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Abstract: In memory of our beloved Professor José Rodrigues Santos deSousa Ramos (1948-2007), who João Cabral, one of the
authors of this paper, had the honour of being his student between 2000 and 2006, we wrote this paper following the research by
experimentation, using the new technologies to capture a new insight about a problem, as him so much love to do it. His passion was
to create new relations between different fields of mathematics. He was a builder of bridges of knowledge, encouraging the birth of
new ways to understand this science. One of the areas that Sousa Ramos researched was the iteration of maps and the description of
its behaviour, using the symbolic dynamics. So, in this issue of this journal, honoring his memory, we use experimental results to find
some stable regions of a specific family of real rational maps, the ones that he worked with João Cabral. In this paper we describe a
parameter space(a,b) to the real rational mapsfa,b(x) = (x2−a)/(x2−b), using some tools of dynamical systems, as the study of the
critical point orbit and Lyapunov exponents. We give some results regarding the stability of these family of maps when weiterate it,
specially the ones connected to the order 3 of iteration. We hope that our results would help to understand better the behaviour of these
maps, preparing the ground to a more efficient use of the Kneading Theory on these family of maps, using symbolic dynamics.
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This paper is dedicated to the memory of Professor
José Sousa Ramos.

1 Introduction

Let fa,b(x) = (x2 − a)/(x2 − b) be a real rational map,
with a andb real parameters with domainD f . Since these
maps are a family of degree zero, with Schwarzian
derivativeS

(

fa,b(x)
)

= −3/2x2 always negative, should
be important to understand its behaviour under iteration,
because all knowledge regarding the dynamics of these
class of maps can help to extend the present theories in
[6] and [7]. The family of fa,b is a large and distinct group
of functions that we can organize relatively to the lines
b = a, b = −a, b = 0 anda = 0, in a parameter space
(a,b). At most, we can obtain eight different groups, each
one with its own behaviour. We can see in figure1 one
example of the graphic for each family.

Following the notations, usually used in the study of
dynamical systems, see [4], in this paper we will use the
symbol f n

a,b to denotefa,b ◦ fa,b ◦ ... ◦ fa,b (n times). For

n= 0, we havef 0 = id. For a pointx∈ D f we define the

Fig. 1: The family of mapsfa,b

orbit of x, denoted by Orbf (x), as the set
{ f n

a,b(x) : n = 0,1,2...}. The pointx is a fixed point for
fa,b if fa,b(x) = x. The pointx is a fixed point forfa,b of
period n if f n

a,b(x) = x. The least positiven for each
f n
a,b(x) = x is called the prime period ofx. A point x is

eventually periodic of periodn if x is not periodic, but
there existst > 0 such thatf n+i

a,b (x) = f i
a,b(x), for all i > t.

That is, f i
a,b(x) is periodic for i > t. If p is a point with
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periodn we denoteWs(p) as the stable set ofp, that is,
the set of valuesx that are forward asymptotic top,
lim
i→∞

f in
a,b(x) = p. The set of points backwards asymptotic

to p is called the unstable set ofp and is denoted by
Wu(p). A point x is a critical point of fa,b if f ′a,b(x) = 0.
The critical point is non-degenerate iff ′′a,b(x) 6= 0 and
degenerate iff ′′a,b(x) = 0. The pointp is called hyperbolic

if

∣

∣

∣

∣

(

f n
a,b

)′
(p)

∣

∣

∣

∣

6= 1. If p is a hyperbolic fixed point with
∣

∣

∣

(

fa,b
)′
(p)

∣

∣

∣
< 1 it is called an attractor and there is an

open interval U , about p, such if x ∈ U , then
lim

n→+∞
f n
a,b(x) = p, andU = Ws(p). If p is a hyperbolic

fixed point with
∣

∣

∣

(

fa,b
)′
(p)

∣

∣

∣
> 1 it is called a repeller

point and there is an open intervalU , aboutp, x 6= p, such
if x∈U , then there existst > 0 such thatf t

a,b(x) /∈U , and
U = Wu(p). If x = c is the critical point of the map and
f n
a,b(c) = c, for some n, then we say thatc is a

supercritical point, then if
∣

∣

∣

(

fa,b
)′
(c)

∣

∣

∣
< 1, then we have

a super stability region of the map.
As we can read in almost all literature, regarding to

dynamical systems, the role of the orbit of a critical point,
on understanding the behaviour of a map is very important.
See, for example, all the use given to this kind of orbits
in [1], [4], [6] and [7]. It has an extreme importance in
convert the dynamics of a system in a symbolic way, since
this kind of orbits are the capstone of the foundations of
Kneading Theory.

In continuous real maps, the orbit of any point will
eventually fall in the orbit of the critical point, and this
critical orbit will converge to a fixed pointp, building a
stable set aroundp; diverge from a pointp, building an
unstable set aroundp, or can ignore the presence ofp if p
is a saddle point. See [4] to a better description of this
phenomena. Sincefa,b is piecewise step continuous map
there will be some differences, but the orbit of the critical
point still has big importance, since we can identify stable
and unstable sets only by its orbit, but it doesn’t work
alone. We must count also with the role played by the
discontinuities and the forward orbit of∞. We can see
some of this interaction in [2] and [3].

Another tool used to study the behaviour of maps is
the bifurcation diagram. See [4] and [1], to obtain the
mathematical description of bifurcation diagram an some
graphical examples to a relatively large group of maps. A
bifurcation diagram shows the possible long-term values
(equilibria/fixed points or periodic orbits) of a system as a
function of a bifurcation parameter in the system.
Through it, we can analyze, with a careful interpretation,
for certain values of the parameters(a,b), the type of
orbit that the critical point of the mapfa,b will produce,
and its order. This tool is very important when we depend
mostly from experimental results, obtained by
computational calculus, as we did on this paper. And to
confirm some aspects related to the value of topological

entropy we use the Lyapunov exponents, since they are a
quantity that characterizes the rate of separation of
infinitesimally close orbits, and using the Lyapunov
spectrum we can obtain an estimate of the rate of entropy
production of the mapfa,b, see [1].

The main goal of this paper is to show that we can
associate a parameter space(a,b) to the real rational map
fa,b, extracting a lot of information about the periodicity
of the orbit of the critical point and study the stability of
certain regions, working this space as a chart, in the same
relation that the Mandelbrot set has to Complex Rational
Maps, see [4]. Using this parameter space(a,b) for fa,b
we can identify the values ofa and b, where in this map
the critical value will have stable and unstable orbits. We
believe that our work is an interesting contribution in order
to understand better the dynamics of this class of maps.

2 The parameter space(a,b) for fa,b

To study the behaviour, under iteration, of the mapfa,b,
the most valuable points are the discontinuity points, the
critical points and the fixed points. Since, under iteration,
the images of the discontinuities go to∞ and after that to
the value 1, we can use the orbits ofx = 0 andx = 1 as
references to understand how this maps behave under
iteration, see [2] and [3]. All the other valuesx 6= 0 and
x 6= 1 have orbits that will fall, eventually, in the orbits
Orbf (0) or Orbf (1). The orbit of the critical point plays,
as on the continuous real rational maps, see [1], an
important role in the dynamics of the mapfa,b. It is useful
to remember thatx = 0 is a non degenerate critical point,
since f ′′a,b(0) = 2(a−b)/b2 6= 0, a 6= b andb 6= 0, but its
behaviour, under iteration, is not completely understood.

Using Wolfram Mathematica 8.0 (WM80) we can
explore the generic parameter space(a,b) of fa,b,
searching for the number of possible solutions of the
equation

f n
a,b(x) = x, (1)

for each naturaln. Due to the hard difficulty in calculating
the exact values to alln, of this fixed point equation, we
can use the iteration ofx = 0, as a start point to simplify
the solution of the implicit equations, to estimate regions
where we can find some solutions of the generic equation.

Using the density plot function of WM80, we
obtained the figures2 and3, iterating the valuesx= 1 and
x = 0, respectively, until the order 50. The black regions
are the ones where we can find combinations ofa andb,
where the equation1 has a finite solution for eachn.
Although, this set is not completely accurate, due to some
natural errors in numerical algorithms used by WM80, it
can be used as a good approximation to the set that will
play the role of Mandelbrot to our mapfa,b. The dark
regions are numerical approximations to the regions
where we can find stable orbits to the critical valuex= 0
or x = 1. To control the long time that WM80 needs to
calculated this figures we only worked with the values
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Fig. 2: Approximated regions where we can have solutions to
f n
a,b(x) = x, using iteration ofx= 1, 0< a< 3, 0< b< 2.

Fig. 3: Approximated regions where we can have solutions to
f n
a,b(x) = x, using iteration ofx= 0, 0< a< 3, 0< b< 2.

|x|< θ , θ = 6, 0< a< 3 and 0< b< 2. We can improve
the accuracy of this picture increasing the value ofθ , and
the order of iteration for each orbit ofx= 1 andx= 0. In
figure 4 we can see an example of the program used in
WM80 to calculate these regions.

In our work we will dedicate our attention to the
restriction of the parameter space(a,b), wherea> 0 and
b< a, in order to study the behaviour of an unique type of
function, like the one in figure5. With this restriction the
parameter space(a,b) becomes the one present in figure
6.

As we can see in figure6, exists some regularity in the
black regions, that resembles the existent similarity in the
Mandelbrot picture for complex quadratic rational maps,
see [4]. These black regions are the ones, in parameter
space(a,b), where we can find some type of solution of
degreen, of the equation1. We will call these regions
”Bulbs”, following the designation already know to the
Bulbs of Mandelbrot sets. Using B-Spline functions,
collecting some points, in WM80, we can approximate

Fig. 4: Program used to find stability regions usingx = 1 as a
seed.

Fig. 5: Graph of functionf (x) = (x2−0.5)/(x2 −0.2)

the border of these regions, obtaining the geometric result
showed in figure7.

Definition 1. We define as Bulb of period n, the region of
the parameter space(a,b) where we can find the solutions
of the equation1, for a fixed n.

The biggest bulb present in figure6, is one region
where we can always found at least one solution to the
equation1, with n = 3. But, in the same figure we can
also found bulbs for all the other periods. Selecting the
proper values for(a,b) in the interior of each bulb it is
easy to find the period of the other bulbs. In this case the
proper values must be the ones that are located at the left
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Fig. 6: Restriction of the space(a,b) to 0< b< a= 1.2

Fig. 7: The geometric configuration of a bulb

side of the bulb, the region of the bulb designated byL in
figure 7, then we can iterate the critical valuex = 0 and
we will obtain orbits of the same order of the bulb.

Incorporated in each bulb, there is a special line, that
divides the bulb in two regions,L andR. This line is the
solution of the equation1, for x = 0, and it is the line of
super stability of the function for eachn, that is, this line
is the set of values(a,b) where the critical point will have
a super stable orbit.

Lemma 1. The Bulb of period n= 3 contains a set of
values(a,b), solutions of the equation f3

a,b(0) = 0, for
0< b< a.

Proof.Since the bulb is the region wheref 3
a,b(x) = x has

solutions, for anyx, we can solve this equation implicitly
with the help of WM80, trough numerical computations,
and we have in particular forx= 0, a set of solutions that

Fig. 8: Super stable line of period 3 crossing bulb of period 3.

are in the interior of the bulb. This set of values is a
continuous line.

Example 1.Using WM80, we can solve the equation
f 3
a,b(0) = 0, and we obtain the figure8, where we can see

the super stable line of period 3 in the interior of the bulb
of period 3, dividing it in two parts. With some help
WM80, we can see that this line is continuous and
differentiable, in all its extension.

Each bulb of the parameter space(a,b) gives us
information about the behaviour of the rational maps of
degree zero which can be created using the valuesa and
b. In the next section we will summarize some
characteristics of the bulbs, using as reference the bulb of
period 3. Those characteristics can be easily extended to
the other bulbs belonging to the restriction 0< b < a,
since we are working with the same family of maps.

Notice that when(a,b) belongs to a bulb of periodn,
it only means that in this bulb we will find at least one
stable orbit for the critical value of periodn. Other orbits,
of different periods can exist in the same bulb. Since the
Bulbs are created by numerical computations, with the
help of WM80, solving the equationf n

a,b(x) = x, on a
limited region(a,b), for fixed valuesa andb, it is easy to
see that the result of Lemma1 will occur in Bulbs of
higher orders. So, we present the following result, giving
a proof for it in the next section.

Proposition 1.The Bulb of period n> 3 contains at least
one set of values(a,b)where the equation1 has a solution,
and have other solutions of period n.p, with p= 2,3, ....

3 The bulb of period 3 enigma

The map fa,b is a two parameter map, but if we apply a
restriction to a and b, in order to transform it in one
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Fig. 9: Bulb of period 3 and the lineh with positive slope ands
with negative slope

parameter map, we can use the already known tools used
in Dynamical Systems for piecewise continuous maps and
for m-modal maps, to study the dynamics offa,b, see [1]
and [7]. We can achieve this makingb = g(a), and
a ∈]c,d[ in a way that the pair(a,g(a)) is in the interior
of a specific bulb of periodn. The valuesc and d, are
reals such the pair(c,g(c)) belongs to the left border of
the regionL, and the pair(d,g(d)) belongs to the right
border of the regionR, in the figure7. The functiong is
continuous andC1.

Let n = 3, and b = g(a) = m.a+ k, m > 0, with
a ∈]c,d[ and 0< b < a. With these conditions we are
working with straight linesg that belongs to the interior
of the bulb of period 3. The lineh in figure 9 is one
example. Now fa,b is a map with one parameter,
fa(x) = (x2 − a)/(x2 − g(a)) and we can use the
bifurcation diagram to understand better its dynamics.

If we select approximated values ofc+ θ andd− θ ,
with θ → 0, we can generateh as in figure 9,
g(a) = −0.55 + a, with 0.7 . a . 0.95, and the
bifurcation diagram{a, fa(x)}, that represents the orbit of
the critical pointx= 0, will be the figure10.

We can observe in figure10 that, indeed, the period of
the critical orbit is 3, and the super stability happens when
a≈0.86, result also obtained visualizing the figure9, since
h crosses the super stable line of the bulb approximately on
the point(0.86,g(0.86)).

After all the possible calculations, we observed that all
the bifurcation diagrams of the mapfa(x), depending on
g(a) with positive slope,m> 0, with a ∈]c,d[, have the
same characteristics: the orbit of the critical value is stable
of period 3, and it starts at the left side border of the region
L, from a previous border collision bifurcation, that origins
an orbit with three different starts,f (0), 1 and∞, all with
decreasing monotonicity, ending at the right side border of
the regionR, in a double period bifurcation. For this case

Fig. 10: Bifurcation diagram offa(x), with 0.7. a. 0.95.

Fig. 11: Bifurcation diagram forfa(x) with 0.70. a. 1.08

we didn’t find any value ofa such fa(x) would become
chaotic. And the results where the same form= 0.

But, for b = g(a) = m.a+ k, m< 0, when we were
expecting to get the same results, a surprise emerged and
something new happened. For the lines ass in figure 9,
generated in the same conditions as the lineh, only with
negative slope instead of positive, we found a new and
different behaviour for some values(a,b) in the interior
of the regionR.

Forg(a) = 1.275−a, for 0.70. a. 1.08 we have the
bifurcation diagram forfa(x) represented in figure11.

Forg(a) = 1.325−a, for 0.73. a. 1.09 we have the
bifurcation diagram forfa(x) represented in figure12.

For g(a) = 1.35−a, for 0.77. a. 1.12 we have the
bifurcation diagram forfa(x) represented in figure13.

As happened on the bifurcation diagrams resulting
from g(a) with positive slope, the orbits also born in the
left side border of regionL, from a border collision
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Fig. 12: Bifurcation diagram forfa(x) with 0.73. a. 1.09

Fig. 13: Bifurcation diagram forfa(x) with 0.77. a. 1.12

bifurcation, with starts in f (0),1 and ∞, also with
decreasing monotonicity, but after the valuea, which
represents the value of super stability for the orbit of
x = 0, and the value where the lines crosses the super
stable line of the bulb of period 3, the monotonicity
changes and we arrive to a regionN, see figure14, inside
the regionR, where the mapfa(x) will have reverse
period-doubling bifurcation sequences on its bifurcation
diagram! To obtain some information about reverse
bifurcation we can check [4] and [1]. Also, our
experimental results points to the existence of all orbits of
period 3p, with p = 2,3, ... in this regionN. This result
will be easy to check, since it happens in a region of
reverse period bifurcation sequences, if we could find the
exact value ofa, or some neighbourhood, where the map
goes to chaos, the linez.

All our results, obtained with the help of WM80
points to the existence of this regionN, and for the

Fig. 14: The regionN

existence of a linez, in the interior of the regionN, that
are the set of points(a,g(a)) where the mapfa(x) has
maximum entropy in the bulb of period 3, wheng(a) has
negative slope. Big questions arise to our mind, and the
most important ones are: (1) Why the bifurcation diagram
of the map wheng(a) had positive slope crossed this
region N didn’t detect the existence of reverse
bifurcations? (2) Where is the starting/ending point of the
line z, and which analytic equation has as solution the line
z?

We registered this phenomena in all possible bulbs of
our parameter space(a,b), since our machine could not
work with periods bigger than period 15. Numerical
calculus prove the existence of this regionN, and the line
z, for all g(a) with negative slope, in the same relative
position of all regionsR, of all bulbs of odd order
3,5,7,9, ... < 15.

Now we can give a proof to proposition1.

Proof.(of Proposition1)
In the bulb of periodn > 3, it is obvious that the

equation1 has at least one solution. It is the set of values
(a,b) that solves the equationf n

a,b(0) = 0. When
b = g(a) = m.a + k, for m < 0, with a ∈]c,d[ and
0 < b < a, with (c,g(c)) and (d,g(d)) points of the left
border of regionL and the right border ofR, respectively,
will exist a region N ⊂ R, where double period
bifurcations occurs, so the existence of all periodicn.p
solutions off np

a,b(0) = 0 is guaranteed.

4 Conclusions

In dynamical systems it is still an open problem the proof
about what will be the simplest map that presents reverse
bifurcations, see [7], [1] and [4]. The discovery of this
regionN in our bulb of period 3, for our mapfa,g(a) is a
great contribution in order to solve this problem, since the
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Fig. 15: Lyapunov exponents forfa,g(a) with g(a) = 1.35−a, for
0.77< a< 1.12

regionN exists in all other bulbs of periodn of our map,
and it is easy to estimate its position computationally.

The discovery of the regionN, on the bulb of period
3, where the mapfa,b has infinite complexity, gave us a
way to calculate the maximum value of entropy on this
bulb, since now we can use Lyapunov Exponents. From
Katok results, see [5], the Lyapunov exponents for smooth
transformations can be computed by

γ(x) =
1
m

m

∑
k=1

ln
∣

∣ f ′a,b(xk−1)
∣

∣ (2)

and the envelope of the upper limit ofγ(x) is an
estimative of the topological entropy valuehtop. As
example, calculating this estimative tofa,g(a) with
g(a) = 1.35−a, for 0.77. a. 1.12, we obtain the figure
15. On this way, we can compute the maximum value for
the topological entropy on the interval 0.77. a . 1.12,
and it ishtop = 0.0736631. The use of this tool allows us
the study of the variation of the entropy offa,b, in each
bulb of periodn, and in the parameter space(a,b) in a
global way.

With the help of the parameter space(a,b) it is easy
to obtain the possible regions of stability offa,b and so
we can apply more efficiently the techniques of Kneading
Theory, studying the behaviour of this class of maps in a
symbolic way, as Sousa Ramos loved to do and taught to
all his students.

The future of this work passes by an improvement of
the accuracy of the parameter space(a,b) and then apply
the techniques used in [2] in order to hunt for admissible
Kneading pairs.
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[1] Alsedà, L. & Llibre, J. & Misiurewicz, M. (2000) ”
Combinatorial Dynamics and Entropy in Dimension One”,
Second edition, Advanced Series in Nonlinear Dynamics, vol.
5, World Scientific. ISBN 981-02-4053-8.

[2] Cabral, J. (2013). ”Hunting Admissible Kneading pairs of a
Real Rational Map”. Asia Online Journals: Asian Journal of
Fuzzy and Applied Mathematics, 1(4), 120-126. ISSN 2321-
564X.

[3] Cabral, J. (2013). ”Symbolic Dynamics for Real Rational
Maps”. Asia Online Journals: Asian Journal of Fuzzy and
Applied Mathematics , 1(4), 69-75. ISSN 2321-564X.

[4] Devaney, R. (1989) ”An Introduction to chaotic dynamical
Systems”. 2nd edition, Perseus Books. ISBN 0-201-13046-7.

[5] Katok, A. (1980) ”Lyapunov exponents, entropy and periodic
orbits for diffeomorphisms”. Publications Mathématiques de
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