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1 Introduction

When dealing with a discrete dynamical system(X, f ),
that is, a general topological spaceX and a continuous
function f : X → X (in short, f ∈C(X,X)), the main goal
is to analyze the asymptotic behaviour of theorbits for
anyx∈ X

Orbf (x) := {x, f (x), f 2(x), . . . , f n(x), . . .},

or equivalently to study how the orbits of the system
behave whenn goes to infinity. Here, we define the
(positive) iteratesof f as f 1 = f , f n = f ◦ f n−1 (n ≥ 2)
and f 0 = Id|X (the identity map on X).

This objective is easily achieved in some particular
cases. For instance, letf : [0,1] → [0,1] be an interval
map for which f (x) < x if x∈ (0,1] and f (0) = 0: in this
situation we obtain that 0 is aglobal attractor since
limn→∞ f n(x) = 0 for any pointx. But, in general, the
description turns into a more difficult (and intriguing)
behaviour of the orbits, for example, let us mention the
paradigmatic logistic mapf (x) = 4x(1− x), in spite of its
certainly simple aspect, its dynamics conceals a
fascinating series of different motions for its orbits, from
the simple accumulation towards periodic points to
complex dynamics involving attracting Cantor sets or
even dense orbits (see [18] and [7] to learn more details of
this logistic map).

The reader has surely noticed that this long–term
study is strongly related with the analysis of different sets
of return points, those points whose orbits intersect in the
large all their prescribed open neighbourhoods. Among
them, the simplest case corresponds to periodic orbits.
Recall thatx∈ X is aperiodic pointif f m(x) = x for some
positive integerm (if m= 1 we say thatx is afixed point,
and in generalm is theorder or periodof x under f when
in addition f j (x) 6= x for 0 < j < m). This idea of
returning to itself can be generalized by the notion of
recurrence which means the intersection of the orbit
Orbf (x) with any of the open neighbourhoodsU of x. To
learn something more about the different notions of return
of points, the reader is encouraged to consult [22, §1.3],
where it is possible to find, in the setting of interval maps,
several approaches to the idea of return by the notions of
periodicity, almost periodicity in the sense of Bohr,
uniformly recurrence, recurrence, no-wandering points,
chain recurrence, etcetera. It is also studied the relation
between these notions and the complexity or simplicity of
the dynamics of the map [22, §4].

We concentrate our attention on the topological notion
of recurrence. The purpose of this note is to present three
equivalent notions of recurrence, to give a little historical
account of this concept and to remark the topological
character of our approach.
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2 Three notions of recurrence

In [14] the definition of recurrent point for(X, f ) is given
as follows (we will consider thatf is continuous, though
in [14] f was assumed to be a homeomorphism):

Definition 1(Gottschalk, [14]). Given a discrete
dynamical system(X, f ), we say that x∈ X is a recurrent
point of f whenever for any open neighbourhood
U = U (x) of x there exists a positive integer
N = N(x,U ) such that fN(x) ∈ U (x). The set of
recurrent points will be denoted byRec( f ).

Soon after, Erdös and Stone gave in [10] simpler
proofs of some results of [14] about properties, among
others, of recurrent points. There the restrictive
hypothesis of beingf a homeomorphism is replaced
simply by the continuity off . For instance, it is proved
that the sets of recurrent points off and any iteratef n are
the same, now in the setting of continuous maps and
arbitrary topological spaces.

However, in [10] the authors gave the following
definition of recurrent point:

Definition 2(Erdös-Stone, [10]). We say that x∈ X is a
recurrent pointof the discrete dynamical system(X, f )
whenever for any open neighbourhoodW = W (x) of x
there exists an infinite set of positive integers n such that
f n(x) ∈ W . We write R̃ec( f ) to denote the set of such
points.

Moreover, they comment: “This definition is
equivalent to Gottschalk’s ifX is a T1-space”. Let us
justify this assertion. Remember thatX is aT1-topological
space if given two different pointsx1,x2 in X there exist
neighbourhoodsU1 and U2 of x1,x2, respectively, such
that xi /∈ U j for i 6= j, i, j ∈ {1,2}. Notice that the
T1-definition implies that each singleton{x} is closed.
Observe that the inclusionR̃ec( f ) ⊆ Rec( f ) is
immediate. Moreover, ifX is T1 andx ∈ Rec( f ), given a
neighbourhoodU = U (x), let n1 be the first positive
integer such thatf n1(x) ∈ U . If f n1(x) = x the periodicity
of x yields an infinite set of values, namelynk = kn1, for
which the definition of̃Rec( f ) is satisfied. If f n1(x) 6= x,
then U \ { f n1(x)} is an open set containingx, so the
definition of Rec( f ) gets the existence of a new positive
integern2 > n1 such thatf n2(x) ∈ U \ { f n1(x)} ⊂ U and
with f j (x) /∈ U if n1 < j < n2. Reasoning in an
analogous way, we deduce the existence of an infinite set
of positive integers(n j) j holding Definition 2. Hence,
Rec( f ) ⊆ R̃ec( f ), which ends the assertion about the
equivalence between Definitions1 and Definition2 for
T1-spaces.

The above comment was the leitmotif for
investigating the relationship between the two definitions
in the general case of an arbitrary topological space,
without additional conditions on separation axioms over
the space. As far as we know this equivalence has no been

treated in the literature and we try to fulfill this (small)
lack.

On the other hand, some authors define a recurrent
point in terms ofω-limit sets (in this case the spaceX is
assumed to be compact metric):x is recurrentif and only
if x ∈ ω f (x), where ω f (x) is meant the set of
accumulation points of the orbit ofx under f .
Nevertheless, following a parallel development to that
described in [5], it is possible to extend this definition to
the general setting of arbitrary topological spaces as
follows.
Given a general discrete dynamical system(X, f ) and a
pointx∈ X, we define theω-limit set of x under fby

ω f (x) :=
⋂

m≥0

⋃

k≥m

{ f k(x)},

whereA is theclosureof a setA⊆ X, that is, the smallest
closed set containing A.

We are in a position to state the third definition of
recurrent point.

Definition 3.Let(X, f ) be a discrete dynamical system. We
say that x∈ X is arecurrent pointif x ∈ ω f (x). We denote
by Recω ( f ) the set of recurrent points according to this
definition of recurrence.

Notice thatω f (x) is always a closed andf -invariant
set (that is,f (ω f (x)) ⊆ ω f (x)). It can be an empty set,
consider for instance the system(R, f ) with f (x) = x+1.
However, if X is compact we can ensure thatω f (x) 6= /0
according to the well-known topological result
establishing that a compact space verifies thefinite
intersection property, namely if we have a family of
closed sets in which any finite subfamily has non-empty
intersection then the family itself has also non-empty
intersection (see for more details [9, §XI]).

3 The definitions are equivalent

In this section we will prove that the three above
definitions of recurrence are equivalent.

Proposition 1.Let X be a topological space and let
f : X → X be continuous. We have

Recω ( f ) = Rec( f ) = R̃ec( f ).

Proof.First, we prove the equality

Rec( f ) = R̃ec( f ).

In this case, it suffices to prove that Rec( f ) ⊆ R̃ec( f ),
since the other inclusion is immediate. So letx∈ Rec( f ),
we will show that x holds Definition 2. Let U be a
neighbourhood ofx, then by Definition1, there exists a
positive integerN1 such thatf N1(x) ∈ U . Since f N1 is a
continuous map, given a neighbourhoodW1 of the iterate
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f N1(x) we get a neighbourhoodU1 of x holding
f N1(U1) ⊆ W1 ∩ U =: W̃1. Then,
f N1(U1 ∩ U ) ⊆ f N1(U1) ⊆ W̃1 (notice that
x ∈ U1 ∩U =: Ũ1 6= /0). On the other hand, by applying
Definition 1 to Ũ1 we obtain a positive integerN2 (it
could be N1 = N2) such that f N2(x) ∈ Ũ1, and
consequently f N1+N2(x) = f N1( f N2(x)) ∈ f N1(Ũ1) ⊆

f N1(U1)⊆ W̃1 ⊆ U .
In the same manner we can see that it is possible to

find a sequence of neighbourhoods
U ⊇ Ũ1 ⊇ Ũ2 ⊇ Ũ3 ⊇ . . ., and a sequence of positive
integers(Nk)k so thatf N1+...+Nk(x) ∈ U . It follows thatx
satisfies the statement of Definition2, therefore
x∈ R̃ec( f ).

Secondly, we prove that Recω( f ) = Rec( f ). If
x∈ Recω ( f ), by using the notion of closure of a set, it is a
simple matter to see that any neighbourhoodU of x
intersects to{ f j(x), f j+1(x), . . .} for all j ≥ 1, and
consequently there exists a positive integerm such that
f m(x) ∈ U , proving thatx∈ Rec( f ).

On the other hand, ifx ∈ Rec( f ) = R̃ec( f ), by
Definition 2 and the notion ofω-limit set we have
x ∈ { f j(x), f j+1(x), . . .} for all j ≥ 1. Hence,x ∈ ω f (x),
or equivalentlyx∈ Recω ( f ).

Remark.It is well-known that in the case of metric spaces
(X,d) we can characterize the set of recurrent points
under sequences of iterates:x is recurrent if and only if
there exists an increasing sequence of positive integers
(nk)k such thatd( f nk(x),x) tends to zero whenk goes to
infinity. This follows directly from the equivalence of
recurrence via Definition3 dealing withω-limit sets. A
precise proof can be consulted in [5].

Remark.Let (X,τ) be a topological space. Iff ∈ C(X,X)

andx∈ Rec( f ), thenω f (x) = Orbf (x).
The inclusionω f (x) ⊆ Orbf (x) is always true by the

definition of ω-limit set. If, in addition,x is a recurrent
point, Proposition1 yieldsx∈ ω f (x) and thef -invariance
of ω f (x) gives Orbf (x)⊆ ω f (x). Finally,Orbf (x)⊆ω f (x)
sinceω f (x) is closed.

We finish this section by emphasizing that it would be
interesting to analyze the topological properties of a
system from the more general point of view of arbitrary
topological spaces, without additional assumptions on the
space or with the minimal amount of topological
hypothesis. In this sense, as an illustrative example let us
give the following properties on the characterizations of
minimal sets and on the link between minimal sets and
uniformly recurrent points. Before we refresh two
well-known definitions in the setting of discrete
dynamics.

Definition 4.Given a discrete dynamical system(X, f ), we
say that M⊆ X is a minimal setif it is nonempty, closed

and f -invariant and no proper subset of M possesses these
properties of closure and f -invariance.

Following [5], we say that x∈X isuniformly recurrent
whenever for any neighbourhoodU = U (x) of x there
exists a positive integer N= N(x,U ) such that if fm(x) ∈
U ,m≥ 0, then fm+k(x) ∈ U for some k with0< k ≤ N.
The set of uniformly recurrent points of f is denoted by
UR( f ).

It is straightforward to check the following result.

Proposition 2.Let (X, f ) a discrete dynamical system and
let M be a nonempty set. The following properties are
equivalent:

–M is a minimal set.
–Orbf (x) = M for all x ∈ M.
–ω f (x) = M for all x ∈ M.

As a consequence if M is minimal then M⊆ Rec( f ).

The proof of the following result is inspired by [5, §V,
Proposition 5]. In this reference it is proved the same
property in the setting of compact metric spaces.

Proposition 3.Let (X, f ) be a discrete dynamical system.
Suppose that X is a T1-space. If M is minimal and x∈ M,
then x is uniformly recurrent.

Proof.First, notice that according to Proposition2 x is
necessarily a recurrent point. To obtain a contradiction,
suppose thatx is not uniformly recurrent. Then there exist
an open neighbourhoodU of x and an increasing
sequence of positive integers(n j) j≥1 such thatf n j (x) ∈U
but f s(x) /∈ U if s ∈ {n j + 1,n j + 2, . . . ,n j + j}. Define
R := { f n1(x), f n2(x), . . . , f n j (x), . . .}. SinceM is minimal
andR⊆ U we have /06= R⊆ U ∩M. Let z∈ R⊆ M, the
minimality of M together with Proposition2 implies the
existence ofm > 0 such that f m(z) ∈ U. Now, the
continuity of f m yields the existence of a neighbourhood
V of z with f m(V) ⊆ U . By the definition ofR as a
closure, forV there is an indexn j such thatf n j (x) ∈ V.
Taking into account thatX is a T1-space, it is not
restrictive to assume thatm < j (otherwise, we take
Ṽ =V \ { f n1(x), . . . , f n j (x)}, again an open set since each
point in a T1-space is closed, see [9], and we apply the
same reasoning as above toṼ instead ofV). In this case,
f n j (x) ∈ V and also f m+n j (x) ∈ U, with m < j, a
contradiction. This ends the proof.

We next give a partial converse of Proposition3.
Following [9, p.141] a topological space(X,τ) is regular
if it is a Hausdorff space holding that eachz ∈ X and
closed set Y not containing z have disjoint
neighbourhoods, that is, ifY is closed andz /∈ Y then
there is a neighbourhoodV of z and an openW ⊇ Y such
thatU ∩W = /0.

Proposition 4.Let (X,τ) be a regular topological space
and let (X, f ) be a discrete dynamical system. If a point
x ∈ X is uniformly recurrent, thenOrbf (x) is a minimal
set of X.
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Proof.First at all, realize thatOrbf (x) is clearly non-empty
and closed, moreover it is invariant due to the continuity
of f : f (Orbf (x))⊆ f (Orbf (x)) = Orbf ( f (x)) ⊆ Orbf (x).

We prove that Orbf (x) is minimal. Arguing by
contradiction, assume that there exists a closed
f -invariant setA such that /0 A⊂ Orbf (x) . In this case,
note that x /∈ A, otherwise Orbf (x) ⊆ A. Since X is
regular, there exist a neighbourhoodW of x and an open
setV ⊇ A such thatV ∩W = /0.

For the openW, according to the definition of
uniformly recurrent point, there exists a positive integerκ
such that

{ f j (x), f j+1(x), . . . , f j+κ(x)}∩W 6= /0, for all j ≥ 0. (1)

On the other hand, lety be an arbitrary point inA. Then
{y, f (y), . . . , f κ (y)}∩W = /0 sinceA is invariant. To each
j = 0,1, . . . ,κ , we associate an open neighbourhoodZ j ⊆

V of f j (y), soZ j ∩W = /0. By continuity of f j , we can find
an open neighbourhoodVj ⊆V of y such thatf j (Vj)⊆ Z j ,
j = 0,1, . . . ,κ . PutṼ =

⋂κ
s=1Vs (observe thaty∈ Ṽ 6= /0).

In this case, for anyj ∈ {0,1, . . . ,κ}

f j(Ṽ) = f j

(
κ⋂

s=1

Vs

)
⊆

κ⋂

s=1

f j (Vs)⊆ f j (Vj)⊆ Z j ,

and thereforef j (Ṽ)∩W = /0. Finally, taking into account
that y ∈ Orbf (x), there exists a certain iteratef q(x) ∈ Ṽ.

Consequently,f j+q(x) /∈ W for j = 0,1, . . . ,κ , which
contradicts (1).

Remark.Notice that any metric space is regular, so we have
extended [5, Proposition 5, Chapter V] to a larger class of
topological spaces. It is an open question to know whether
the above result works or not in the more general setting
of T2-spaces. In the case of compact Hausdorff spaces, the
property remains true: here the space is regular (see [9,
Theorem 1.2, Chapter XI]), therefore it is regular and the
property applies.

Remark.It is worth of mentioning that the above property
is already established in [16], but no proof (or mention to
the proof) is given in the survey paper. Consequently, for
the sake of completeness we have included the proof in our
paper.

4 Historical remarks

The dynamical notion of recurrence has its origin in the
work of the French mathematician Henri Poincaré. In his
studies about Celestial Mechanics he tried to find
qualitative properties of all the solutions of certain
systems of differential equations rather than to obtain
analytic expressions of some solutions. Applying this new

point of view, in [20, §8]1 appeared the original version of
his celebrated Poincaré Recurrence Theorem in this form:

Théorème I. Supposons que le point P reste à
distance finie, et que le volume

∫
dx1dx2dx3 soit un

invariant intégral; si l’on considère une région r0
quelconque, quelque petite que soit cette région, il y aura
des trajectoires qui la traverseront une infinité de fois.

This theorem also appears in [21, §26, Stabilité à la
Poisson], the usual reference to cite Poincaré Recurrence
Theorem. Roughly speaking, it establishes that given a
system of differential equations whose phase space is a
bounded domainV inside then-dimensional Euclidean
spaceRn, and we suppose that the system preserves the
flow volume (respect with an appropriate measure) then
we can choose initial conditions such that their solutions
intersect indefinitely any regionr0 ⊆V.

Following [12], the Poincaré’s memory [20] can be
consider as one of the origins of both the disciplines we
now call Topological Dynamics and Ergodic Theory.2 On
one hand, the study of the stability of periodic solutions is
made under discretizing the system by the Poincaré’s map
and starts the topological approach to the dynamics, and
on the other hand the probabilistic study of the recurrence
will be give rise a few decades later to the ergodic theory:

“Nous conviendrons de dire que la probabilité pour
que la position initiale du point mobile P appartienne à
une certaine région r0 est à la probabilité pour que cette
position initiale appartienne à une autre région r′

0 dans le
même rapport que le volume de ro au volume de r′0. Les
probabilités ainsi définies, je me propose d’établir que la
probabilité pour qu’une trajectoire issue d’un point de r0
ne traverse pas cette région plus de k fois est nulle,
quelque grand que soit k et quelque petite que soit la
région r0. C’est là ce que j’entends quand je dis que les
trajectoires qui ne traversent r0 qu’un nombre fini de fois
sont exceptionnelles”([20, §8]).

Concerning to this ergodic approach, a modern
version3 whose proof can be consulted in [24, p. 26],
establishes4

1 This famous memory won the King Oscar II’s Prize
competition. More information about the history of this
competition and the analysis of the error in the Poincaré’s
memory can be consulted in [1].

2 As J. de Vries explains in [8, p. 1], we can say that
Topological Dynamics isthe study of transformation groups
with respect to those topological properties whose prototype
occurred in classical dynamics. Rephrasing [15, p. iii] and
replacing topological by measure-theoretic we have the definition
of Ergodic Theory. As a curiosity the word “ergodic” is an
amalgamation of the Greek words “ergon” (work) and “odos”
(path) ([24, p. 2]).

3 By using the modern measure theory developed by
Lebesgue, Carathéodory was the first mathematician to stateand
prove a modern version of Poincaré’s Recurrence Theorem, see
[6].

4 If (X,B,m) is a probability space, a measure-preserving
transformation T : X → X is a measurable map (that is,
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Theorem 1(Poincaré Recurrence Theorem). Let
T : X → X be a measure-preserving transformation of a
probability space(X,B,m). Let E ∈ B with m(E) > 0.
Then almost all points of E return infinitely often to E
under positive iteration by T (i.e, there exists F⊂ E with
m(F) = m(E) such that for every x∈ F there is a
sequence n1 < n2 < .. . of natural numbers with
Tn j (x) ∈ F for each j).

As a consequence, we can affirm that if we impose
some conditions on finiteness of a measure and on
preservation of that measure, we deduce that almost every
point x is recurrent (except for a set of zero measure), we
obtain qualitative information of the asymptotics of the
orbits instead of knowing a precise analytic expression for
these orbits.

For more information about Poincaré Recurrence
Theorem, we recommend the reading of [13], [12] and
[2].

The French mathematician uses the terminology
stability in the sense of Poissonto denote our actual
notion of recurrence. Other authors use a different
terminology to appoint the concept of recurrence and
other related notions of return. To have information on
this different terminology, the reader can consult the
comparative table appearing in [8, p. 150]. In this table
we find a list of different books on topological dynamics
([15], [19], [13], [24], [8], ...) and the used terminology in
each of them. As a curiosity, in some cases, as interval
maps, this range allows us to detect chaos5 whenever the
set of recurrent and uniformly recurrent points are not
equal([5, §VI, Corollary 8]). In [22, Theorem 4.19] there
is a list of 45 equivalent statements to characterize simple
interval maps, those having no periodic points of period
not a power of two.

The next milestone to be mentioned is the well-known
Birkhoff Recurrence Theorem which can be considered as
the discrete counterpart of Poincaré’s Recurrence
Theorem.6 It establishes that if(X,d) is a compact metric
space andT : X → X is a homeomorphism, then
Rec( f ) 6= /0, that is, there exists a pointx ∈ X and a
subsequence(n j) j of increasing positive integers such
thatd(Tn j (x),x) → 0. In fact, the result remains true ifT

T−1(B)⊆B)) such thatm(T−1(A))=m(A) for all the elements
A of theσ -algebraB.

5 In the sense thatf ∈ C([0,1], [0,1]) has a periodic point
whose period is not a power of 2 (or equivalently, that the
topological entropyh( f ) is positive – see [24] for a general
definition of topological entropy for compact metric spacesand
[5, §VIII, Prop. 34] for a proof of this equivalence).

6 In fact, by [17] it is known that ifT : X → X is a continuous
transformation of a compact metric spaceX into itself, then
there exists a probability measureµ in the probabilistic space
(X,B(X),µ), whereB(X) is the Borelσ -algebra, such that
T preserves the measure; consequently, by applying Poincaré
Recurrence Theorem we have thatT has recurrent points.

is continuous.7 It is worth point out that Birkhoff uses the
word recurrent point (in the frame of a continuous flow in
a compact space) in the sense of uniformly recurrent point
([4, p. 199]): “In order that a point group generated by
the motion Pt be recurrent, it is necessary and sufficient
that for any positive quantityε, however small, there
exists a positive quantity T so large that any arc PtPt+T of
the curve of motion has points within distanceε for every
point of the curve of motion”.

Actually, we can say more: ifX is a compact
topological space andf ∈C(X,X), then Rec( f ) 6= /0 since
the compactness implies the existence of a minimal set
M ⊆ X (the proof is based on Zorn’s Lemma) and
Proposition2 applies.

5 Conclusion

In this note we have presented three equivalent definitions
of recurrent points in the context of discrete dynamical
systems. From Section4 we have seen that in its origin
this notion was established in the context of continuous
systems moving into bounded regions of the
n-dimensional Euclidean space. As a direct consequence,
when discrete recurrence is taking into account the most
part of the authors agreed with considering compact
metric spaces. Nevertheless, it is immediate to translate
the notion to arbitrary topological spaces. Similar studies
can be done when analyzing other topological properties
of the systems (uniformly recurrence, minimality,
transitivity, etcetera). So the line of researching we stress
here proposes to analyze the topological properties of a
system from the more basic set of assumptions, without
separation axioms to be possible. Finally, another
conclusion we extract from this note is the helpful of the
set of returning points in order to discuss the simplicity or
complexity of a discrete system, in particular to interval
maps. Let us mention that the analysis of complexity in
nonlinear dynamics is a subject extensively treated by J.
Sousa Ramos and collaborators.

7 It is interesting to mention the so-called Birkhoff Multiple
Recurrence Theorem, due to Furstenberg and Weiss [11], which
ensures the existence of common recurrent points (multiply
recurrent points) for a finite number of continuous maps
T1, . . . ,TN from a compact metric spaceX into itself such that
Ti ◦Tj = Tj ◦Ti with i, j ∈ {1, . . . ,N}, i 6= j . As a curiosity, this
result of topological dynamics allows us to find a new proof of
the celebrated van der Waerden’s Theorem [23]: For any partition
of the natural numbers into a finite number of classesN = A1∪
A2 ∪ . . .∪AN, at least one elementA j of the partition contains
arithmetic progressions of arbitrary length. Even more, in[11]
(see also the monograph [13]) it is highlighted the surprising
relationship between the fields of Topological Dynamics and
Combinatorial Number Theory.
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