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Abstract: In memory of our beloved Professor José Rodrigues Sant@&odsa Ramos (1948-2007), who Joao Cabral, one of the
authors of this paper, had the honour of being his studente®st 2000 and 2006, we wrote this paper following the resebyc
experimentation, using the new technologies to capturevaimgght about a problem, as him so much love to do it. His ipaswas

to create new relations between different fields of mathiesatle was a builder of bridges of knowledge, encouragirghiith of

new ways to understand this science. One of the areas thaa&amos researched was the iteration of maps and the diescap

its behaviour, using the symbolic dynamics. So, in thiséssithis journal, honoring his memory, we use experimergsiits to find
some stable regions of a specific family of real rational m#émes ones that he worked with Jodo Cabral. In this paper werite a
parameter spac@, b) to the real rational mapk, (x) = (x* —a) /(x> — b), using some tools of dynamical systems, as the study of the
critical point orbit and Lyapunov exponents. We give sonmuiits regarding the stability of these family of maps whenitete it,
specially the ones connected to the order 3 of iteration. ¥gethat our results would help to understand better thevimmlreof these
maps, preparing the ground to a more efficient use of the Kngdatheory on these family of maps, using symbolic dynamics.
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This paper is dedicated to the memory of Professor
José Sousa Ramos.

a=0,_a=b a0, a<h a=0_b>a a=0.b=-a

1 Introduction : ot T

Let fap(X) = (X2 —a)/(x* — b) be a real rational map,
with a andb real parameters with domald . Since these =
maps are a family of degree zero, with Schwarzian
derivative S(fap(X)) = —3/2x? always negative, should
be important to understand its behaviour under iteration, Fig. 1: The family of mapsfap
because all knowledge regarding the dynamics of these ’
class of maps can help to extend the present theories in
[6] and [7]. The family of 5, is a large and distinct group
of functions that we can organize relatively to the lines .
b=ab=-ab=0 andagz 0,ina parar>r/1eter space Ork,’]'t O_f x, denoted by Qrbf(X)' as th? set
(a,b). At most, we can obtain eight different groups, each{fa,b,(x) :n=012.}. The p.omtx. IS a f')fed point for
one with its own behaviour. We can see in figarene  fab if fap(X) =x. The pointxis a fixed point forf,, of
example of the graphic for each family. period n if f7,(x) = x. The least positiven for each
Following the notations, usually used in the study of f7,(x) = x is called the prime period of. A point x is
dynamical systems, seé][ in this paper we will use the eventually periodic of perioah if x is not periodic, but
symbol 7, to denotefypo fapo...o fap (ntimes). For  there exists > 0 such than‘;z;' () = fap(x), foralli >t.

n=0, we havef® =id. For a pointx € D we define the That is, f;‘b(x) is periodic fori > t. If p is a point with

a>0, b>-a a=l, b<-g a<l, a<h a<fa>b
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entropy we use the Lyapunov exponents, since they are a
quantity that characterizes the rate of separation of
infinitesimally close orbits, and using the Lyapunov
spectrum we can obtain an estimate of the rate of entropy
production of the mag, p,, see L].

The main goal of this paper is to show that we can
associate a parameter spdagb) to the real rational map
fap, €xtracting a lot of information about the periodicity
of the orbit of the critical point and study the stability of
certain regions, working this space as a chart, in the same
relation that the Mandelbrot set has to Complex Rational
Maps, see4]. Using this parameter spaga,b) for f,p
we can identify the values af and b, where in this map
the critical value will have stable and unstable orbits. We
believe that our work is an interesting contribution in arde
to understand better the dynamics of this class of maps.

periodn we denoteNs(p) as the stable set qd, that is,
the set of value that are forward asymptotic t@,
iIi_r)r(]° fib(X) = p. The set of points backwards asymptotic
to p is called the unstable set qf and is denoted by
WH(p). A pointx is a critical point offa, if f;,(x) = 0.
The critical point is non-degenerate fgfb(x)';é 0 and
degenerate i ;{b(x) = 0. The pointp is called hyperbolic

if

( ;b)/(p)‘ # 1. If pis a hyperbolic fixed point with

’(fa,b)/(p)’ < 1 it is called an attractor and there is an

open interval U, about p, such if x € U, then
nirﬂoofg:b(x) = p, andU = W5(p). If pis a hyperbolic
fixed point with ‘(f@b)/(p)‘ > 1 it is called a repeller

point and there is an open intenid) aboutp, x # p, such
if x € U, then there exists> 0 such thatf} ,(x) ¢ U, and

U =W!(p). If x=cis the critical point of the map and

2 The parameter spacga,b) for f
fap(c) = ¢, for somen, then we say thatc is a P pace(a,b) ab

To study the behaviour, under iteration, of the nigp,

the most valuable points are the discontinuity points, the
critical points and the fixed points. Since, under iteration
the images of the discontinuities godoand after that to

the value 1, we can use the orbits>of 0 andx =1 as
references to understand how this maps behave under

supercritical point, then ir(fa,b)/ (c)‘ < 1, then we have

a super stability region of the map.

As we can read in almost all literature, regarding to
dynamical systems, the role of the orbit of a critical point,
on understanding the behaviour of a map is very important
See, for example, all the use given to this kind of orbits

in [1], [4], [6] and [7]. It has an extreme importance in
convert the dynamics of a system in a symbolic way, sinc
this kind of orbits are the capstone of the foundations of
Kneading Theory.

In continuous real maps, the orbit of any point will
eventually fall in the orbit of the critical point, and this
critical orbit will converge to a fixed poinp, building a
stable set aroung; diverge from a pointp, building an
unstable set aroungl or can ignore the presencepif p
is a saddle point. Seel][to a better description of this
phenomena. Sincé,, is piecewise step continuous map
there will be some differences, but the orbit of the critical
point still has big importance, since we can identify stable
and unstable sets only by its orbit, but it doesn’t work
alone. We must count also with the role played by the
discontinuities and the forward orbit of. We can see
some of this interaction ir2] and [3].

Another tool used to study the behaviour of maps is
the bifurcation diagram. Seel][ and [1], to obtain the

eOl’bf

iteration, see ] and [3]. All the other valuesx # 0 and
x # 1 have orbits that will fall, eventually, in the orbits
(0) or Orbs(1). The orbit of the critical point plays,
as on the continuous real rational maps, ség én
important role in the dynamics of the még,. It is useful
to remember that = 0 is a non degenerate critical point,
sincef;,(0) = 2(a— b)/b? # 0,a# b andb # 0, but its
behaviour, under iteration, is not completely understood.
Using Wolfram Mathematica 8.0 (WM80) we can
explore the generic parameter spacab) of fap,
searching for the number of possible solutions of the

equation
ar:b(x) =X (1)

for each naturah. Due to the hard difficulty in calculating
the exact values to all, of this fixed point equation, we
can use the iteration of = 0, as a start point to simplify
the solution of the implicit equations, to estimate regions
where we can find some solutions of the generic equation.
Using the density plot function of WMS80, we

mathematical description of bifurcation diagram an someobtained the figure® and3, iterating the values =1 and

graphical examples to a relatively large group of maps. A

x = 0, respectively, until the order 50. The black regions

bifurcation diagram shows the possible long-term valuesare the ones where we can find combinationa ahdb,

(equilibria/fixed points or periodic orbits) of a system as a

where the equatiod has a finite solution for each.

function of a bifurcation parameter in the system. Although, this setis not completely accurate, due to some
Through it, we can analyze, with a careful interpretation, natural errors in numerical algorithms used by WM8O0, it
for certain values of the parametefs, b), the type of can be used as a good approximation to the set that will
orbit that the critical point of the maf,, will produce,  play the role of Mandelbrot to our mafyp. The dark
and its order. This tool is very important when we dependregions are numerical approximations to the regions
mostly from experimental results, obtained by where we can find stable orbits to the critical value 0
computational calculus, as we did on this paper. And toor x = 1. To control the long time that WM80 needs to
confirm some aspects related to the value of topologicatalculated this figures we only worked with the values
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Space[a , b ] := Length[FixedPointList][
(#*2-a)/(#*2-Db) &, 1,50,
SameTest - (Abks[#] =6 &)]]:
DenzityPlot[Space[z, k],
{a, 0.00001, 3}, {b, 0.000001, 2},
Mezh —+ Fal=ze, AspectRatio -+ Autcmatic,
Frame -+ True, Axes - True, PlotPoints - 75,
ColorFunction -+ (If[# == 1, RGBColor[0O, O, 07,
Hue[0.9#]1] &)1

Fig. 2: Approximated regions where we can have solutions toFig. 4: Program used to find stability regions usirg- 1 as a

fap(¥) =X, using iteration ok =1,0<a<3,0<b<2. seed.
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Fig. 3: Approximated regions where we can have solutions to—_ A | i |'r 1 y.
2, (x) = x, using iteration ok=0,0<a<3,0<b<2. |I |'
| -2t |

x| < 8,06=6,0<a<3and0<b< 2. We canimprove

the accuracy of this picture increasing the valuépénd

the order of iteration for each orbit af= 1 andx= 0. In Fig. 5: Graph of functionf (x) = (x2 —0.5)/(x2 — 0.2)
figure 4 we can see an example of the program used in

WMB8O to calculate these regions.

In our work we will dedicate our attention to the
restriction of the parameter spa@eb), wherea > 0 and
b < @, in order to study the behaviour of an unique type of
function, like the one in figur®. With this restriction the
parameter spack, b) becomes the one present in figure Definition 1. We define as Bulb of period n, the region of
6. the parameter spac@, b) where we can find the solutions
As we can see in figuré, exists some regularity in the of the equatiord, for a fixed n.
black regions, that resembles the existent similarity @ th
Mandelbrot picture for complex quadratic rational maps,  The biggest bulb present in figu& is one region
see fl]. These black regions are the ones, in parametewhere we can always found at least one solution to the
space(a,b), where we can find some type of solution of equationl, with n = 3. But, in the same figure we can
degreen, of the equatioril. We will call these regions also found bulbs for all the other periods. Selecting the
"Bulbs”, following the designation already know to the proper values fora,b) in the interior of each bulb it is
Bulbs of Mandelbrot sets. Using B-Spline functions, easy to find the period of the other bulbs. In this case the
collecting some points, in WM80, we can approximate proper values must be the ones that are located at the left

the border of these regions, obtaining the geometric result
showed in figure.
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Fig. 6: Restriction of the spac@,b) to0<b<a=1.2

Fig. 7: The geometric configuration of a bulb

side of the bulb, the region of the bulb designated_big
figure 7, then we can iterate the critical valxe= 0 and
we will obtain orbits of the same order of the bulb.
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Fig. 8: Super stable line of period 3 crossing bulb of period 3.

are in the interior of the bulb. This set of values is a
continuous line.

Example 1.Using WM80, we can solve the equation
fgb(O) =0, and we obtain the figurg where we can see
the super stable line of period 3 in the interior of the bulb
of period 3, dividing it in two parts. With some help
WM80, we can see that this line is continuous and
differentiable, in all its extension.

Each bulb of the parameter spaab) gives us
information about the behaviour of the rational maps of
degree zero which can be created using the vadumsd
b. In the next section we will summarize some
characteristics of the bulbs, using as reference the bulb of
period 3. Those characteristics can be easily extended to
the other bulbs belonging to the restriction<Ob < a,
since we are working with the same family of maps.

Notice that wher(a,b) belongs to a bulb of periond,
it only means that in this bulb we will find at least one
stable orbit for the critical value of periad Other orbits,
of different periods can exist in the same bulb. Since the
Bulbs are created by numerical computations, with the

Incorporated in each bulb, there is a special line, thathelp of WM80, solving the equatiorng:b(x) =X, on a

divides the bulb in two regiong, andR. This line is the
solution of the equatiod, for x = 0, and it is the line of
super stability of the function for eaaf that is, this line
is the set of value&a, b) where the critical point will have
a super stable orbit.

Lemma 1. The Bulb of period n= 3 contains a set of
values(a,b), solutions of the equationig(O) =0, for
O<b<a. '

Proof. Since the bulb is the region Wheféb(x) =X has
solutions, for any, we can solve this equation implicitly

limited region(a,b), for fixed valuesa andb, it is easy to
see that the result of LemmBa will occur in Bulbs of
higher orders. So, we present the following result, giving
a proof for it in the next section.

Proposition 1. The Bulb of period > 3 contains at least
one set of value@, b) where the equatioh has a solution,
and have other solutions of periodp with p=2,3,....

3 The bulb of period 3 enigma

with the help of WM80, trough numerical computations, The mapf,p is a two parameter map, but if we apply a

and we have in particular for= 0, a set of solutions that

restriction toa and b, in order to transform it in one
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Fig. 9: Bulb of period 3 and the liné with positive slope and Fig. 10: Bifurcation diagram offa(x), with 0.7 < a < 0.95.
with negative slope

parameter map, we can use the already known tools used R b
in Dynamical Systems for piecewise continuous maps and
for mmodal maps, to study the dynamics fafy, see [] ) e
and [7/]. We can achieve this making = g(a), and ik
acjc,d[ in a way that the paifa,g(a)) is in the interior R
of a specific bulb of periodh. The valuesc andd, are i

reals such the paifc,g(c)) belongs to the left border of ] ML
the regionL, and the pair(d,g(d)) belongs to the right 1
border of the regioiR, in the figure7. The functiong is )
continuous an@?. -2

Let n=3, andb = g(a) = ma-+k, m> 0, with .
a€jc,d[ and 0< b < a. With these conditions we are by E U RN E Ry
working with straight linegy that belongs to the interior 07 08 09 1
of the bulb of period 3. The lindr in figure 9 is one
example. Now f,p is a map with one parameter,
fa(x) = (¥ —a)/(x¥* — g(a)) and we can use the
bifurcation diagram to understand better its dynamics.

If we select approximated values off- 6 andd — 6,
with 6 — 0, we can generateh as in figure 9,  we didn't find any value of such f4(x) would become
g(a) = —055+ a, with 0.7 < a < 0.95, and the chaotic. And the results where the samerfoe 0.
bifurcation diagram{a, fa(x)}, that represents the orbit of But, for b = g(a) = ma+k, m < 0, when we were
the critical pointx = 0, will be the figurelO. expecting to get the same results, a surprise emerged and

We can observe in figurkQ that, indeed, the period of something new happened. For the linessas figure 9,
the critical orbit is 3, and the super stability happens whengenerated in the same conditions as the kinenly with
a~0.86, result also obtained visualizing the fig@rsince  negative slope instead of positive, we found a new and
h crosses the super stable line of the bulb approximately omlifferent behaviour for some valuéa,b) in the interior
the point(0.86,9(0.86)). of the regiorR.

After all the possible calculations, we observed thatall ~ Forg(a) = 1.275—a, for 0.70 < a < 1.08 we have the
the bifurcation diagrams of the m&g(x), depending on  bifurcation diagram forfa(x) represented in figurél.

g(a) with positive slopem > 0, with a €]c,d[, have the Forg(a) = 1.325—a, for 0.73 < a < 1.09 we have the
same characteristics: the orbit of the critical value iblgta  bifurcation diagram forfa(x) represented in figurg2.

of period 3, and it starts at the left side border of the region  Forg(a) = 1.35—a, for 0.77 < a < 1.12 we have the

L, from a previous border collision bifurcation, that origin bifurcation diagram foifz(x) represented in figur&3.

an orbit with three different start$,0), 1 andeo, all with As happened on the bifurcation diagrams resulting
decreasing monotonicity, ending at the right side border offrom g(a) with positive slope, the orbits also born in the
the regionR, in a double period bifurcation. For this case left side border of regiorL, from a border collision

P

Fig. 11: Bifurcation diagram forfa(x) with 0.70 < a < 1.08
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Fig. 12: Bifurcation diagram forfa(x) with 0.73 < a < 1.09 Fig. 14: The regionN

N existence of a ling, in the interior of the regiomM, that
4 are the set of point$a,g(a)) where the mapfa(x) has
g maximum entropy in the bulb of period 3, whgfa) has
negative slope. Big questions arise to our mind, and the
most important ones are: (1) Why the bifurcation diagram
of the map wheng(a) had positive slope crossed this
region N didn't detect the existence of reverse
bifurcations? (2) Where is the starting/ending point of the
line z, and which analytic equation has as solution the line
7

We registered this phenomena in all possible bulbs of
our parameter spada,b), since our machine could not
work with periods bigger than period 15. Numerical
calculus prove the existence of this regidnand the line
z, for all g(a) with negative slope, in the same relative
Fig. 13: Bifurcation diagram forfa(x) with 0.77 <a < 1.12 position of all regionsR, of all bulbs of odd order
3,5,7,9,... < 15.

Now we can give a proof to propositidn

Proof(of Propositionl)

bifurcation, with starts inf(0),1 and o, also with In the bulb of periodn > 3, it is obvious that the
decreasing monotonicity, but after the valag which ~ equationl has at least one solution. It is the set of values
represents the value of super stability for the orbit of (&,b) that solves the equationf],(0) = 0. When
x = 0, and the value where the lireecrosses the super b = g(a) = ma+k, for m < 0, with a €]c,d[ and
stable line of the bulb of period 3, the monotonicity 0 < b < a, with (c,g(c)) and(d,g(d)) points of the left
changes and we arrive to a reginsee figurel4, inside  border of regiorl. and the right border dR, respectively,
the regionR, where the mapfa(x) will have reverse will exist a region N C R, where double period
period-doubling bifurcation sequences on its bifurcationbifurcations occurs, so the existence of all periodip
diagram! To obtain some information about reversesolutions 0ff£§(0):0is guaranteed.
bifurcation we can check 4] and [1]. Also, our
experimental results points to the existence of all orlfits o
period 3, with p=2,3,... in this regionN. This result 4 Conclusions
will be easy to check, since it happens in a region of
reverse period bifurcation sequences, if we could find theln dynamical systems it is still an open problem the proof
exact value oh, or some neighbourhood, where the map about what will be the simplest map that presents reverse
goes to chaos, the lire bifurcations, see”], [1] and [4]. The discovery of this

All our results, obtained with the help of WMB80 regionN in our bulb of period 3, for our mag, 4, is a
points to the existence of this regidd, and for the great contribution in order to solve this problem, since the
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Fig. 15: Lyapunov exponents foli, g 5) with g(a) = 1.35—a, for
0.77<a<112

regionN exists in all other bulbs of period of our map,
and it is easy to estimate its position computationally.

The discovery of the regioN, on the bulb of period
3, where the magf, ), has infinite complexity, gave us a
way to calculate the maximum value of entropy on this
bulb, since now we can use Lyapunov Exponents. Fro
Katok results, seé], the Lyapunov exponents for smooth
transformations can be computed by

In| f5504-1))| ()

M=

1
y(x) = —
m&

and the envelope of the upper limit of(x) is an
estimative of the topological entropy valugop. As
example, calculating this estimative td,gy, Wwith
g(a) =1.35—4a,for 0.77 < a < 1.12, we obtain the figure
15. On this way, we can compute the maximum value for
the topological entropy on the intervall7 < a < 1.12
and it ishyop = 0.0736631. The use of this tool allows us
the study of the variation of the entropy &f, in each
bulb of periodn, and in the parameter spa¢a b) in a
global way.

With the help of the parameter spa@b) it is easy
to obtain the possible regions of stability &f, and so
we can apply more efficiently the techniques of Kneading

Theory, studying the behaviour of this class of maps in a
symbolic way, as Sousa Ramos loved to do and taught to

all his students.

The future of this work passes by an improvement of
the accuracy of the parameter spaagh) and then apply
the techniques used i2][in order to hunt for admissible
Kneading pairs.

"7
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