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Abstract: Traditional assumptions in the simple chemostat model include fixed availability of the nutrient and its supply rate, and
fast flow rate to avoid wall growth. However, these assumptions become unrealistic when the availability of a nutrient depends on the
nutrient consumption rate and input nutrient concentration and when the flow rate is not fast enough. In this paper, we relax these
assumptions and study the chemostat models with a variable nutrient supplying rate or a variable input nutrient concentration, with
or without wall growth. This leads the models to nonautonomous dynamical systems and requires new concepts of nonautonomous
attractors from the recently developed theory of nonautonomous dynamical systems. Our results provide sufficient conditions for
existence of nonautonomous attractors and singleton attractors.
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1 Introduction

A chemostat is associated with a laboratory device which
consists of three interconnected vessel and is used to
grow microorganisms in a cultured environment. In its
basic form, the outlet of the first vessel is the inlet for the
second vessel and the outlet of the second vessel is the
inlet for the third. The first vessel is called a feed bottle,
which contains all the nutrients required to grow the
microorganisms. All nutrients are assumed to be
abundantly supplied except one, which is called alimiting
nutrient. The contents of the first vessel are pumped into
the second vessel, which is called the culture vessel, at a
constant rate. The microorganisms feed on nutrients from
the feed bottle and grow in the culture vessel. The culture
vessel is continuously stirred so that all the organisms
have equal access to the nutrients. The contents of the
culture vessel are then pumped into the third vessel,
which is call a collection vessel. Naturally it contains
nutrients, microorganisms and the products produced by
the microorganisms [21].

As the best laboratory idealization of nature for
population studies, the chemostat plays an important role
in ecological studies [3,5,6,9,24,25,26,28]. With some
modifications it is also used as the model for waste-water
treatment process [1,14]. The chemostat model can be
considered as the starting point for many variations that
yield more realistic biological models, e.g., the
recombinant problem in genetically altered organisms
[22,23] and the model of mammalian large intestine [7,
8]. More literature on the derivation and analysis of
chemostat-like models can be found in [17,19,27] and the
references therein.

In the simple chemostat model, the availability of the
nutrient and its supply rate are assumed to be fixed.
However, the availability of a nutrient in a natural system
usually depends on the nutrient consumption rate and
input nutrient concentration, which may lead to a
nonautonomous dynamical system. Another basic
assumption in the simple chemostat model is that the flow
rate is assumed to be fast enough that it does not allow
growth on the cell walls. Yet wall growth does occur
when the washout rate is not fast enough and is a problem
in bio-reactors. Studies of chemostat models treated as
nonautonomous dynamical systems are very limited to
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date, e.g., Smith and Thieme introduced practical
persistence for nonautonomous dynamical system with
the simple chemostat as an example in [18] when the
washout rate is time-dependent.

In this paper we study the chemostat models with a
variable nutrient supplying rate or a variable input
nutrient concentration, with or without wall growth. This
requires new concepts of nonautonomous attractors from
the recently developed theory of nonautonomous
dynamical systems. The rest of this paper is organized as
follow. In section 2 we present the chemostat model and
its basic properties. In section 3 we recall some
definitions and results from the theory of nonautonomous
dynamical systems which will be necessary for our
analysis. In section 4 we study the models with a variable
nutrient supplying rate with and without wall growth. In
section 5 we study the model with variable input nutrient
concentration with and without wall growth. A closing
remark is given in section 6 and completes the paper.

2 The model

Consider a chemostat model consisting of a
microorganism feeding on a single growth-limiting
nutrient. Denote byx the growth-limiting nutrient and by
y the microorganism feeding on the nutrientx. Assume
that all other nutrients, exceptx, are abundantly available,
i.e., we are interested only in the study of the effect of this
essential limiting nutrientx on the speciesy.

Under the standard assumptions of a chemostat, a list
of basic parameters and functional relations in the system
includes [21]:

– D, the rate at which the nutrient is supplied and also
the rate at which the contents of the growth medium
are removed.

– I , the input nutrient concentration which describes the
quantity of nutrient available with the system at any
time.

– a, the maximal consumption rate of the nutrient and
also the maximum specific growth rate of
microorganisms – a positive constant.

– U , the functional response of the microorganism
describing how the nutrient is consumed by the
species. It is known in literature as consumption
function or uptake function. Basic assumptions onU :
R
+ → R

+ are given by
1.U(0) = 0, U(x)> 0 for all x> 0.
2. limx→∞ U(x) = L1, whereL1 < ∞.
3.U is continuously differentiable.
4.U is monotonically increasing.

Note that conditions 1 and 2 of the uptake functionU
ensure the existence of a positive constantL > 0 such
that

U(x)≤ L for all x∈ [0,∞). (1)

Denote byx(t) and y(t) the concentrations of the
nutrient and the microorganism at any specific timet.

When I and D are both constants, [21] proposed the
following growth equations to describe the limited
resource-consumer dynamics:

x′ = D(I − x)−aU(x(t))y(t), (2)

y′ = −Dy(t)+aU(x(t))y(t). (3)

Often, the microorganisms grow not only in the
growth medium, but also along the walls of the container.
This is either due to the ability of the microorganisms to
stick on to the walls of the container or the flow rate is not
fast enough to wash these organisms out of the system.
Naturally, we can regard the consumer populationy(t) as
an aggregate of two categories of populations, one in the
growth medium, denoted byy1(t), and the other on the
walls of the container, denoted byy2(t). These individuals
may switch their categories at any time, i.e., the
microorganisms on the walls may join those in the growth
medium or the biomass in the medium may prefer walls.

Let r1 andr2 represent the rates at which the species
stick on to and shear off from the walls, respectively, then
r1y1(t) and r2y2(t) represent the corresponding terms of
species changing the categories. Assume that the nutrient
is equally available to both of the categories, therefore itis
assumed that both categories consume the same amount of
nutrient and at the same rate.

When the flow rate is low, the organisms may die
naturally before being washed out and thus washout is no
longer the only prime factor of death. Denote byν(> 0)
the collective death rate coefficient ofy(t) representing all
the aforementioned factors such as diseases, aging, etc.
On the other hand, when the flow rate is small, the dead
biomass is not sent out of the system immediately and is
subject to bacterial decomposition which in turn leads to
regeneration of the nutrient. Expecting not 100%
recycling of the dead material but only a fraction, we let
constantb ∈ (0,1) describe the fraction of dead biomass
that is recycled.

When I and D are both constants, and there are no
time delays in the system, the following model describes
the dynamics of chemostats with wall growth. Note that
only y1(t) contributes to the material recycling of the
dead biomass in the medium. Moreover, since the
microorganisms on the wall are not washed out of the
system, the term−Dy2(t) is not included in the equation
representing the growth ofy2(t). All the parameters are
same as those of system (2) - (3), but 0< c≤ a replacesa
as the growth rate coefficient of the consumer species.

x′(t) = D(I − x(t))−aU(x(t))(y1(t)+ y2(t))

+bνy1(t), (4)

y′1(t) = −(ν +D)y1(t)+ cU(x(t))y1(t)− r1y1(t)

+r2y2(t), (5)

y′2(t) = −νy2(t)+ cU(x(t))y2(t)+ r1y1(t)

−r2y2(t). (6)
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We are interested in studying the above systems (2) -
(3), (4) - (6) with varied input, i.e., whenD or I varies in
time. We assume here that the consumption function
follows the Michaelis-Menten or Holling type-II form:

U(x) =
x

λ + x
, (7)

whereλ > 0 is the half-saturation constant [21].

3 Nonautonomous dynamical systems

In this section we provide some background information
from the theory of nonautonomous dynamical systems
[13] that we require in the sequel. Our situation is, in fact,
somewhat simpler, but to facilitate the reader’s access to
the literature we give more general definitions here.

Consider an initial value problem for a nonautonomous
ordinary differential equation inRd,

dx(t)
dt

= f (t,x), x(t0) = x0.

The solution usually depends on both the actual timet
and the initial timet0 rather than just on the elapsed time
t − t0 as in an autonomous system. The solution mapping
φ(t, t0,x0) of an initial value problem for which an
existence and uniqueness theorem holds then satisfies the
initial value propertyφ(t0, t0,x0) = x0, thetwo-parameter
semigroupevolution property

φ(t2, t0,x0) = φ (t2, t1,φ(t1, t0,x0)) , t0 ≤ t1 ≤ t2,

as well as thecontinuity property that (t, t0,x0) 7→
φ(t, t0,x0) is continuous on the state spaceR

d.
These properties of the solution mapping of

nonautonomous ordinary differential equations are one of
the main motivations for theprocessformulation of a
nonautonomous dynamical system on a state spaceR

d

(or, more generally, a metric space(X,d)) and time setR
for a continuous-time process. Define

R
2
≥ := {(t, t0) ∈ R

2 : t ≥ t0}.

Definition 1. A processφ on spaceRd is a family of
mappings

φ(t, t0, ·) : Rd →R
d, (t, t0) ∈ R

2
≥,

which satisfies

(i) initial value property:φ(t0, t0,x) = x for all x ∈ R
d

and any t0 ∈ R;
(ii) two-parameter semigroup property: for all x∈R

d and
(t2, t1), (t1, t0) ∈ R

2
≥ it holds

φ(t2, t0,x) = φ (t2, t1,φ(t1, t0,x)) ,

(iii) continuity property: the mapping(t, t0,x) 7→ φ(t, t0,x)
is continuous onR2

≥×R
d.

Definition 2. Let φ be a process onRd. A familyB =
{B(t) : t ∈ R} of nonempty subsets ofRd is said to beφ -
invariant if φ (t, t0,B(t0)) = B(t) for all (t, t0) ∈ R

2
≥ and

φ - positively invariant ifφ (t, t0,B(t0))⊆ B(t) for all (t, t0)
∈ R

2
≥.

Definition 3. Let φ be a process onRd. A φ -invariant
family A = {A(t) : t ∈R} of nonempty compact subsets
of Rd is called a forward attractor ofφ if it forward
attracts all families D = {D(t) : t ∈ R} of nonempty
bounded subsets ofRd, i.e.,

dist(φ(t, t0,D(t0)),A(t))→ 0 as t→∞ (t0 fixed), (8)

and is called a pullback attractor ofφ if it pullback
attracts all families D = {D(t) : t ∈ R} of nonempty
bounded subsets ofRd, i.e.,

dist(φ(t, t0,D(t0)),A(t))→ 0 as t0 →−∞ (t fixed).
(9)

The existence of a pullback attractor follows from that
of a pullback absorbing family, which is usually more
easily determined.

Definition 4. A familyB = {B(t) : t ∈ R} of nonempty
compact subsets ofRd is called a pullback absorbing
family for a processφ if for each t1 ∈ R and every family
D = {D(t) : t ∈R} of nonempty bounded subsets ofR

d

there exists some T= T(t1,D) ∈ R
+ such that

φ (t1, t0,D(t0))⊆ B(t1) for all t0 ∈R with t0 ≤ t1−T.

The proof of the following theorem is well known, see
e.g., [13].

Theorem 1. Suppose that a processφ on R
d has a

φ -positively invariant pullback absorbing familyB =
{B(t) : t ∈ R} of nonempty compact subsets ofR

d.
Thenφ has a unique global pullback attractorA =

{A(t) : t ∈ R} with its component sets determined by

A(t) =
⋂

t0≤t

φ (t, t0,B(t0)) for each t∈ R. (10)

If B is notφ -positively invariant, then

A(t) =
⋂

s≥0

⋃

t0≤t−s

φ (t, t0,B(t0)) for each t∈R.

A pullback attractor consists ofentire solutions, i.e.,
functionsξ : R → R such thatξ (t) = φ(t, t0,ξ (t0)) for all
(t, t0) ∈ R

2
≥. In special cases it consists of a single entire

solution.

Definition 5. A nonautonomous dynamical systemφ is
said to satisfy a uniform strictly contracting property if for
each R> 0, there exist positive constants K andα such
that

‖φ(t, t0,x0)−φ(t, t0,y0)‖
2 ≤ Ke−α(t−t0) ·‖x0− y0‖

2 (11)

for all (t, t0) ∈ R
2
≥ and x0, y0 ∈ BR, whereBR is the closed

ball in R
d centered at the origin with radius R> 0.
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This property suffices in combination with a pullback
absorbing set to ensure the existence of an attractor in
both the forward and pullback sense that consists of
singleton sets, i.e., a single entire solution. The proof of
the following result involves the construction of an
appropriate Cauchy sequence which converges to a
unique limit, see [11,12].

Theorem 2. Suppose that a processφ onR
d is uniform

strictly contracting on aφ -positively invariant pullback
absorbing family B = {B(t) : t ∈ R} of nonempty
compact subsets ofRd. Then the processφ has a unique
global forward and pullback attractor A =
{A(t) : t ∈ R} with component sets consisting of singleton
sets, i.e., A(t) = {ξ ∗(t)} for each t∈ R, whereξ ∗ is an
entire solution of the process.

4 Variable nutrient supplying rate

In this section we consider the case that the input nutrient
concentration is a constant but the nutrient consumption
rate is varied. Specifically we assume thatD varies
continuously in time, e.g., periodically or randomly, in a
bounded positive intervalD(t) ∈ [dm,dM] for all t ∈ R.

4.1 ODE case without a wall

We first study the case without a wall. WhenI is a positive
constant andD varies in time, withU taking the form (7),
system (2) - (3) becomes

dx(t)
dt

= D(t)(I − x(t))−
ax(t)

λ + x(t)
y(t), (12)

dy(t)
dt

= −D(t)y(t)+
ax(t)

λ + x(t)
y(t). (13)

Lemma 1. For any initial time t0 ∈ R and initial
conditions x0, y0 ≥ 0, all the solutions of system(12)-(13)
are nonnegative and bounded for all t≥ t0.

Proof.The coefficients are continuously differentiable for
x, y≥ 0. In particular, the nonlinear term

axy
λ + x

= ay

(

1−
λ

λ + x

)

is nonnegative and bounded above by the linear function
ay on the positive quadrant. This ensures the existence
and uniqueness of solutions as long as they stay within
the positive quadrant. By continuity of solutions, with
initial condition x(t0) = x0 > 0, x(t) has to take value 0
before it becomes negative. Since

dx
dt

∣

∣

∣

∣

x=0
= D(t)I > 0,

x(t) cannot become negative. With the initial condition
y(t0) = y0 > 0, there existst1 > t0 such thaty(t) > 0 on
[t0, t1]. Therefore

y(t) = y0e
∫ t
t0
(−D(s)+ ax(s)

λ+x(s) )ds

for t ∈ [t0, t1]. By uniqueness of solutions this expression
holds for allt ≥ t0, thusy(t) is nonnegative.

Summing (12) and (13) gives

d(x(t)+ y(t))
dt

=−D(t)(x(t)+ y(t)− I)

and yields immediately that whenx(t)+y(t)> I , we have
I ≤ x(t) + y(t) ≤ x0 + y0. Similarly, whenx(t) + y(t) <
I we have 0≤ x(t)+ y(t) ≤ I . Therefore 0≤ x(t)+ y(t)
≤ max{I ,x0 + y0}, which implies thatx(t) and y(t) are
bounded. �

We next study the long term behavior of solutions to
(12)-(13). More specifically, we will provide conditions
under which the system has a pullback attractor, and the
conditions under which the attractor is a single entire
solution or a single point. Note that(I ,0) is the only
steady state solution for all parameters values. Other
attracting solutions will not be steady states.

Theorem 3. Assume that D: R → [dm,dM], where0 <
dm < dM < ∞, is continuous. Then the system(12)-(13)
has a pullback attractorA = {A(t) : t ∈ R} inside the
nonnegative quadrantR2

+ := {(x,y) ∈ R
2 : x ≥ 0,y ≥ 0}.

Moreover,

(i) when a< dm the axial steady state solution(I ,0) is
asymptotically stable in the nonnegative quadrant and
the pullback attractorA has a singleton component
subset A(t) = {(I ,0)} for all t ∈ R;

(ii) when
a> (1+λ/I)dM

the pullback attractorA also contains points strictly
inside the positive quadrant in addition to the point
{(I ,0)};

(iii) when

dm < a<
dm(λdm+dMI)2

(λdm+dMI)2−λ Id2
m

the pullback attractorA consists of the axial point
{(I ,0)} and a single entire solutionξ ∗ that is
uniformly bounded away from the axes as well as
heteroclinic entire solutions between them, i.e., its
component subsets are

A(t) =
{

(x,y) ∈ R
2
+ : x+ y= I ;ξ ∗(t)≤ x≤ I

}

for t ∈ R.
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Proof.Definew(t) := x(t)+y(t). Then summing (12) and
(13) above gives

dw(t)
dt

= D(t)(I −w(t)).

This has a steady state solutionw∗ = I , even whenD(t)
is not a constant. One can show that it is both pullback
and forward attracting, see e.g., [13]. Let w0 := w(t0) =
x(t0)+ y(t0). Then

w(t) = w0e−
∫ t
t0

D(s)ds
+ Ie−

∫ t
t0

D(s)ds
∫ t

t0
D(s)e

∫ s
t0

D(r)dr ds

= w0e−
∫ t
t0

D(s)ds
+ Ie−

∫ t
t0

D(s)ds
∫ t

t0

d
ds

[

e
∫ s
t0

D(r)dr
]

ds

= w0e−
∫ t
t0

D(s)ds
+ Ie−

∫ t
t0

D(s)dse
∫ t
t0

D(r)dr

= w0e−
∫ t
t0

D(s)ds
+ I − Ie−

∫ t
t0

D(s)ds
,

which converges toI as eithert0 →−∞ with t fixed or ast
→ ∞ with t0 fixed, since

0≤ e−
∫ t
t0

D(s)ds
≤ e−dm(t−t0) → 0

in both cases.
From this and Lemma1 it follows that for everyε >

0, the nonempty compact set

Bε :=
{

(x,y) ∈ R
2
+ : x+ y≤ I + ε

}

is positively invariant and absorbing in theR2
+. The

nonautonomous dynamical system onR2
+ generated by

the ODE system (12)-(13) thus has a pullback attractorA

= {A(t) : t ∈ R} consisting of non-empty compact
subsets ofR2

+.

The various cases in the theorem provide us with
more information about the internal structure of the
pulback attractor.

(i) Sincew(t) = x(t)+ y(t) approachesI ast → ∞ in the
positive quadrant it suffices to consider points(x,y) on the
line x+ y = I in the positive quadrant. Sincex(t) satisfies
(12) with y(t) = I − x(t) > 0, we have

dx(t)
dt

= (I − x(t))

(

D(t)−
ax(t)

λ + x(t)

)

. (14)

If dm > a, then

dx(t)
dt

≥ (dm−a)(I − x(t))> 0 (15)

as long asx(t) 6= I . Sinceλ > 0 and

ax
λ + x

< a

for x ≥ 0, thenx(t) increases toI andy(t) decreases to 0
along this line. This means all solutions in the
nonnegative quadrant approach(I ,0) asymptotically.
Now, to prove the additional statement on the structure of
the pullback attractor, i.e. that the solutions in then
nonnegative quadrant pullback converge to(I ,0), we need
to integrate the previous differential inequality (15) and
take limits in the pullback sense. Indeed, (15) can be
rewritten as

dx(t)
dt

+(dm−a)x(t)≥ (dm−a) I ,

and, consequently,

d
dt

[

e(dm−a)tx(t)
]

≥ (dm−a) Ie(dm−a)t .

Integrating this inequality in the interval[t0, t], we obtain

x(t)≥ e−(dm−a)(t−t0)+ I
(

1−e−(dm−a)(t−t0)
)

, (16)

and taking limits now whent0 → −∞, we deduce that
x(t) ≥ I , what yields our result. In summary, we have
proved that the pullback attractor consists of singleton
component subsetsA(t) = {(I ,0)} and is also forward
asymptotically stable as well as pullback attracting.

(ii) For 0< ε1 < I sufficiently small we always have

aε1

λ + ε1
< dm,

and from equation (12)

dx(t)
dt

∣

∣

∣

∣

x=ε1

=

(

D(t)−
aε1

λ + ε1

)

(I − ε1)

≥

(

dm−
aε1

λ + ε1

)

(I − ε1)> 0

In addition, from equation (13)

dy(t)
dt

∣

∣

∣

∣

y=I−ε1

= −

(

D(t)−
aε1

λ + ε1

)

(I − ε1)

≤

(

aε1

λ + ε1
−dm

)

(I − ε1)< 0

Similarly, by the assumption in Assertion (2), which
implies thatdM < a, for 0< ε2 < I − ε1 sufficiently small
we have

a(I − ε2)

λ + I − ε2
> dM.

Then from equation (12)

dx
dt

∣

∣

∣

∣

x=I−ε2

=

(

D(t)−
a(I − ε2)

λ + I − ε2

)

ε2

≤

(

dM −
a(I − ε2)

λ + I − ε2

)

ε2 < 0
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and from equation (13)

dy
dt

∣

∣

∣

∣

y=ε2

= −

(

D(t)−
a(I − ε2)

λ + I − ε2

)

ε2

≥

(

a(I − ε2)

λ + I − ε2
−dM

)

ε2 > 0.

Combining these results, we see that the compact
subset

Bε1,ε2 :=
{

(x,y) ∈ R
2
+ : x+ y= I ,ε1 ≤ x≤ I − ε2

}

is positively invariant and this implies the result.

(iii) All the solutions to (14) with 0≤ x ≤ I satisfy

dmI −dMx(t)−aI ≤
dx(t)

dt
≤ dMI −dmx(t). (17)

The first inequality follows from the fact that

dx(t)
dt

= (I − x(t))

(

D(t)−
ax(t)

λ + x(t)

)

≥ dmI −dMx(t)−a

(

1−
λ

λ + x(t)

)

(I − x(t))

≥ dmI −dMx(t)−a(I − x(t))

≥ dmI −dMx(t)−aI

and the second from

dx(t)
dt

= (I − x(t))

(

D(t)−
ax(t)

λ + x(t)

)

≤ (I − x(t))D(t)

≤ dMI −dmx(t).

These imply that

(dm−a)I
dM

≤ x(t)≤
dMI
dm

. (18)

And, on the other hand, we have

dMI −dmx(t) = dM(I − x(t))+ (dM −dm)x(t)> 0.

Then for any two solutionsx1(t) andx2(t) to (14), ∆(t) :=
x1(t)− x2(t) satisfies

d∆(t)
dt

= −D(t)∆(t)− (I − x1(t))
ax1(t)

λ + x1(t)

+(I − x2(t))
ax2(t)

λ + x2(t)

= −D(t)∆(t)−
aλ I

(λ + x1)(λ + x2)
∆(t)

+a
λ (x1+ x2)+ x1x2

(λ + x1)(λ + x2)
∆(t). (19)

By the inequalities (18) we obtain

d∆(t)
dt

<−dm∆(t)−
aλ I

(

λ + dM I
dm

)2 ∆(t)+a∆(t).

Hence∆(t) → 0 ast → ∞ when

dm+
aλ I

(

λ + dM I
dm

)2 > a,

i.e., when

a<
dm(λdm+dMI)2

(λdm+dMI)2−λ Id2
m

This holds ifa < dm as in case (1). However, it can also
hold if a is slightly larger thandm. In this case the
pullback limit for strictly positive initial conditions ofthe
scalar system (14) is uniform strictly contracting [11,12]
in (0, I) and there exists a single entire solutionξ ∗(t) ∈
(0, I), which is also forward asymptotically stable in the
usual forward sense. The corresponding pullback attractor
A1 of this system on[0, I ] includes the steady state
solution I and has component setsA1(t) = [ξ ∗(t), I ] for
eacht ∈ R, i.e., it includes the heteroclinic trajectories
joining the two “equilibrium” solutionsξ ∗(t) and I . For
the two-dimensional system (12)–(13) the pullback
attractorA has component sets

A(t) = {(x,y) : x+ y= I ;ξ ∗(t)≤ x≤ I}

in R
2
+ for t ∈ R. �

4.2 ODE with a wall

Pilyugin and Waltman introduced the idea of a chemostat
with a wall in [15], see also [20] for the case with delays
and the book [21]. This corresponds to part of the
population that lives near the wall (e.g., the bank of a lake
or boundary layer of the intestines), and behaves
differently. Here we follow Chapter 5 of the book [21], in
particular equation (5.1) on page 176. WhenI is a
constant,D varies in time and there are no delays in time,
the system (4) - (6) with U taking the form (7) becomes

x′(t) = D(t)(I − x(t))−a
x(t)

λ + x(t)
(y1(t)+ y2(t))

+bνy1(t), (20)

y′1(t) = −(ν +D(t))y1(t)+ c
x(t)

λ + x(t)
y1(t)

−r1y1(t)+ r2y2(t), (21)

y′2(t) = −νy2(t)+ c
x(t)

λ + x(t)
y2(t)

+r1y1(t)− r2y2(t), (22)
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wherea represents the maximum specific growth rate,c
represents the growth rate coefficient of the consumer
species, soa ≥ c; m is the half-saturation constant of the
consumption;r1, r2 represent the rates at which the
species stick on to and shear off from the walls;ν denotes
the collective death rate coefficient ofy; b describes the
fraction of dead biomass that is recycled.

Since the variablesx, y1, and y2 represent
concentrations, we assume nonnegative initial conditions:

x(t0) = x0; y1(t0) = y1,0; y2(t0) = y2,0.

Lemma 2. Suppose that (x0,y1,0,y2,0) ∈ R
3
+ :=

{(x,y1,y2) ∈ R
3 : x ≥ 0,y1 ≥ 0,y2 ≥ 0}. Then all the

solutions to system(20)–(22) corresponding to initial
data inR3

+ are

(i) nonnegative for all t> t0;
(ii) uniformly bounded inR3

+.

Moreover, the nonautonomous dynamical system onR
3
+

generated by the system of ODEs(20)–(22) has a pullback
attractorA = {A(t) : t ∈R} in R

3
+.

Proof. (i) By continuity each solution has to take value 0
before it reaches a negative value. Withx = 0 andy1 ≥ 0,
y2 ≥0, the ODE forx(t) reduces to

x′ = D(t)I +bνy1,

and thusx(t) is strictly increasing atx = 0. With y1 = 0
andx≥ 0, y2 ≥ 0, the reduced ODE fory1(t) is

y′1 = r2y2 ≥ 0,

thusy1(t) is non-decreasing aty1 = 0. Similarly,y2 is non-
decreasing aty2 = 0. Therefore,(x(t),y1(t),y2(t)) ∈ R

3
+

for anyt.

(ii) Define ‖X(t)‖1 := x(t) + y1(t) + y2(t) for X(t) =
(x(t),y1(t),y2(t)) ∈ R

3
+. Then ‖X(t)‖1 ≤ S(t) ≤

a
c ‖X(t)‖1, where

S(t) = x(t)+
a
c
(y1(t)+ y2(t)).

The time derivative ofS(t) along solutions to (20)–(22)
satisfies

dS(t)
dt

= D(t) [I − x(t)]−
[a

c
(ν +D(t))−bν

]

y1(t)

−
a
c

νy2(t)

≤ dMI −dmx(t)−
[a

c
(ν +dm)−bν

]

y1(t)

−
a
c

νy2(t) (23)

Note thatac(ν +dm)−bν > a
cdm sincea ≥ c and 0<

b< 1. Letµ := min{dm,ν}, then

dS(t)
dt

≤ dMI − µS(t). (24)

If S(t0) <
dM I

µ , thenS(t) ≤ dM I
µ for all t ≥ t0. On the other

hand, ifS(t0) ≥
dM I

µ , thenS(t) will be non-increasing for
all t ≥ t0 and thusS(t) ≤ S(t0). These imply that‖X(t)‖1
is bounded above, i.e.,

‖X(t)‖1 ≤ max

{

dMI
µ

,x(t0)+
a
c
(y1(t0)+ y2(t0))

}

,

for all t ≥ t0.

It follows that for everyε > 0 the nonempty compact
set

Bε :=

{

(x,y1,y2) ∈ R
3
+ : x+

a
c
(y1+ y2)≤

dMI
µ

+ ε
}

is positively invariant and absorbing inR3
+. The

nonautonomous dynamical system onR3
+ generated by

the ODE system (20)–(22) thus has a pullback attractor
A = {A(t) : t ∈ R}, consisting of nonempty compact
subsets ofR3

+ that are contained inBε . �

To obtain more information about the internal structure
of the pullback attractor of the nonautonomous dynamical
system generated by the ODE system (20) - (22), we make
the following change of variables:

α(t) =
y1(t)

y1(t)+ y2(t)
, z(t) = y1(t)+ y2(t). (25)

System (20) - (22) then assumes the form

x′(t) = D(t)(I − x(t))−
ax(t)

λ + x(t)
z(t)+bνα(t)z(t), (26)

z′(t) = −νz(t)−D(t)α(t)z(t)+
cx(t)

λ + x(t)
z(t), (27)

α ′(t) = −D(t)α(t)(1−α(t))− r1α(t)

+r2(1−α(t)). (28)

Note that the steady state solution(I ,0,0) of system (20)
- (22) has no counterpart for system (26)–(28), sinceα is
not defined for it. On the other hand,(I ,0) is a steady state
solution for the subsystem (26)–(27).

4.2.1 Global dynamics ofα(t)

Observe that the dynamics ofα(t) = α(t, t0,α0) are
uncoupled fromx(t) and z(t) and satisfy the Ricatti
equation (28). For any positivey1 and y2 we have
0 < α(t) < 1 for all t. Note thatα ′|α=0 = r2 > 0 and
α ′|α=1 = −r1 < 0, so the interval(0,1) is positively
invariant. This is the biologically relevant region.

WhenD is a constant, there is a unique asymptotically
stable steady stateα∗ ∈ (0,1) given by (see [21], page
180)

α∗ :=
D+ r1+ r2−

√

(D+ r1+ r2)2−4Dr2

2D
. (29)
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We want to investigate the case thatD varies in time,
randomly or, say, almost periodically in a bounded
positive intervalD(t) ∈ [dm,dM] for all t ∈ R. In this case
we need to talk about a random or deterministic pullback
attractorAα = {Aα(t) : t ∈ R} in the interval(0,1). Such
an attractor exists since the unit interval is positively
invariant (see e.g., [13]), so its component subsets are
given by

Aα(t) =
⋂

t0<t

α (t, t0, [0,1]) , ∀t ∈R.

These component subsets have the form

Aα = [α∗
l (t),α

∗
u(t)] ,

whereα∗
l (t) andα∗

u(t) are entire bounded solutions of the
Ricatti equation. The other bounded entire solutions of the
Ricatti equation lie between these ones.

We can use differential inequalities to obtain bounds
on these entire solutions. Let us rewrite the Ricatti
equation (28) in the form

α ′(t) = D(t)(α2(t)−α(t))− (r1+ r2)α(t)+ r2. (30)

Sinceα(t)< 1 andD(t)> 0, we have

α ′(t)≤−(r1+ r2)α(t)+ r2.

Henceα(t)≤ β (t) with α(t0) = β (t0), where

β ′(t) =−(r1+ r2)β (t)+ r2

This ODE has an asymptotically stable steady state
solution

β ∗ =
r2

r1+ r2
,

so the entire solutions of the Ricatti equation (28) lie
(minus an infinitesimal) below it, i.e.,α∗

u(t) ≤ β ∗ for all t
∈ R. This provides an upper bound. On the other hand,

α ′(t) = D(t)α2(t)− (D(t)+ r1+ r2)α(t)+ r2

≥ −(dM + r1+ r2)α(t)+ r2

Henceα(t)≥ γ(t) with α(t0) = γ(t0), where

γ ′(t) =−(dM + r1+ r2)γ(t)+ r2.

This ODE has an asymptotically stable steady state
solution

γ∗ =
r2

r1+ r2+dM
.

In this case we obtain a lower boundα∗
l (t)≥ γ∗ for all t ∈

R. In summary,

A (t) = [α∗
l (t),α

∗
u(t)]⊂ [γ∗,β ∗] .

To investigate the case where the pullback attractor
consists of a single entire solution, we need to find
conditions under which

α∗
l (t)≡ α∗

u(t), t ∈ R.

Suppose that they are not equal and consider their
difference∆α(t) = α∗

u(t)−α∗
l (t). Then

∆ ′
α(t) = D(t)(α∗

u(t)+α∗
l (t))∆α(t)− (D(t)+ r1+ r2)∆α(t)

≤ dM ·2α∗
u(t)∆α(t)− (dm+ r1+ r2)∆α(t)

≤

(

2dMr2

r1+ r2
−dm− r1− r2

)

∆α(t).

Thus

0≤∆α(t)≤ e

(

2dMr2
r1+r2

−dm−r1−r2

)

(t−t0)∆α(t0)→ 0 ast →∞,

(as well as whent0 →−∞) provided

2dMr2

r1+ r2
−dm− r1− r2 < 0,

which is equivalent to 2dMr2 < dm(r1 + r2) + (r1 + r2)
2.

Sincedm < dM, this holds, e.g., ifdM(r2− r1)< (r1+ r2)
2.

It essentially puts a restriction on the width of the interval
in whichD(t) can takes its values, unlessr1 > r2.

Note thatα∗(t) is also asymptotically stable in the
forward sense in this case.

4.2.2 Global Dynamics ofx(t) andz(t)

Suppose thatα∗(t) is the unique entire solution in the
pullback attractor of the Ricatti ODE (28). Thenα∗(t) ∈
[γ∗,β ∗] ⊂ (0,1) for all t ∈ R. Moreover, fort sufficiently
large,x(t) and z(t) components of the system (26)–(28)
satisfy

x′(t) = D(t)(I − x(t))−
ax(t)

λ + x(t)
z(t)+bνα∗(t)z(t), (31)

z′(t) = −νz(t)−D(t)α∗(t)z(t)+
cx(t)

λ + x(t)
z(t). (32)

The system (31)–(32) has a steady state equilibrium(I ,0).
Hence (I ,0,α∗(t)) is a nonautonomous “equilibrium”
solution of the system (26)–(28).

Theorem 4. Assume that D: R → [dm,dM], with
0 < dm < dM < ∞, is continuous, a≥ c, b∈ (0,1) and
ν > 0. Then, the system(31) - (32) has a pullback
attractor A = {A(t) : t ∈ R} inside the nonnegative
quadrant. Moreover,
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(i) When
ν +dmγ∗ > c,

the axial steady state solution(I ,0) is asymptotically
stable in the nonnegative quadrant and the pullback
attractor A has a singleton component subset A(t) =
{(I ,0)} for all t ∈ R.

(ii) When

ν +dMβ ∗ <
cdmI

λ (a− c+ν+dM −bνβ ∗)+dmI

the pullback attractorA also contains points strictly
inside the positive quadrant in addition to the point
{(I ,0)}.

Proof. (i) Whenν +dmγ∗ ≥ c, z(t) satisfies

dz(t)
dt

=−

(

ν +D(t)α∗(t)−
cx(t)

λ + x(t)

)

z(t),

where

ν +D(t)α∗(t)−
cx(t)

λ + x(t)
> ν +dmγ∗− c≥ 0.

Thus z(t) decreases to 0 ast approaches∞. As a
consequence,x(t) satisfies

x′(t) = D(t)(I − x(t)).

Then
x(t) = x(t0)e

−
∫ t
t0

D(s)ds
+ I

and converges toI ast → ∞ or t0 →−∞. Note that in view
of the definition of the transformationα it is, however, not
possible to takez= 0, when transforming from the original
system (31)–(32), although this system has an analogous
steady state(I ,0,0) in its (x,y1,y2) variables.

(ii) Let u(t) := x(t)+ z(t), then

u′(t) = D(t)(I − x(t))+
(c−a)x(t)

λ + x(t)
z(t)

+bνα∗(t)z(t)−νz(t)−D(t)α∗(t)z(t).

On the one hand,

u′(t) ≤ D(t)(I − x(t))

−(ν +D(t)α∗(t)−bνα∗(t))z(t)

< D(t)I −D(t)x(t)−D(t)α∗(t)z(t)

< D(t)I −D(t)α∗(t)u(t)

≤ dMI −dmγ∗u(t).

On the other hand,

u′(t) ≥ D(t)(I − x(t))

−(a− c+ν+D(t)α∗(t)−bνα∗(t))z(t)

≥ D(t)I −D(t)x(t)− (a− c+ν +D(t)−bνβ ∗)z(t)

> D(t)I − (a− c+ν+D(t)−bνβ ∗)u(t)

≥ dmI − (a− c+ν+dM −bνβ ∗)u(t).

Therefore we have the upper and lower bounds foru(t) as

q1I :=
dmI

a− c+ν +dM −bνβ ∗
< u(t)<

dMI
dmγ∗

=: q2I ,

(33)
whereq1 < 1 andq2 > 1. Forε > 0 small, defineTε to be
the trapezoid

Tε := {(x,z) ∈R
2
+ : x≥ ε, z≥ ε, q1I ≤ x+ z≤ q2I},

which is a subset of the positive quadrant defined as

{(x,z) ∈ R
2
+ : x≥ ε, z≥ ε}.

If we restrict our non-autonomous dynamical system to
this set, thenTε is absorbing here. We next show thatTε is
invariant for this restriction what will give the existence
of a pullback attractorA ε and the result easily follows.

First, noting that functionf (x) = ax
λ+x is increasing on

[0,∞), for ε small enough, we haveaε
λ+ε < bνγ∗ and

dx(t)
dt

∣

∣

∣

∣

x=ε
= D(t)(I − ε)

+

(

bνα∗(t)−
aε

λ + ε

)

z(t)> 0. (34)

Second, the condition

ν +dMβ ∗ <
cdmI

λ (a− c+ν+dM −bνβ ∗)+dmI

is equivalent toν + dMβ ∗ < cq1I
λ+q1I , and thus forε small

enough

dz(t)
dt

∣

∣

∣

∣

z=ε
=

(

−ν −D(t)α∗(t)+
cx(t)

λ + x(t)

)

ε

>

(

−ν −dMβ ∗+
c(q1I − ε)

λ +q1I − ε

)

ε > 0. (35)

Inequalities (34), (35), together with

d(x(t)+ z(t))
dt

∣

∣

∣

∣

x+z=q1I
> 0

and
d(x(t)+ z(t))

dt

∣

∣

∣

∣

x+z=q2I
< 0,

ensure the positive invariance of the compact setTε and
the existence of a pullback attractorA ε = {Aε(t) : t ∈ R}
in Tε . �

Unfortunately at this point we are not able to obtain the
existence of a stable single entire solution that attracts all
strictly positive entire solutions as in the case without wall
growth.
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5 Variable nutrition input rate

Here we assume that the nutrition input valueI can vary
continuously with time, and henceforth denote it byI(t),
while the consumption rateD is a constant. Similarly we
assume thatI is bounded with positive values, in particular,
I(t) ∈ [im, iM] for all t ∈ R, where 0< im ≤ iM < ∞.

5.1 ODE without a wall

We now consider the case without a wall, in which case
the ODE system (2)–(3) becomes

dx(t)
dt

= D(I(t)− x(t))−
ax(t)

λ + x(t)
y(t), (36)

dy(t)
dt

= −Dy(t)+
ax(t)

λ + x(t)
y(t). (37)

Let w(t) := x(t)+ y(t). Then

dw(t)
dt

= D(I(t)−w). (38)

This does not have a steady state whenI(t) is not a
constant, but it has a nontrivial nonautonomous
“equilibrium” solution that is both pullback and forward
attracting:

w(t) = w(t0)e
−D(t−t0)+De−D(t−t0)

∫ t

t0
I(s)eD(s−t0) ds

= w(t0)e
−D(t−t0)+De−Dt

∫ t

t0
I(s)eDsds

which converges to

w∗(t) = De−Dt
∫ t

−∞
I(s)eDsds

as eithert0 → −∞ or t → ∞, i.e.,

lim
t→∞

|w(t)−w∗(t)|= lim
t0→−∞

|w(t)−w∗(t)|= 0.

Note thatw∗(t) ∈ [im, iM] for all t ∈ R due to the bounds
on I .

Lemma 3. For any initial time t0 ∈ R and initial
conditions x0, y0 ≥ 0, all the solutions of system
(36)–(37) are nonnegative and bounded for any t≥ t0.

The proof is similar to that of Lemma1 so will be
omitted, while the proof of the following theorem is
similar to that of Theorem3, so not all details will be
given here.

Theorem 5. The nonautonomous dynamical system
generated by the system of ODEs(36)–(37) has a
pullback attractorA = {A(t) : t ∈R} in R

2
+. Moreover,

(i) when D > a, the entire solution(x∗(t),y∗(t)) =
(w∗(t),0) is asymptotically stable inR2

+ and the
pullback attractor has singleton component sets A(t)
= {(w∗(t),0)} for every t∈ R;

(ii) when aim > D(λ + iM), the pullback attractor has
nontrivial component sets that include(w∗(t),0) and
strictly positive points;

(iii) when D< a and a
(

λ 2+λ (2iM − im)+ i2M
)

< D(λ +

iM)2, the pullback attractor contains a nontrivial entire
solution that attracts all other strictly positive entire
solutions.

Proof. From Lemma2 and the fact thatw∗(t) ∈ [im, iM],
the nonempty compact set

B :=
{

(x,y) ∈ R
2
+ : im ≤ x+ y≤ iM

}

is positively invariant and absorbing inR2
+ for the ODE

(38). The nonautonomous dynamical system onR2
+

generated by the ODE system (36)-(37) thus has a
pullback attractorA = {A(t) : t ∈ R} consisting of
non-empty compact subsets ofB. Then(w∗(t),0) ∈ A(t)
for every t ∈ R since the pullback attractor contains all
bounded entire solutions.

To prove assertion (i) note that equation (36) can be
bounded from above as

dy(t)
dt

=−

(

D−
ax(t)

λ + x(t)

)

y(t)≤−(D−a)y(t),

from which it follows immediately thaty(t)→ 0 ast → ∞
whenD > a.

(ii) From the positive sign of the derivative of
equation (37) x(t) is increasing on thex = 0 face of the
above absorbing setB. The facey = 0 is invariant, but for
y= ε ≪ im andim ≤ x ≤ iM, equation (36) gives

dy(t)
dt

=

(

ax(t)
λ + x(t)

−D

)

y(t)

≥

(

aim
λ + iM

−D

)

y(t)> 0

when aim > D(λ + iM). This means that the positive
interior of the absorbing set also contains points of the
pullback attractor.

(iii) Next we consider ODE (36) restricted to the stable
manifoldx(t)+ y(t) = w∗(t) on which it takes the form

dx(t)
dt

= D(I(t)− x(t))−
ax(t)

λ + x(t)
(w∗(t)− x(t)) . (39)
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For any two solutionsx1(t) and x2(t) to (39), define
∆x(t) := x1(t)− x2(t). Then∆x satisfies

d∆x(t)
dt

= −D∆x(t)− (w∗(t)− x1(t))
ax1(t)

λ + x1(t)

+(w∗(t)− x2(t))
ax2(t)

λ + x2(t)

= −D∆x(t)−
aλw∗(t)

(λ + x1)(λ + x2)
∆x(t)

+a
λ (x1+ x2)+ x1x2

(λ + x1)(λ + x2)
∆x(t).

Since 0≤ x(t) ≤ w∗(t) ≤ iM andw∗(t) ≥ im we have

d∆x(t)
dt

<−D∆x(t)−
aλ im

(λ + iM)2 ∆x(t)+a∆x(t).

Hence∆x(t) → 0 ast → ∞ when

D+
aλ im

(λ + iM)2 > a,

i.e., when

a
(

λ 2+λ (2iM − im)+ i2M
)

< D(λ + iM)2.

This always holds ifa < D, in which case we have
scenario (i) of the Theorem. It can, however, still hold ifa
is slightly larger since

(

λ 2+λ (2iM − im)+ i2M
)

<

(λ + iM)2, in which case the above estimates with neither
x1(t) or x2(t) equal tow∗(t), the system is strict uniformly
contracting [11,12] in the positive quadrant and thus has a
unique entire solution as its pullback attractor in the
positive quadrant. �

5.2 ODE case with a wall

Last we study the case where the nutrition inputI varies
and wall growth is considered. WhenD is a constant,I
varies in time and there are no delays in time, the system
(4) - (6) with U taking the form (7) becomes

x′(t) = D(I(t)− x(t))−
ax(t)

λ + x(t)
(y1+ y2)

+bνy1(t), (40)

y′1(t) = −(ν +D)y1(t)+
cx(t)

λ + x(t)
y1(t)

−r1y1(t)+ r2y2(t), (41)

y′2(t) = −νy2(t)+
cx(t)

λ + x(t)
y2(t)+ r1y1(t)− r2y2(t). (42)

Lemma 4. Suppose that(x0,y1,0,y2,0) ∈ R
3
+. Then, all

solutions to the system(40)–(42) with initial value
(x(t0),y1(t0),y2(t0)) = (x0,y1,0,y2,0) are

(i) nonnegative for all t> t0;
(ii) uniformly bounded inR3

+.

Moreover, the nonautonomous dynamical system onR
3
+

generated by the system of ODES(40)–(42) has a pullback
attractorA = {A(t) : t ∈R} in R

3
+.

Proof.Similar to that of Lemma2. �

Using the new variablesz(t) andα(t) defined as in (25),
equations (40)–(42) become

x′(t) = D(I(t)− x(t))−
ax(t)

λ + x(t)
z(t)+bνα(t)z(t), (43)

z′(t) = −νz(t)−Dα(t)z(t)+
cx(t)

λ + x(t)
z(t), (44)

α ′(t) = −Dα(t)(1−α(t))− r1α(t)+ r2(1−α(t)). (45)

Equation (45) has a unique steady state solution

α∗ =
D+ r1+ r2−

√

(D+ r1+ r2)2−4Dr2

2D

which is asymptotically stable on(0,1). Hence whent →
∞, replacingα(t) byα∗ in equations (43) and (44) we have

dx(t)
dt

= D(I(t)− x(t))−
ax(t)

λ + x(t)
z(t)+bνα∗z(t) (46)

dz(t)
dt

= −νz(t)−Dα∗z(t)+
cx(t)

λ + x(t)
z(t). (47)

For more details of the long term dynamics of the solutions
to (46) - (47) we establish the following theorem.

Theorem 6. Assume that I: R→ [im, iM], with 0< im <
iM < ∞, is continuous, a≥ c, b∈ (0,1) and ν > 0. Then
system(46) - (47) has a pullback attractorA = {A(t) : t ∈
R} inside the nonnegative quadrant. Moreover,

(i) when ν +Dα∗ > c, the entire solution(w∗(t),0) is
asymptotically stable inR2

+ where

w∗(t) = De−Dt
∫ t

−∞
I(s)eDsds,

and the pullback attractorA has a singleton
component subset A(t) = {(w∗(t),0)} for all t ∈ R,

(ii) when

ν +Dα∗ <
cDiM

λ (a− c+ν−bνα∗+D)+DiM

the pullback attractorA also contains points strictly
inside the positive quadrant in addition to the set
{(w∗(t),0)}.
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Proof. Here we omit some detailed calculations when
similar to previous cases.

(i) Whenν +Dα∗ > c,

dz(t)
dt

=−

(

ν +Dα∗−
cx(t)

λ + x(t)

)

z(t)≤ 0,

which implies thatz(t) decreases to 0 ast → ∞ for any
z(t0)≥ 0. Consequentlyx(t) satisfies

dx(t)
dt

= D(I(t)− x(t))

and has a nontrivial nonautonomous equilibrium

x(t) = x(t0)e
−D(t−t0)+De−Dt

∫ t

t0
I(s)eDsds

which converges tow∗(t) ast → ∞ or t0 →−∞.
(ii) Let u(t) := x(t)+ z(t), then

u′(t) = D(I(t)− x(t))+
(c−a)x(t)

λ + x(t)
z(t)

+bνα∗z(t)−νz(t)−D(t)α∗z(t).

On the one hand,

u′(t) ≤ D(I(t)− x(t))− (ν −bνα∗+Dα∗)z(t)

< DI(t)−Dx(t)−Dα∗z(t)

≤ DiM −Dα∗u(t).

On the other hand,

u′(t) ≥ D(I(t)− x(t))− (a− c+ν+Dα∗−bνα∗)z(t)

≥ DI(t)−Dx(t)− (a− c+ν −bνβ ∗+D)z(t)

> Dim− (a− c+ν−bνβ ∗+D)u(t).

Therefore we have the upper and lower bounds foru(t) as

l :=
DiM

a− c+ν−bνα∗+D
< u(t)<

iM
α∗

. (48)

For ε > 0 small, defineTε to be the trapezoid

Tε :=
{

(x,z) ∈ R
2
+ : x≥ ε, z≥ ε,

DiM
a− c+ν−bνα∗+D

≤ x+ z≤
iM
α∗

}

,

thenTε is absorbing. We next show thatTε is invariant.
Similar to the proof of Theorem5, when ε is small

enough, we have the following inequalities satisfied on the
boundaries ofTε :

x z′(t)
∣

∣

z=ε >

(

−ν +Dα∗+
c(l − ε)

λ + l − ε

)

ε > 0,

(x(t)+ z(t))′
∣

∣

x+z=iM/α∗ < 0,

(x(t)+ z(t))′
∣

∣

x+z=l > 0.

HenceTε is invariant and this implies that there exists a
pullback attractorA = {A(t) : t ∈ R} in Tε . �

6 Capturing the time-variation of the inputs

The properties of the solution mappingφ(t; t0,x0) of a
nonautonomous systems of ODEs of the form

dx
dt

= f (x, t), x(t0) = x0,

in R
d motivated theprocessor 2-parameter semigroup

formalism of abstract nonautonomous dynamical
systems. This intuitive formalism, however, does not
always allow the whole asymptotic behaviour to be
revealed without additional assumptions, in contrast to the
more complicatedskew product flowformalism that
already contains more built-in information in terms of
what is called a driving system. See [13].

Let (X,dX) and (P,dP) be metric spaces. Askew
product flow (θ ,ϕ) is defined in terms of a cocycle
mappingϕ on a state spaceX which is driven by an
autonomous dynamical systemθ acting on a base or
parameter spaceP and the time setR. Specifically, the
driving systemθ on P is a group of homeomorphisms
(θt)t∈R under composition onP (i.e., with the properties
that (i) θ0(p) = p for all p∈ P; (ii) θs+t = θs(θt(p)) for
all s, t ∈ R; (iii) the mapping (t, p) 7→ θt(p) is
continuous) and acocycle mappingϕ : R+

0 ×P×X → X
satisfies

(i) ϕ(0, p,x) = x for all (p,x) ∈ P×X,
(ii) ϕ(t +s, p,x) = ϕ (t,θs(p),ϕ(s, p,x)) for all s, t ∈R

+
0 ,

(p,x) ∈ P×X,
(iii) the mapping(t, p,x) 7→ ϕ(t, p,x) is continuous.

A ϕ-invariant family of nonempty compact subsetsA =
{Ap : p ∈ P} of X, i.e., with ϕ(t, p,Ap) = Aθt (p) for all
t ∈ R

+
0 andp∈ P, is called apullback attractorof a skew

product flow(θ ,ϕ) if the pullback convergence

lim
t→∞

distX (ϕ(t,θ−t(p),D),Ap) = 0 (p fixed)

holds for every nonempty bounded subsetD of X andp∈
P, and aforward attractorif the forward convergence

lim
t→∞

distX
(

ϕ(t, p,D),Aθt (p)

)

= 0

holds for every nonempty bounded subsetD of X and
p∈ P. Counterparts to the theorems for the existence of a
pullback attractors for a process hold for skew product
flows [13].

In terms of the chemostat systems above,ϕ(t, p,x) is
the unique solution fort ∈R

+
0 of an initial value problem

dx
dt

= f (x,θt (p)) (49)

in R
d for d = 1, 2 or 3 with the initial valuex(0) = x0 for

the driving system starting atp. HereP can be taken as the
hull of a time-dependent termq : R → R (eitherD(t) or
I(t) above) in the spaceC(R,R), i.e.,

P= {q(t+ ·) : t ∈ R)}
C(R,R)

,
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andθt is the shift operator defined byθt (q(·)) = q(t + ·).
The advantage is that whenq is periodic or almost periodic
thenP is a compact metric space. Note that a process can
be represented a skew product flow with the parameter set
P = R, p = t0 the initial time and the shift operatorθt (t0)
= t + t0.

The skew product representation of the chemostat
dynamics provides more insight into how the pullback
attractor component subsets may vary in time. For
example, with periodic time-dependent inputsD(t) or I(t)
of periodT, the driving systemθt is periodic with period
T, so byϕ-invariance, the pullback attractor component
sets are alsoT periodic, since

ϕ(T, p,Ap) = AθT (p) = Aθ0(p) = Ap.

If the pullback attactor consists of singleton components
sets, i.e., is formed by an entire solution, then this entire
solution is also periodic with periodT. This is also true
for the entire solution in the uniformly contracting cases
(iii) of Theorems3 and5. Analogous results also hold in
almost periodic and asymptotically autonomous cases.

A similar analysis is possible for the random
attractors of chemostat systems with randomly varying
imputs. Random dynamical systems are defined
analogously, but with the metric spaceP replaced by the
sample spaceΩ of a probability space(Ω ,F ,P) and the
continuity of p → θt (p) by the measurability ofω →
θt(ω). In this case the ordinary differential equation (49)
becomes a random ordinary differential equation.
Random dynamical systems are also generated by the
solutions of Itô stochastic differential equations.
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