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1 Introduction

When dealing with a discrete dynamical systéx f),
that is, a general topological spageand a continuous
function f : X — X (in short, f € C(X, X)), the main goal
is to analyze the asymptotic behaviour of thebits for
anyx e X

Orby (x) := {x, f(x), f2(x),...

Y(%),... ),

or equivalently to study how the orbits of the system
behave whenn goes to infinity. Here, we define the
(positive) iteratesof f asfl = f, f" = fo f"! (n>2)
andf% = Id|x (theidentity map on X.

This objective is easily achieved in some particular

cases. For instance, ldt: [0,1] — [0,1] be an interval
map for whichf(x) < xif x € (0,1] and f(0) = 0O: in this
situation we obtain that O is global attractor since
limy. f"(xX) = 0 for any pointx. But, in general, the
description turns into a more difficult (and intriguing)

behaviour of the orbits, for example, let us mention the

paradigmatic logistic map(x) = 4x(1—x), in spite of its
certainly simple aspect,
fascinating series of different motions for its orbits,rfro

The reader has surely noticed that this long—term
study is strongly related with the analysis of differensset
of return points, those points whose orbits intersect in the
large all their prescribed open neighbourhoods. Among
them, the simplest case corresponds to periodic orbits.
Recall thatx € X is aperiodic pointif f™(x) = x for some
positive integem (if m= 1 we say thak is afixed point

and in generain is theorder or period of x underf when

in addition f!(x) # x for 0 < j < m). This idea of
returning to itself can be generalized by the notion of
recurrence which means the intersection of the orbit
Orbs (x) with any of the open neighbourhoodsof x. To
learn something more about the different notions of return
of points, the reader is encouraged to cons2® g1.3],
where it is possible to find, in the setting of interval maps,
several approaches to the idea of return by the notions of
periodicity, almost periodicity in the sense of Bohr,
uniformly recurrence, recurrence, no-wandering points,
chain recurrenceetcetera. It is also studied the relation
between these notions and the complexity or simplicity of
the dynamics of the ma@p, §4].

its dynamics conceals a

We concentrate our attention on the topological notion

the simple accumulation towards periodic points to of recurrence. The purpose of this note is to present three
complex dynamics involving attracting Cantor sets orequivalent notions of recurrence, to give a little histatic

even dense orbits (se&d] and [7] to learn more details of
this logistic map).

account of this concept and to remark the topological
character of our approach.
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2 Three notions of recurrence treated in the literature and we try to fulfill this (small)
lack.

In [14] the definition of recurrent point fofX, f) is given “On the other hand, some authors define a recurrent

as follows (we will consider that is continuous, though ~Pointin terms ofw-limit sets (in this case the spaeis

in [14] f was assumed to be a homeomorphism): assumed to be compact metrig)is recurrentif and only

if x € wf(x), where wf(x) is meant the set of
Definition 1(Gottschalk, [14]). Given a discrete accumulation points of the orbit ofx under f.
dynamical syster(X, f), we say that xc X is arecurrent  Nevertheless, following a parallel development to that
point of f whenever for any open neighbourhood described in§], it is possible to extend this definition to
% = (x) of x there exists a positive integer the general setting of arbitrary topological spaces as
N = N(x,%) such that N(x) € Z(x). The set of follows.
recurrent points will be denoted Bed f). Given a general discrete dynamical systéf) f) and a

. ) , pointx € X, we define thev-limit set of x under foy
Soon after, Erdés and Stone gave it0][ simpler

proofs of some results ofLff] about properties, among . T e
others, of recurrent points. There the restrictive s (x) = ﬂ U {03,
hypothesis of beingf a homeomorphism is replaced
simply by the continuity off. For instance, it is proved
that the sets of recurrent points baind any iteratd" are
the same, now in the setting of continuous maps a
arbitrary topological spaces.
However, in [LO] the authors gave the following
definition of recurrent point: Definition 3.Let (X, f) be a discrete dynamical system. We
say that xe X is arecurrent poinif x € ws (x). We denote

Definition 2(Erdds-Stone, [L0]). We say that xc X is @ by Reg,(f) the set of recurrent points according to this
recurrent pointof the discrete dynamical systefi, f) definition of recurrence.

whenever for any open neighbourho#d = % (x) of x . . o
there exists an infinite set of positive integers n such that Notice thatcws (x) is always a closed ané-invariant

f"(x) € 7. We write Reqf) to denote the set of such Set (thatis,f(w(x)) C wr(x)). It can be an empty set,
points. consider for instance the systdiR, f) with f(x) = x+ 1.

However, if X is compact we can ensure that (x) # 0

Moreover, they comment: “This definition is according to the well-known topological result
equivalent to Gottschalk’s iX is a Ty-space”. Let us establishing that a compact space verifies firgte
justify this assertion. Remember thais aT;-topological  intersection property namely if we have a family of
space if given two different points;,x, in X there exist closed sets in which any finite subfamily has non-empty
neighbourhood¥/ and %% of xq,%», respectively, such intersection then the family itself has also non-empty
that x ¢ % for i # j, i,j € {1,2}. Notice that the intersection (see for more detai EXI]).
T;-definition implies that each singletofx} is closed.
Observe that the inclusionReqf) C Reqf) is o )
immediate. Moreover, iK is T; andx € Req f), given a 3 The definitions are equivalent
neighbourhoodz = % (x), let n; be the first positive
integer such that™ (x) € 7. If M (x) = x the periodicity ~ In this section we will prove that the three above
of x yields an infinite set of values, namely = kny, for ~ definitions of recurrence are equivalent.
which the definition ofRed f) is satisfied. Iff™(x) # X,
then 7 \ {f™(x)} is an open set containing so the
definition of Re¢f) gets the existence of a new positive
integerny > ny such thatf"(x) € % \ {f™(x)} ¢ % and _ _ Rer
with fl(x) ¢ % if np < j < np. Reasoning in an ReG(f) = Red) =Redf).
analogous way, we deduce the existence of an infinite seproofFirst, we prove the equality
of positive integers(n;); holding Definition 2. Hence,

m>0k>m

whereA is theclosureof a setA C X, that is, the smallest
dplosed set containing A.
n We are in a position to state the third definition of
recurrent point.

Proposition 1Let X be a topological space and let
f : X — X be continuous. We have

Req f) C Reqf), which ends the assertion about the Req f) = Req ).
equivalence between Definitiorisand Definition2 for L
Ti-spaces. In this case, it suffices to prove that Ré¢ C Redf),

The above comment was the leitmotif for since the other inclusion is immediate. Soxet Reqf),
investigating the relationship between the two definitionswe will show thatx holds Definition2. Let % be a
in the general case of an arbitrary topological spaceneighbourhood ok, then by Definitionl, there exists a
without additional conditions on separation axioms overpositive integeiN; such thatf™ (x) € %. Sincef™ is a
the space. As far as we know this equivalence has no beetontinuous map, given a neighbourho#g of the iterate
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fNi(x) we get a neighbourhoodZ of x holding  and f-invariant and no proper subset of M possesses these
Ny < o on % = Y. Then, proip:glrlties' of ([:I5c]>sure andJ-inva)r(ignce:f |

N N - : owing [5], we say that xc X isuniformly recurrent
Mo n %) ¢ t8(w) < 71 (notice thqt whenever for any neighbourhodét = % (x) of x there
X € W N% =% # 0). On the other hand, by applying exists a positive integer N N(x, %) such that if f'(x) €
Definition 1 to %2 we obtain a positive intege, (it % ,m> 0, then f™K(x) € % for some k withD < k < N.
could be N; = Np) such that f\2(x) € %4, and  The set of uniformly recurrent points of f is denoted by

consequently NNz (x) = fN(fN(x)) € M(24) ¢ UR(F).
N ) CcmCu. It is straightforward to check the following result.

In the same manner we can see that it is possible tq3roposition 2Let (X, f) a discrete dynamical system and

find - a _ sequence of ”e'ghbourh‘??ds let M be a nonempty set. The following properties are
U DU DU DU D ..., and a sequence of positive equivalent:

integers(Ny)k so thatfN+-+N(x) € 7. It follows thatx
satisfies the statement of Definitior2, therefore
x € Req f). —Orbs (x) = M for all x € M.

Secondly, we prove that Rgtf) = Redf). If —wi(x) =M foral XE' M'. o
x € Regy(f), by using the notion of closure of a set, itisa ~ As a consequence if M is minimal thendVReq(f).

simple matter to see that any neighbourhod of x The proof of the following result is inspired b$,[8V,

intersects to{fl(x),fI*1(x),...} for all j > 1, and  proposition 5]. In this reference it is proved the same
consequently there exists a positive integesuch that property in the setting of compact metric spaces.
fM(x) € % , proving thatx € Req ). - _ _

On the other hand, ifx € Reqf) = Redf), by groposmo?] 3.I_Xe'§ (X’:fl_) be a ﬂli;lzr_ete glynarlnlcaoll sy'\s/;cem.
Definition 2 and the notion ofw-limit set we have SUPPOse that X is & space. IS minimal ana & M,

x e {fl(x), fi+1(x),...} for all j > 1. Hence x € ws(x), then x is uniformly recurrent.

or equivalentlyx € Reg,(f). ProofFirst, notice that according to Propositi@nx is

i ) ) necessarily a recurrent point. To obtain a contradiction,
Remarkt is well-known that in the case of metric spaces gppose that is not uniformly recurrent. Then there exist
(X,d) we can characterize the set of recurrent pointsgp, open neighbourhootl of x and an increasing
under sequences of iteratesis recurrent if and only if  sequence of positive intege(is;)j>1 such thatf" (x) € U
there exists an increasing sequence of positive integerg; fS(x) ¢ U if s€ {nj+1,nj+2,....n; + j}. Define
()i, such thatd(™(x), x) tends to zero whek goes to 5. _ {fM(x), fr2(x),..., fN(x),...}. SinceM is minimal
infinity. This follows directly from the equivalence of aridRC U V\;e havé.(b; RC ﬁmM Letzc RC M. the
rergléirsrgnii(;/f'ia?]eggggﬁgﬁ:&'%}[W'th w-limit sets. A minimglity of M together with Propositio2 imI)Iies the
P P ' existence ofm > 0 such thatf™(z) € U. Now, the
RemarkLet (X, ) be a topological space. f € C(X,X continuity of fM yields the existence Qf.a} neighbourhood
andx e Red(f) tr)1enw (x)p— Ogrb (x)p (X X) V of z with f™(V) C U. By the definition ofR as a

. ' P — T closure, forV there is an index; such thatf"(x) € V.

The inclusionwy (x) < Orby(x) is always true by the  Taking into account thatX is a Ty-space, it is not
definition of w-limit set. If, in addition,x is a recurrent  estrictive to assume than < j (otherwise, we take
point, Propositiorl yieldsx € wr (x) and thef-invariance  ; _\, \ {f™(x),..., " (x)}, again an open set since each
of wi (x) gives Orh (x) C wr (). Finally, Orby (x) C wr(X)  point in aTy-space is closed, se€][ and we apply the
sincewt (x) is closed. same reasoning as aboveMdnstead ofV). In this case,
fli(x) € V and also f™Mi(x) € U, with m < j, a
contradiction. This ends the proof.

—M is a minimal set.

We finish this section by emphasizing that it would be
interesting to analyze the topological properties of a
system from the more general point of view of arbitrary =~ We next give a partial converse of PropositiGn
topological spaces, without additional assumptions on thdé=ollowing [9, p.141] a topological spade, T) is regular
space or with the minimal amount of topological if it is a Hausdorff space holding that eaeche X and
hypothesis. In this sense, as an illustrative example let uslosed set Y not containing z have disjoint
give the following properties on the characterizations of neighbourhoods, that is, ¥ is closed andz ¢ Y then
minimal sets and on the link between minimal sets andthere is a neighbourhodd of zand an opefV 2 Y such
uniformly recurrent points. Before we refresh two thatU NnW = 0.
well-known definitions in the setting of discrete

dynamics. Proposition 4Let (X, T) be a regular topological space

and let(X, f) be a discrete dynamical system. If a point
Definition 4.Given a discrete dynamical systé¥, f), we  x € X is uniformly recurrent, thei®rbs (x) is a minimal
say that MC X is aminimal setif it is nonempty, closed set of X.
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ProofFirst at all, realize thaDrby (x) is clearly non-empty  point of view, in R0, 88]* appeared the original version of
and closed, moreover it is invariant due to the continuityhis celebrated Poincaré Recurrence Theorem in this form:
of f: f(Orbs(x)) C f(Orbs(x)) = Orbs (f(x)) C Orbs(x). Théoréme |. Supposons que le point P reste a
We prove thatOrbs(x) is minimal. Arguing by distance finie, et que le volumgdxdxdxs soit un
contradiction, assume that there exists a closednvariant intégral; si l'on considére une régionor

f-invariant setA such that @z A c Orby (x) . In this case, quelconque, quelque petite que soit cette région, il y aura

note thatx ¢ A, otherwise Orbr(x) C A. Since X is des trajectoires qui la traverseront une infinité de fois.

regular, there exist a neighbourhodtlof x and an open .This theorem also appears ij.{ §26’. Stal?”“é ala
setV O A such thaV NW = 0. Poisson], the usual reference to cite Poincaré Recurrence

Theorem. Roughly speaking, it establishes that given a
system of differential equations whose phase space is a
bounded domairv inside then-dimensional Euclidean
spaceR", and we suppose that the system preserves the
fi fitley) | fitK AW £0. forall i >0. (1 flow volume (re§p_gct with an appropriate mee_lsure) Fhen
X, 09, 09} 70, forallj=0. (1) we can choose initial conditions such that their solutions

On the other hand, let be an arbitrary point irA. Then intersect irldefinitely any rggidr@,,g V.

{y, £(y),.... f¥(y)} "W = 0 sinceA is invariant. To each Following [12], the Poincaré’s memory2[) can be

j=0,1,...,k, we associate an open neighbourhdpdz ~ consider as one of the origins of both the disciplines we

V of fi(y), soZ; "W = 0. By continuity off/, we can find ~ NOW call Topological Dynamics and Ergo.dlc_TheSr@n .

an open neighbourhoad C V/ of y such thatt1 (V) C Z, one hand, the study of the stability of periodic solutions is
= ] =4

. ~ b ' made under discretizing the system by the Poincaré’s map
j=0.1...,k. PutV =5, Vs (observe thay €V #0).  anq starts the topological approach to the dynamics, and
In this case, for any € {0,1,...,k}

on the other hand the probabilistic study of the recurrence
p p will be give rise a few decades later to the ergodic theory:
i) — fi c j cfipv) C 7 “Nous conviendrons de dire que la probabilité pour
PV =t (Ql\/S) SN Criv)cz, que la position initiale du point mobile P appartienne a
une certaine régiong est a la probabilité pour que cette

and therefore | (\7) AW = 0. Finally, taking into account position initiale appartienne a une autre régiopdans le
' méme rapport que le volume dg au volume dej. Les

thaty & Orby (x), there exists a certain iterafé(x) € V., panilites ainsi définies, je me propose d'établir que la

c ty,fi+9(x) ¢ W for j = 0,1 hich Jo e B -
onsequently,fI74(x) ¢ or ) =04...,K whc probabilité pour qu’une trajectoire issue d’un point dg r

contradicts ). ne traverse pas cette région plus de k fois est nulle,

. ) , qguelque grand que soit k et quelque petite que soit la
Remarkiotice that any metric space is regular, so we haveggion 1. C'est 1a ce que jentends quand je dis que les

extended$, Proposition 5, Chapter V] to a larger class of yajectoires qui ne traversent mgu’un nombre fini de fois
topological spaces. It is an open question to know whetheggnt exceptionnelle€[20, §8]).

the above result works or not in the more general setting Concerning to this ergodic approach, a modern
of Tp-spaces. In the case of compactHausdorffspaces,th@ersioﬁ whose proof can be consulted iﬁz’l[ p. 26]
property remains true: here the space is regular (8ge [ establisheb '
Theorem 1.2, Chapter XI]), therefore it is regular and the
property applies.

For the openW, according to the definition of
uniformly recurrent point, there exists a positive integer
such that

s=1

1 This famous memory won the King Oscar II's Prize
. - competition. More information about the history of this
,Remarkl't IS Worth of m,ent'on'ng that the above property competition and the analysis of the error in the Poincaré’s
is already established ii§], but no proof (or mention to memory can be consulted if][
the proof) is given in the survey paper. Consequently, for 2 A5’ de Vries explains ing p. 1], we can say that
the sake of completeness we have included the proof in oUfgpological Dynamics isghe study of transformation groups
paper. with respect to those topological properties whose praety
occurred in classical dynamicsRephrasing I5, p. iii] and
replacing topological by measure-theoretic we have thaitiefi
of Ergodic Theory. As a curiosity the word “ergodic” is an
amalgamation of the Greek words “ergon” (work) and “odos”

. . . L (path) (R4, p. 2]).
The dynamical notion of recurrence has its origin in the '3 gy ysing the modern measure theory developed by

work of the French mathematician Henri Poincaré. In his_ebesgue, Carathéodory was the first mathematician toatate
studies about Celestial Mechanics he tried to findprove a modern version of Poincaré’s Recurrence Theoreen, se
qualitative properties of all the solutions of certain [6].

systems of differential equations rather than to obtain 4 If (X,2,m) is a probability space, a measure-preserving
analytic expressions of some solutions. Applying this newtransformationT : X — X is a measurable map (that is,

4 Historical remarks
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Theorem 1(Poincaré Recurrence Theorem). Let s continuous’ It is worth point out that Birkhoff uses the
T : X — X be a measure-preserving transformation of a word recurrent point (in the frame of a continuous flow in
probability space(X, #,m). Let E € £ with m(E) > 0. a compact space) in the sense of uniformly recurrent point
Then almost all points of E return infinitely often to E ([4, p. 199]): “In order that a point group generated by
under positive iteration by T (i.e, there existsFE with ~ the motion Pbe recurrent, it is necessary and sufficient
m(F) = m(E) such that for every x F there is a that for any positive quantitg, however small, there
sequence N< np < ... of natural numbers with exists a positive quantity T so large that any ayB Pr of
TNi(x) € F for each j). the curve of motion has points within distareér every
point of the curve of motidn

As a consequence, we can affirm that if we impose Actually, we can say more: ifX is a compact
some conditions on finiteness of a measure and oriopological space anfic C(X, X), then Re¢f) 7 0 since
preservation of that measure, we deduce that almost eveAl€ compactness implies the existence of a minimal set
pointx is recurrent (except for a set of zero measure), weM S X (the proof is based on Zorn's Lemma) and
obtain qualitative information of the asymptotics of the Proposition2 applies.
orbits instead of knowing a precise analytic expression for
these orbits.

For more information about Poincaré Recurrence
Theorem, we recommend the reading @8][ [12] and 5 Conclusion
[2].

The French mathematician uses the terminology
stability in the sense of Poissao denote our actual |n this note we have presented three equivalent definitions
notion of recurrence. Other authors use a differentof recurrent points in the context of discrete dynamical
terminology to appoint the concept of recurrence andsystems. From Sectiof we have seen that in its origin
other related notions of return. To have information onthijs notion was established in the context of continuous
this different terminology, the reader can consult thesystems moving into bounded regions of the
comparative table appearing i, [p. 150]. In this table  n.dimensional Euclidean space. As a direct consequence,
we find a list of different books on topological dynamics when discrete recurrence is taking into account the most
([19], [19], [13], [24], [8], ...) and the used terminology in part of the authors agreed with considering compact
each of them. As a curiosity, in some cases, as intervapetric spaces. Nevertheless, it is immediate to translate
maps, this range allows us to detect cRashenever the  the notion to arbitrary topological spaces. Similar stadie
set of recurrent and uniformly recurrent points are notcan be done when analyzing other topological properties
equal(p, 8VI, Corollary 8]). In 22, Theorem 4.19] there  of the systems (uniformly recurrence, minimality,
is a list of 45 equivalent statements to characterize simpleransitivity, etcetera). So the line of researching wesstre
interval maps, those having no periodic points of periodhere proposes to analyze the topological properties of a
not a power of two. system from the more basic set of assumptions, without

The next milestone to be mentioned is the well-known separation axioms to be possible. Finally, another
Birkhoff Recurrence Theorem which can be considered agonclusion we extract from this note is the helpful of the
the discrete counterpart of Poincaré’s Recurrenceset of returning points in order to discuss the simplicity or
Theorem? It establishes that ifX, d) is a compact metric  complexity of a discrete system, in particular to interval
space andT : X — X is a homeomorphism, then maps. Let us mention that the analysis of complexity in
Redqf) # 0, that is, there exists a poide X and a  nonlinear dynamics is a subject extensively treated by J.
subsequencén;); of increasing positive integers such Sousa Ramos and collaborators.
thatd(T" (x),x) — 0. In fact, the result remains true T

7 It is interesting to mention the so-called Birkhoff Multépl
T-1(#) C 8)) such tham(T~1(A)) =m(A) for all the elements  Recurrence Theorem, due to Furstenberg and WeBswhich
A of the o-algebra. ensures the existence of common recurrent points (multiply
5 In the sense thaf € C([0,1],(0,1]) has a periodic point recurrent points) for a finite number of continuous maps
whose period is not a power of 2 (or equivalently, that the Ty,..., Ty from a compact metric space¢ into itself such that
topological entropyh(f) is positive — seeZ4] for a general  TioT; =T;oT withi,j e {1,...,N},i # j. As a curiosity, this
definition of topological entropy for compact metric spaeesl result of topological dynamics allows us to find a new proof of
[5, 8VIII, Prop. 34] for a proof of this equivalence). the celebrated van der Waerden'’s Theor@8j:[For any partition
6 In fact, by [L7] it is known that if T : X — X is a continuous  of the natural numbers into a finite number of clasies A; U
transformation of a compact metric spakeinto itself, then  A>U...UAy, at least one elemew; of the partition contains
there exists a probability measurein the probabilistic space arithmetic progressions of arbitrary length. Even more]1ifj
(X, %8(X),u), where Z(X) is the Borelo-algebra, such that (see also the monograpiid) it is highlighted the surprising
T preserves the measure; consequently, by applying Poincargelationship between the fields of Topological Dynamics and
Recurrence Theorem we have tfiahas recurrent points. Combinatorial Number Theory.
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