in definition1, the orbit of any
type(—,—,—) point x is symmetric relative to the orbit ofx. To avoid

LetI:(—. a) be a real interval (where a can bgo) ambiguities in the definition of the orbit of the pre
and F: sl su’ch that: discontinuity points we adopt the convention that
o ' F(c1)=F(c;) =—aandF (c;) =F (¢f) = +a.

1.Fis odd F(x) = —F (—X) _ _ . Definition 4.[11] Consider the alphabet
2.F is piecewise continuous having two discontinuities ;; _ {L,A,M,B,R} the address\ (x) of a real point X is
1 < C € = —Cp where lim, .F(X) = +&  defined such that
andlimy_, .4 F (X) = +b, where b is a real number. .
3.F is decreasing in every interval of continuftya, c), "& ',‘; X<C
(61,2) and(cz.3). A= Mifcr < xec
Example IThe family of mapgyz defined in () is a family Bif cp=x
of bimodal symmetric discontinuous maps. Rif  c<x
(@© 2015 NSP
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We can apply this function to an orbit of a given real The orbit of +a has the symbolic itinerary (t-a).
point xg, we associate to that orbit one infinite symbolic The sequence (ta) is maximal (resp. If—a) i

sequence. minimal) in the ordering defined in this section. Maximal
in the sense that every shift of the sequen¢e-#) is less
Definition 5.Consider the sequence of symbols:ih or equal than It+a). Every orbit with initial conditionxg
is symmetric to the orbit with initial condition-xg. Thus
It (o) = A(X0) A(X1) A(X2) ..A (Xn) .. any orbit beginning by+a is accompanied by a

his infini is th bolic i symmetric orbit started by-a. Therefore, we shall focus
this infinite sequence is the symbolic itinerary gf x the admissibility rules for kneading sequences only on the

The orbitO(—a) is itineraries with the first symbd® (corresponding te-a).

W . D Ay i Definition 11[11]  Operator 1. The operator
{XJ X =Fl(-a),] _0’1""}' 1:.N s 7N is defined such that
The orbit ofO(+a) is TIL=RTA=B,TM =M, 1B=A 1R=L.

{x<-2)'x<-2):Fj(+a) j=0,1 } i

i X ) Lo, Given a sequence © QuQ1Qo..., T acts such that

with F (+a) =b. TQ=TQoTQ17Q2...
Definition 6.[11] Kneading sequences and kneading e operatorT interchanges the symbols and R,
pairs.The kneading sequences are defined as the symbolv@ttl the symbols M unchanged. For instance

itineraries of the orbits of a and-a. The kneading pair is RLMR LRML)®
the ordered pair formed by these two symbolic sequences r(( %) = )

(It(a),It(~a)). Proposition 1[11] It (xg) = Tt (—Xo)-
Definition 7.0rder relation in<”. The order on< is Proof. Is a direct consequence of conditibin definition
naturally induced from the order in the real axis 1.0
Given any itinerary of +a denoted by S the
L<A<M<B<R corresponding itinerary of-a is TS. The kneading pair is

i . . . . (S 19). To know the kneading sequengecorresponding
Definition 8.[11] Parity functionp (S). Given any finite {5 'the orbit of+a, is to know the kneading pair. By some

sequence S with length p{S) is such that abuse of notation, sometimes (mainly in the examples) we
p use only the kneading sequergistead of the kneading
p(S=(-1)". pair.

Definition 9.[11] Let 7™ denote the set of all sequences o o )
the seteN such that: given two symbolic sequences P Sequence of symbols aii8, 7S) be a pair of sequences.
PoPLPs... and Q= QuQ1Qs... let n be the first integer such (S TS) is a kneading pair and S is a kneading sequence,
that R, # Qn. Denote by S= 9S1S...S1 the common if S sat|sf_|es the admissibility cond|t|qm$j oksS<'S, .
first subsequence of both P and Q. Then, we say thaQP for every integer k. The set of the admissible sequences is
ifPy < Qnandp (S)=—+1orQu<Ryif p(S)=—1.1fno  denoted by C N
such n exists then 2 Q.
Definition 13.Given a finite sequence P with length p, the

This ordering is originated by the fact that wher y sequence S P~ is called a p-periodic sequence.
then It(x) < It (y).

To state the rules of admissibility the shift operator We will work sometimes only wittP instead ofP®
will be used, defined as usual. when there is no danger of confusion.

Definition 10.Shift operator o. The shift operator is

defined Definition 14[11] A bistable periodic orbit contains both

- the orbit of+a and the orbit of-a. Any bistable orbit has
0 (PPP..) = PiP,... an itinerary S= P = (QrQ)® or shortly P= QrQ
When we have a finite sequence S the shift operator acts
such that As a consequence of the previous definition bistable

orbits and associated symbolic itineraries must have even
0(S99S..5-1) =S9..5-1%. period.
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2.3 Kneading theory Definition 19[11] Given a sequence % X1X»... from
/™ we define a formal power series(ty, such that

In [10] were introduced the concepts of invariant I SN X k s fini ;
coordinate, kneading increments, kneading matrix andu V= 2 (=17 @(Xt". When X is finite with length
kneading determinant. We will use the definitions of the p e define the formal polynomial
cited work with the convenient adaptations for the (t) = E( ) ® (X t€
discontinuous case. We present here a brief exposition of P '

the results obtained applying kneading theory to this type
of maps. PPying 9 y P LetS=5S,... € 2 be a kneading sequence with the

kneading pair(S,1S), then the kneading determinant is
Definition 15.Invariant coordinate of an initial condition 9iven by.

By, (1). Is defined using the sequence D(t) = T+ 2)
X = XoX1Xo... = It (Xo). Is the formal power series t+1
When S = P* is p-periodic, the expression of the
i kneading determinant simplifies into
)= (—1)*xk )
8o (1) k;( ) Dt)(t+1) = 1+ %Lt— When the kneading

sequences is bistable:S = P* with P = QrQ of period
With the notationecii t) = IimHCii 6 (t), for each p = 2g, with the associated kneading pair

discontinuity point, the kneading increment is defined. (S TS) = (Q1Q,(1Q)Q) the kneading determinant is

2ug(t) 1
—_ L . . 1+1+(q)q I+t
Definition 16 Kneading increment and kneading matrix.

The kneading increment is
2.4 Growth number

The kneading determinant is essential in the computation
This quantity is a formal power series measuring the of the growth number of laps.

discontinuity. After collecting the terms associated totea o .

symbol, and remarking that, in this casg, corresponds ~ Definition 20.Lap number /(F") is the number of
to L, ¢ corresponds to M, £ corresponds to M and;c maximal intervals of continuity of each composition of F
corresponds to R, the decomposition with itself.

Definition 21.The growth number is defined

= lim /¢(F"). 3)

Vi (t) = Niz () L+ N2 () M+ Nig () R

is obtained. The kneading matrix is N—oo
N — | Naa(t) Nia(t) Nag(t)
| Nog(t) Noa(t) Nog(t) | Remarl{.11] The growth number of can be computed
using the relation
Definition 17 .Kneading determinantOmitting the j-th p= 1
column of the kneading matrix we compute the to’
determinant . The kneading determinant is where tp is the least root in the unit interval of the
_ kneading determinan®D (t). The proof is provided
D(t) = (—1)J+1Dj defining the power serie4 (t) = Enzlé(F”).t”‘l, where
T+t each coefficient is the lap number of the iterkté This
new power series is closely related to the kneading
The denominator in the kneading determinant resultsdeterminant b?cause of the relation

from the fact that~ is decreasmg in the three intervals A (t) = m — i
where this map is defined 10]. Note that

D; = -Dy=Das. Example 3The kneading sequend®MR)® corresponds
L _ to the kneading determinaB(t) = —=2-C_ 'which is
Definition 18[11] Given a sequence % XiXp... we _ . (G)(14e%)
define a functionb : o7 — {—1,0,1}, such that realized for instance by (x) with B approximately
3.1588 or byGq (from example2) with a = 1 (\/E— 1).
“1if X = LA .
X We obtain
®(X)= drx =M A(t) =3+ 7t+ 172+ 393+ 874+ 1935+ ..., in this
A =5 casel/(F)=3,0(F?) =7,((F3) =17...
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It will be an interesting work to see if the usual renaming the elements of the partition we get
relationship between the topological entropy and growth
number still remains valid in the case of discontinuous 2 =xY 2 =xY 25 = x?,

maps.
z=x5",2 =X, 25 = X"

2.5 Markov partition The Markov matrix is

1110
Whenever we can define Markov matrices, the method of 00001
Markov transition matrices in the case of continuous Y—|o1110|.
maps is an equivalent approach to the computation the 10000
roots of the kneading determinant. To eapiperiodic 00111

kneading pair we associate a Markov transition matrix,

see P] and related references on that paper. Now, denote  The smallest solutioty of the equation

by

det(l —¥t) = (1—-t+t?) (1-2a—t%) =0

X =Fl(cf), j=01....p—1,
W o in the wunit interval gives the growth number
X' =Fl(c1), j=01,...,p-1, o= % = g7t3 = 2.2056, exactly the same root obtained

with the kneading determinant of the examBle
the orbits of the discontinuity points. An ordered sequence g P

‘‘‘‘‘ 2p 1S Obtained reordering the elemeui@), m=

1,2, and getting a partition 2.6 Relation between Markov partition and the
= (ZZera) Withk=1,...,2p— 1. orbits of the discontinuity points

The discontinuity points are present in the aboveGiving thep-periodic orbits

partition. We callz, = ¢; andz, = ¢;. To compute the _

Markov matrix note thatly_1 = (z,-1,c;) and O(c3) = {xﬁl) :xﬁ1> =Fl(cf),i=01...,p— 1}

I, = (c],%q,,) and similarly with the two intervals

adjacent to the discontinuity poigt. With this precision  and

made, the Markov transition matrix can be defined. _
o N , , o(c;)z{x§2>:x§2>=FJ(c;),j:o,1,...,p—1},

Definition 22.The Markov transition matri%’ = [yj] is

defined by the rule: we define the vector

 J1iflyCE(ly), M2 T
Wi = {0 oéherwise. (Y1 ] %0
In [9] the relationship between Markov partitions and : (2
kneading theory is explained for bimodal continuous y= Yp = (F’l—)l
maps. It is also presented the proof of the equality of the Yp+1 %)
reciprocal oftg and the spectral radius of the matkik In : :
this paper we will prove the same equivalence of Y2p i
definitions in the case of bimodal symmetric ) . | Xp-1 |

discontinuous maps.

In the next example we obtain this equivalence for aLetzbe the vecto{z};_; ,,wherez_; <z <z, are
particular case, computing directly both the kneadingthe ordered elements gf There is a p x 2p permutation
determinant and the characteristic polynomial of thematrix rsuch that

Markov matrix. Z=Ty.
; i 2 _ (2) i it (2)
Example 4The kneading pair Let x” = It(x ), the symbolic itinerary ofx.~, for
((RMR®, (LML)") k=0,....,p—1. Itis clear thatx(lz) =5%...=Sis the

kneading sequence offa. Let xl((l) =1t (xﬁl)) for
corresponds to a pair of orbits satisfying 1) ) )
k=0,...,p—1. By symmetryx;” = 1Sis the kneading

(2)

x(ll> < xél) =C <X < x<21) < xé2> =C < x(12>, (4)  sequence of-a. It is also clear thaké2> = oP1(9) and

(@© 2015 NSP
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xél) = oP1(1S). To eachk = 1,...,p corresponds a
symbolic sequence

) = 0 L(s).
To eachk=1..., p,corresponds another sequence
x =0 1(19).

Naturally, we have

W= (2).

To eaclyz; corresponds the symbolic itinerany = It (z;).
We definevj = It (y;).

Example 5Given the kneading sequencéRMB)”,

equivalent toRMR* already used before. The kneading

pair is ((RMB”,(LMA)®), x? = RMB = v,
x) = MBR=v3, x2) = BRM= vy, x\" = LMA = vs,

x(zl) = MAL = vg, andxél) = ALM = v4. We getw; = vs,
Wo = Vg, W3 = V3, Wg = V4, W5 = V1 andw6 = Vo.
The matrixrris

00001
000100
001000
000001}
100000
010000

Example 6Given the kneading sequen¢RLMB)”, the
kneading determinam (t) is such that

—t—t24+t4
1+t)D(t) = 14+2————
( +) () + 1—t4
1224t
B 1-t4
The kneading pair is ((RLMB)”,(LRMA®),
¥ = RIMB = v,, x? = LMBR = vs,
x? = MBRL = v, x2 = BRLM = v,
x = LRMA = v, x5’ = RMAL = v,
xy) = MALR = vg and =" = ALRM = vs. We get

W1 = Vg, W2 = V3, W3 = V5, Wy = V4, W5 = Vg, W = V1,
Wy = Vy andw8 = V.
The Markov matrix is

(0001110
1110000
0000011
0011100].
1100000
0000111

10111000

The matrixrris

(0000010
0010000
0000100
0001000
00000001"
1000000
0000001

10100000

The matrix can also be used to reorder the shifts of
the kneading sequences, giving the vector
v={vi,...,vop} and the vectow = {wi,..., Wy}, we
havew = rv.

3 Main Result

3.1 The Markov and kneading endomorphism in
spaces of chain complexes

Let Cy be the vector space of the 0-chains spanned by the
shifts of the kneading sequenc{a'sj}jzlwzp this space

is isomorphic of the space of the 0-chains spanned by the
points of the orbit{yj}jzlwzp. The spacern(Co) is
spanned by{w},_, ,, which is isomorphic to the
space of the 0-chains spanned @{}j=1,...72p' LetCy be

the space of the 1-chains spanned fy},_; 55 1,

isomorphic to the linear space of the 1-chains spanned by

{lkher. 2p 1 Wherel is the set of all the admissible

sequences: Wi < W = Wi 1. In what follows we identify

I, with 1, and use the same symbol both for sequences and

intervals and call both the linear transformations and the

corresponding matrix representations by the same letters.
The border of a 1-chain is obtained using the linear

transformatiord : C; — Dg such thaid (Ix) = Wi 1 — Wk,

0 (Cy) = Do whereDy is spanned by

Itis clear thatDg C 11(Cp).
We define the linear transformatiol: C; — Dg such
that

Os(lx)

(9(1—T)|k

=9 (lk=l2p-4)
3 () — 0 (12p)

The image ofy by ds is

s (k) = Wicr1 — Wi — (Wop 1k — Wop k)

and is an element obg. We can define another linear
transformation that acts onm(Cp) with matrix

(@© 2015 NSP
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representation
-1 1 0~ 0 1-1
0-1 1.-- 1-1 0
H=| o1 i S
0 1-1----1 1 O
1-1 0--- 0-1 1
where ij = &y1j — & — Opi1ij + Opij,
i=1....2p—1,j=1,...,2p, and o is the Kronecker

delta symbol. This linear transformation represents the

order relation of the points of the real line and the
symmetry of the original mapping. It is immediate from
the above definitions thaimage(ds) = - Bo is a proper
subspace oDy such thatDg = By &® B, where B has
dimension one, and, is isomorphic toum(Cy). We
definen = pm and the endomorphisrw acting onCy
with matrix representation

o |

where g is the shift operator with matrix representation
pxp

g0
Oo

01---00
00---00
O=|::" ::
00---01
10---00

Let a be the endomorphism inducedBg by the rotation
w in Cy which results from the commutativity of the
diagram
n Os
Co—By+—C
o | e }oa.
Co—By+—C
n Os

It is easy to see that = —¥, whereW¥ is the Markov
matrix. Note thatjw = an. Every entry in the matrixx

is non-positive, because the images of the intervals are

obtained by the images of the boundary points &nis
reverse order in any of each interval of continuity (lap).

Example Awith the matrices of the exampl&sve have

3.2 Matrix®

Giving the right p-periodic kneading sequenc® the
symbolic itinerary of the right discontinuity point is

oP1S= 35,S,... = S We construct the vector
S 7 [ 1]
@ (S) ®(S)
s(S) = (ZJ((STpé)l)) — @ (—S?I_il) ’
P (1) P (15)
*(1S0)]  Los )]

where® was defined in definitio8. When applied to the
other kneading sequenc&the vector takes the form

s(19) = aPs(9).

Letl” be a square matrix which columns 1 gmet 1 ares
andaPs, respectively, and the other elements are zeros.
Now, we introduce the matricgs=I — | and® = yw.

The matrix® has the form

T 0 0 0..0 00 - 0.
0 @®S)-1 ..0 0 0 —o() 0 .
0 @) 0 ..0 0 0 -0 0 .
0 ?(S2) 0 ..0-1 0-?(S2) 0 ..0 O
-1 ®($1) 0 .0 0 0-®(S1) 0 ..0 O
0 —®) 0 ..0 0 0 0 0..0 O}
—®(S) 0 ..0 0 0  ®S)-1 .0 0
—®(S) 0 .0 0 0 @S 0 ..0 0
0-?(S2) 0 ..0 0 0 ®(Sp—2) 0 ..0-1
0-®(S1) 0 ..0 0-1 @(S-1) 0 ..0 0

Example 8/ith the same kneading sequences of the
examples, we have

0 0 0-1 0 O]

1-1 0 1-1 0 1-1 0-1 0 O

-1 0 1-1 0 1 0 0-1 0 0O

n=| 000000 Y=|-1 0000 0

1 0-1 1 0-1 -1 0 0 1-1 0

-1 10-110 | 0 0 0 0 0-1]

and and

0 1-1 0 1-1 0 0 0 0-1 0]

1-1 0 1-1 0 0 1-1 0-1 0

nw= 0O 0 0 0 0 0, -1 0 00 0O
-1 1 0-1 1 0 ©=1 0-1 0 0 0 o

0-1 1 0-1 1 0-1 0 0 1-1

which is precisely-%n. | 0 0 0-1 0 O]
(@© 2015 NSP
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Proposition 2The following diagram commutes

o

Lo

<
+«—

n
— B
-
— B

n

S

0

Proof. We must show thayy=—-norn (I —1)=—n,in
other words thaj” = 0, or thats(S),s(1S) € kernel(n).
But n = um, andm reorderss(S) in terms of the order of
the real line, giving

v (L(z1))
v(I(z2))

T[S(S) = . 9
v (L(z2p-1))
v (I(zzp))
knowing thatl(zj) = 1I(zp-j), j = 1,...p, we have
v(I(z)) = —v(I[(zp-j)). It s obvious that
pms(S) = H”S( §)=0.0

Theorem 1The characteristic polynomial of the matrix
O=ywis

Po () = det(l —tO@) = (1— (—=1)PtP)?(1+1)D(t),

where D(t) is the kneading determinant.

Proof. The determinant of the matrix—t® is

1 0 0..000 t&(S) 0..00
01-td(S)t...000 td(S) 0...00
0 —td(S) 1...000 td(S) 0...00
0—t®(S)2)0...1t0 td(S,2) 0...00
t —t®(S,1)0...010 t®(Sy 1) 0...00
0 to() 0...001 O  0..00
0 td(S) 0...0001-td(S)t...00
0 t&(S) 0...000 —td(S) 1...00

t®(Sy2) 0...000—td(S, 2)0... 1t
0 td(Sy1) 0...00t —t®(S, 1)0...01

We first multiply the row 1 by-t and add the result to the
row p, we do the same with the rows+ 1 and 2. Then
we develop the determinant by the columns 1 pigetting

a(2p—1)x (2p—1) determinant:

1-to(Sy) t .00 to(s)) 0..00
—t0(S) 1..00 to(Sy) 0..00
—td(S2) 0 .. 1t to(Sy 2) 0..00
—tau(sp 1) 0 .. 01td(S1)-t2d(§) 0 .. 00

(1) 0..00 1-to(S)) t .00/
() 0..00 —to(S) 1..00
to(Sp_2) 0..00 —t®(S2) 0.1t
to(Sy 1) t20(§) 0 .. 00 —tP(S1) 0 ..01

then we multiply the rowp — 1 by —t and add the result to
the rowp— 2. We do the same with the last two rows. Then
we develop the determinant by the colunms 1 and the
last one getting &2p — 2) x (2p— 2) determinant:

1-td(S) t .. 0 td(S) 0 ... 0
() 1 .. 0 td(S) 0 .. 0
rl(t) 0.1 rz(t) 0 ..0
to(S) 0 .. 01-td(S)t .. 0
tO(S) 0 .. 0 —td(S) 1 .. 0
rot) 0 .. 0 rgt) 0 .1

where r1(t) = —t®(S,2) + t2@(S,.1) and
ra(t) = td(Sp_p) — 20 (Sy-1) + 3P (S). Repeating
this reducing process we get &2 determinant

1- 500 (M (S) -3, (-t e(s) |

—yh (CDMRO(S) 13 (-D (s
Remembering that

p
up(t) = Y (—)fte (S0,
K=1
S =S, =Band(-1)PtPo (B) = (—1)PtP,
the previous determinant is equal to
(1—(=D)°tP) +up(t) —Up(t)

—Up(t) 1= (=D"tP)+up(t) |

which gives
_ _(_1\Ptp 2 (t)
Po(t)=(1—(—1)"tP) <1+271_( 1P
and this is precisely

Po(t) = (1- (-1)PtP)?(1+1)D(1),

as desired.]
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Example 9\Ve use the kneading sequences of the exampl
6 to illustrate this last result, the matr® is

[0 0 0 0 0-1 0 O]
0 1-1 0 0-1 0 O
0-1 0-1 0 1 0 O

-1 0 0 0 0 0O 0O
0-1 0 0 0 0 O O°
0-1 0 0 0 1-1 O
01 0 0 0-1 0-1
0 00 0-1 0 0 0

with characteristic polynomial
(1-t%) (1-2t— 22 +t%),

which agrees with the value of the kneading determinan
(1+1)D(t) = =22

1t
We have now all the ingredients to state the main
results of this paper.

Theorem 2The following diagram commutes

Co — Bo

o v

Co — Bo
n

and Ry (t) = (1-+t)det(l —ty).

Proof. Noticing that® = yw and¥ = —a the result is
only a direct consequence of

Co — By
Lo, la
Co — Bo
R
Co — Bo

conjugated with the fact that the two rows in the next
diagram

_inj n
00— B —Cy—By—0
o e, v
0— B —Cy—By—0

are exact sequences, where inj is the natural embedding.

Corollary 1.The inverse of the least root in the unit
interval of the periodic kneading determinant is the
spectral radius of the Markov matrix.

Proof. Is an immediate consequence of the relation
(1— (—1)PtP)2D(t) = det(l —ty),

obtained in the last theoreiml

We think that the results of this work can be extended
to general discontinuous maps with finite number of
discontinuities. That is a natural extension of this work.

Acknowledgement

The author thanks some precious comments of the referee
that simplified and improved a great deal the scope and
clarity of this work. Namely, the possibility of infinite
jumps at the discontinuity points. The author was partially
funded by FCT/Portugal through project
PEst-OE/EEI/LA0009/2013.

References

[1] L. Alseda and F. Mafosas. Kneading theory and rotatien
tervals for a class of circle maps of degree ddenlinearity;
3(2):413-452, 1990.
2] J. F. Alves and J. Sousa-Ramos. Kneading theory for tree
maps. Ergodic Theory and Dynamical Systerg(4):957—
985, 2004.
[38]J. H. Curry, L. Garnett, and D. Sullivan. On the itera-
tion of a rational function: computer experiments with new-
ton’s method. Communications in mathematical physics
91(2):267-277, 1983.
[4] E. D’Aniello and H. M. Oliveira. Pitchfork bifurcationdr
non-autonomous interval map®ifference Equations and
Applications 15(3):291-302, 2009.
[5] R. Devaney and L. Keen.Dynamics of Tangentvolume
1342 of Lecture Notes in Mathematicpages 105-111.
Springer, Berlin, New York, 1988.
[6] W. de Melo and S. Strien. One-dimensional dynamics
Springer, Berlin, Heildelberg, 1993.
[7] P. Glendinning and C. Sparrow. Prime and renormalisable
kneading invariants and the dynamics of expanding lorenz
maps. Physica D: Nonlinear Phenomen®2(1):22-50,
1993.
[8] L. Keen and J. Kotus. Dynamics of the famigfanz Con-
formal Geometry and Dynamic$(1):28-57, 1997.
[9] J. P. Lampreia and J. Sousa-Ramos. Symbolic dynamics of
bimodal mapsPortugaliae Mathematiceb4(1):1-18, 2013.
[10] J. Milnor and W. ThurstonOn iterated maps of the interval
volume 1342 of_ecture Notes in Mathematicpages 465—
563. Springer, Berlin, 1988.

[11] H. Oliveira and J. Sousa-Ramos. lIterates of transcen-
dent meromorphic mapsGrazer Mathematische Berichte
(346):313-321, 2004.

t
[

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

H. M. Oliveira: Symbolic Dynamics of Odd Discontinuous Bida Maps

Henrigue M. Oliveira,
prepared his PhD under
the supervision of José
Sousa Ramos in discrete
dynamical systems. At the
present time, he his “auxiliar
professor” with tenure at
Lisbon University, Portugal.
He has been publishing
in discrete dynamical
systems, bifurcation theory and mathematical biology
and supervised PhD and master students on discrete
dynamical systems and mathematics of music. He has
published research articles in reputed international
journals of pure and applied mathematics. He is referee
and has been guest editor of mathematical journals and
research books.

(@© 2015 NSP
Natural Sciences Publishing Cor.



	Introduction
	Basics
	Main Result

