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Abstract: In this paper we study the structure of the global attractor for a multivalued semiflow generated by weak solutions of a
reaction-diffusion equation in which uniqueness of the Cauchy problem is not guaranteed, improving the results of a previous paper.
Under suitable assumptions, we prove that the global attractor can be characterized using either the unstable manifoldof the set of
stationary points or the stable one but considering in this last case only solutions in the set of bounded complete trajectories.
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1 Introduction

The problem of studying the structure of global attractors
for infinite-dimensional dynamical systems is amazing. In
the particular case of reaction-diffusion equations
beautiful results in this direction have been proved (see
e.g. [6], [7], [11], [20], [21]).

The first step in such problems is to establish that the
global attractor is the unstable manifold of the set of
stationary points. In the single-valued case, when for
example the nonlinear term is a polynomial or its
derivative satisfies some assumptions, this is well known
[3], [4], [23]. The problem is more complicated when
uniqueness of the Cauchy problem is not guaranteed. In
such a case, a multivalued semiflow has to be defined,
rather than a semigroup, and different types of solutions
can be considered. Some results in this direction have
been obtained for differential inclusions and
reaction-diffusion equations (see [2], [10], [13]). We
observe that new interesting situations can appear in such
equations (see [2]).

In this paper we will study the structure of the global
attractor of a reaction-diffusion equation in which the

nonlinear term satisfy suitable growth and dissipative
conditions, but there is no condition ensuring uniqueness
of the Cauchy problem (like e.g. a monotonicity
assumption). Such equation generates in the general case
a multivalued semiflow having a global compact attractor
(see [12], [15], [25]), which is the union of all bounded
complete trajectories of the semiflow. In our previous
paper [13] three different semiflows are considered,
depending on the regularity of the solutions: weak,
regular or strong ones. In the case of the semiflows
generated by either regular or strong solutions, it is
proved that the global attractor is the unstable manifold of
the set of stationary points and the stable one but
considering in this last case only solutions in the set of
bounded complete trajectories. However, in the case of
weak solutions such result was not obtained, but a weaker
one stating that the attractor is the closure of the stable set
restricted to the set of bounded complete trajectories.
Now, we improve the theorem of [13] for weak solutions
and obtain, under additional assumptions on the
parameters of the problem, the same result as for regular
and strong solutions.
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2 Setting of the problem

In a bounded domainΩ ⊂ R
3 with sufficiently smooth

boundary∂Ω we consider the problem






ut −∆u+ f (u) = h, x∈ Ω , t > 0,
u|∂Ω = 0,
u(0) = u0,

(1)

where
h∈ L2(Ω),
f ∈C(R),

| f (u)| ≤C1(1+ |u|p−1), ∀u∈ R,

f (u)u≥ αup−C2, ∀u∈ R,

(2)

with 2≤ p≤ 4,C1,C2,α > 0.
We denote byA the operator−∆ with Dirichlet

boundary conditions, so thatD(A) = H2 (Ω) ∩H1
0 (Ω) .

As usual, denote the eigenvalues and the eigenfunctions
of A by λi , ei , i = 1,2...

Denote F(u) =
∫ u

0 f (s)ds. From (2) we have that

liminf
|u|→∞

f (u)
u = ∞, and for someD1,D2,δ > 0,

|F(u)| ≤ D1(1+ |u|p), F(u)≥ δ |u|p−D2, (3)

for all u∈ R.
In what follows we denoteH = L2 (Ω), V = H1

0(Ω),
and‖ · ‖, (·, ·) will be the norm and the scalar product in
L2(Ω). We denote by‖·‖X the norm in the abstract Banach
spaceX, whereas(·, ·)Y will be the scalar product in the
abstract Hilbert spaceY. Also, P(X) will be the set of all
non-empty subsets ofX.

On the other hand, we define the usual spaces

V2α = D(Aα) = {u∈ H :
∞

∑
i=1

λ 2α
i |(u,ei)|

2
< ∞},

whereα ≥ 0. We recall the following well known result,
which is a particular case of [22, Lemma 37.8] for our
operatorA=−∆ in a three-dimensional domain.

Lemma 1. D(Aα) ⊂ Wk,q′ (Ω) whenever q′ ≥ 2 and k is
an integer such that

k−
3
q′

< 2α −
3
2
.

Also, it is well known thatVs ⊂ Hs(Ω) for all s≥ 0
(see [24, Chapter IV] or [19]).

A function

u∈ L2
loc(0,+∞;V)

⋂

Lp
loc(0,+∞;Lp(Ω))

is called a weak solution of (1) on (0,+∞) if for all T >

0, v∈V, η ∈C∞
0 (0,T),

T
∫

0

(u,v)ηtdt =

T
∫

0

((u,v)V +( f (u),v)− (h,v))ηdt.

It is well known [1, Theorem 2] or [5, p.284] that for
any u0 ∈ H there exists at least one weak solution of (1)
with u(0) = u0 (and it may be non unique) and that any
weak solution of (1) belongs toC([0,+∞);H). Moreover,
the functiont 7→ ‖u(t)‖2 is absolutely continuous and

1
2

d
dt‖u(t)‖2+ ‖u(t)‖2

V
+( f (u(t)),u(t))− (h,u(t)) = 0 a.e.

(4)

We define

K+ = {u(·) : u(·) is a weak solution of (1)} ,
G : R+×H → P(H),

G(t,u0) = {u(t) : u(·) ∈ K+, u(0) = u0} .
(5)

Definition 1. Let X be a complete metric space with metric
ρ . A multivalued map G:R+×X →P(X) is a multivalued
semiflow (m-semiflow) if:

1.G(0,u0) = u0, ∀u0 ∈ X;
2.G(t + s,u0)⊂ G(t,G(s,u0)), ∀ t,s≥ 0, ∀u0 ∈ X.

It is called strict if

G(t + s,u0) = G(t,G(s,u0)),

for all t ,s≥ 0, u0 ∈ X

Definition 2. A setΘ ⊂ X is called a global attractor of
G, if:

1.Θ ⊂ G(t,Θ) , ∀t ≥ 0 (i.e. it is negatively
semi-invariant);

2.For any bounded set B⊂ X,

distX(G(t,B),Θ)→ 0, as t→+∞, (6)

where
distX(A,B) = sup

x∈A
inf
y∈B

ρ(x,y);

3.It is minimal, that is, for any closed set C satisfying (6)
it holdsΘ ⊂C.

The global attractor is called invariant ifΘ =G(t,Θ) ,
∀t ≥ 0.

The mapG defined by (5) is a strict multivalued
semiflow which possesses a global compact invariant
connected attractor [12], [15], [16]. Our aim is to give a
characterization of the attractor. First we shall define
complete trajectories for problem (1).

Definition 3. A map γ : R → H is called a complete
trajectory of K+ if

γ(·+h)|[0,+∞) ∈ K+
, ∀h∈ R,

that is, if γ|[τ,+∞) is a weak solution of (1) on
(τ,+∞), ∀τ ∈ R. We denote byF the set of all complete
trajectories of K+.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2257-2264 (2015) /www.naturalspublishing.com/Journals.asp 2259

Let K be the set of all bounded (in theH norm)
complete trajectories. It is shown in [13] that the global
attractor of G is the union of all bounded complete
trajectories, and also thatγ (·) is a complete trajectory of
K+ if and only if the mapt 7→ γ (t) is continuous and

γ(t + s) ∈ G(t,γ(s)), ∀t ≥ 0, s∈ R.

We recall that the global attractorΘ is called stable if
for anyε > 0 there existsδ > 0 such that

G(t,Oδ (Θ))⊂ Oε(Θ), ∀ t ≥ 0.

In [14, Theorem 3.18] the global attractor of the
m-semiflowG is proved to be stable.

Summarizing all these results we have the following
theorem.

Theorem 1.Under conditions (2) the m-semiflow (5) has
a global compact invariant attractorΘ ⊂ H which is
connected, stable and

Θ = {γ(0) : γ(·) ∈K}=
⋃

t∈R

{γ(t) : γ(·) ∈K} . (7)

Let R be the set of all stationary points of (1), i.e., the
pointsu∈V such that

−∆u+ f (u) = h in H−1 (Ω) . (8)

It is proved in [13, Lemmas 12, 14 and Theorem 13] that
R 6=∅ and the following properties are equivalent:

1.u0 ∈R;
2.u0 ∈ G(t,u0) for all t ≥ 0;
3.The functionu(t)≡ u0 belongs toK+.

We define now the sets:

M−(R) =

{

z : ∃γ(·) ∈K, γ(0) = z,
distH(γ(t),R)→ 0, t →+∞

}

,

M+(R) =

{

z : ∃γ(·) ∈ F, γ(0) = z,
distH(γ(t),R)→ 0, t →−∞

}

.

(9)

M+(R) is the unstable set ofR. M−(R) is the stable
set of R but considering only bounded complete
trajectories.

It is known [3], [4, p.106], [23] that under additional
assumptions ensuring thatG is a single-valued semigroup,
the setΘ is bounded inH2(Ω)

⋂

H1
0(Ω) and

Θ = M+(R).

Moreover, in [4, p.106] it is proved that

Θ = M+(R) = M−(R). (10)

We observe that an equivalent definition of the set
M+(R) is the following

M+(R) =

{

z : ∃γ(·) ∈K, γ(0) = z,
distH(γ(t),R)→ 0, t →−∞

}

,

as for every complete trajectoryγ (·) ∈ F as in (9) we
have that the set∪t∈Rγ (t) is bounded, so that the
inclusionγ (·) ∈K follows.

The aim of our paper is to obtain (10) for K+ under
suitable assumptions.

3 Previous results

If we consider the multivalued semiflow generated by
regular or strong solutions of (2), then formula (10) is
shown to be true in [13]. We shall recall these theorems in
this section. We note that, although in [13] these results
are stated forp= 4, the proofs work for the more general
case where 2≤ p≤ 4.

3.1 Regular solutions

The function

u∈ L2
loc(0,+∞;V)

⋂

Lp
loc(0,+∞;Lp(Ω))

is called a regular solution of (1) on (0,+∞) if for all T >

0, v∈V andη ∈C∞
0 (0,T) we have

T
∫

0

(u,v)ηtdt =

T
∫

0

((u,v)V +( f (u),v)− (h,v))ηdt, (11)

and

u∈ L∞ (ε,T;V) , (12)

ut ∈ L2 (ε,T;H) , ∀ 0< ε < T. (13)

Any regular solutionu satisfies

u∈ L2 (ε,T ;D(A)) . (14)

Also, for any u0 ∈ H there exists at least one regular
solutionu(·) such thatu(0) = u0.

Let

K+
r = {u(·) : u is a regular solution of (1)}.

We define now the mapGr : R+×H → P(H) by

Gr(t,u0) = {u(t) : u∈ K+
r andu(0) = u0},

which is a multivalued semiflow.Gr possesses a global
compact attractorΘr . Moreover, for any setB bounded in
H we have

distV (Gr(t,B) ,Θr)→ 0 ast →+∞, (15)

and also thatΘr is compact inV.
We can characterize the attractor as the union of all

bounded complete trajectories. The mapγ : R→ L2 (Ω) is
called a complete trajectory ofK+

r if

γ (·+h) |[0,+∞)∈ K+
r for anyh∈ R.

The set of all complete trajectories ofK+
r will be denoted

by Fr . LetKr be the set of all complete trajectories which
are bounded inH, and letK1

r be the set of all complete
trajectories which are bounded inV. These sets are proved
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to coincide, that is,Kr =K
1
r . Moreover,Θr is the union of

all points lying in a bounded complete trajectory, that is,

Θr = {γ (0) : γ (·) ∈Kr}

= {γ (0) : γ (·) ∈K
1
r } (16)

= ∪t∈R{γ (t) : γ (·) ∈Kr}

= ∪t∈R{γ (t) : γ (·) ∈K
1
r }.

As in the case of weak solutions, the following
properties are equivalent:

1.u0 ∈R;
2.u0 ∈ Gr (t,u0) for all t ≥ 0;
3.The functionu(t)≡ u0 belongs toK+

r .

It is clear that if the mapγ : R → H is a complete
trajectory ofK+

r , then

γ (t + s) ∈ Gr (t,γ (s)) for all s∈ R andt ≥ 0. (17)

Conversely, the mapγ : R→ H is a complete trajectory of
K+

r if and only if γ ∈ L∞
loc(R;V), γt ∈ L2

loc(R;H) and (17)
holds.

We define the sets

M−
r (R) =

{

z : ∃γ(·) ∈Kr , γ(0) = z,
distH(γ(t),R)→ 0, t →+∞

}

,

M+
r (R) =

{

z : ∃γ(·) ∈ Fr , γ(0) = z,
distH(γ(t),R)→ 0, t →−∞

}

.

As in the case of weak solutions, in the definition of
M+

r (R) we can replaceFr byKr , since everyγ as given in
the definition ofM+

r (R) belongs toKr .

Theorem 2.Under conditions (2) it holds

Θr = M+
r (R) = M−

r (R). (18)

Moreover,

M−
r (R) =

{

z : ∃γ(·) ∈Kr , γ(0) = z,
distV(γ(t),R)→ 0, t →+∞

}

,

M+
r (R) =

{

z : ∃γ(·) ∈ Fr , γ(0) = z,
distV(γ(t),R)→ 0, t →−∞

}

.

(19)

3.2 Strong solutions

In this section we shall define a semiflow in the phase
spaceV. For this aim we introduce now a stronger
concept of solution for (1).

The function

u∈ L2
loc(0,+∞;V)

⋂

Lp
loc(0,+∞;Lp(Ω))

is called a strong solution of (1) on (0,+∞) if for all T >

0, v∈V andη ∈C∞
0 (0,T) we have that (11) holds and

u∈ L∞ (0,T;V) ,

ut ∈ L2 (0,T;H) , ∀ T > 0.

Any strong solutionu satisfies

u∈ L2 (0,T;D(A))∩C([0,+∞);V).

For anyu0 ∈V there exists at least one strong solution
u(·) such thatu(0) = u0.

Let

K+
s = {u(·) : u is a strong solution of (1)}.

We define now the mapGs : R+×V → P(V) by

Gs(t,u0) = {u(t) : u∈ K+
s andu(0) = u0},

which is a strict multivalued semiflow.Gs possesses a
global compact attractorΘs in the phase spaceV.
Moreover, Θs = Θr , that is, the regular and strong
attractors coincide.

The mapγ : R→ V is called a complete trajectory of
Gs if

γ (·+h) |[0,+∞)∈ K+
s for anyh∈ R.

The set of all complete trajectories ofK+
s will be denoted

by Fs. LetKs be the set of all complete trajectories which
are bounded inV. It holdsKs =K

1
r =Kr . That is, the sets

of regular and strong complete bounded solutions are the
same.

As before, we can characterize the attractorΘs as the
union of all points lying in a bounded complete trajectory:

Θs= {γ (0) : γ (·) ∈Ks}= ∪t∈R{γ (t) : γ (·) ∈Ks}.

Also, the following properties are equivalent:

1.u0 ∈R;
2.u0 ∈ Gs(t,u0) for all t ≥ 0;
3.The functionu(t)≡ u0 belongs toK+

s .

As in the case of weak solutions the mapγ :R→V is a
complete trajectory ofK+

s if and only if γ (·) is continuous
and

γ (t + s) ∈ Gs(t,γ (s)) for all s∈ R andt ≥ 0.

Finally, we have the following result.

Theorem 3.Under conditions (2) it holds

Θs= M+
s (R) = M−

s (R),

where

M−
s (R) =

{

z : ∃γ(·) ∈Ks, γ(0) = z,
distV(γ(t),R)→ 0, t →+∞

}

,

M+
s (R) =

{

z : ∃γ(·) ∈ Fs, γ(0) = z,
distV(γ(t),R)→ 0, t →−∞

}

.

Remark.In the case of trajectory attractors some results in
regular spaces have been obtained also in [8].
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4 Structure of the global attractor

We shall prove that formula (10) is true for weak solutions
if we assume additionally that eitherh∈ L∞(Ω) or p≤ 3.

4.1 Regularity of the attractor in V

We shall prove that the global attractor is compact inV
under the additional assumptionh ∈ L∞(Ω). Using this
result we will obtain formula (10).

First, we recall the following result about the
boundedness of the global attractor in the spaceL∞(Ω).

Lemma 2. [13, Lemma 20] Under conditions (2) and h∈
L∞(Ω) the setΘ is bounded in L∞(Ω).

Using this lemma we can prove now the compactness
of the attractor inV.

Theorem 4. Under conditions (2) and h∈ L∞(Ω) the
global attractorΘ is compact in V.

Moreover, any weak solution u(·) with u0 ∈ Θ is a
strong solution. Hence, G(t,u0) = Gs(t,u0) for all
u0 ∈Θ .

Proof. Let us consider an arbitrary bounded complete
trajectoryu(·) ∈K. Due to the definition of weak solution
u(t) ∈ V for a.at ∈ R. We take suchτ ∈ R thatu(τ) ∈ V
and consider the following Cauchy problem







vt = ∆v− f (t,x)+h(x), x∈ Ω , t > τ,
v|∂Ω = 0,
v|t=τ = u(τ),

(20)

where f (t,x) = f (u(t,x)). Sinceu(t) ∈ Θ , for anyt ∈ R,
andΘ is bounded inL∞(Ω) by Lemma2, we have that
f ∈ L∞(R×Ω). Thus for the linear problem (20) from
well-known results one can deduce that
v ∈ C([τ,T];V) ∩ L2 (0,T;D(A)) for all T > τ. From
uniqueness of the solution of the Cauchy problem (20)
v ≡ u on [τ,+∞) and, therefore,u(t) ∈ V for all t ≥ τ. It
means thatu(t) ∈ V for all t ∈ R and from formula (7),
Θ ⊂V.

It follows that the restriction ofu(·)∈K to any interval
[τ,+∞) is a strong solution. Hence, any weak solutionu(·)
with u0 ∈ Θ is a strong solution andG(t,u0) = Gs(t,u0)
for all u0 ∈Θ .

From the energy inequality (see [15])

‖u(t)‖2+

∫ t

s
‖u(τ)‖2

V dτ +2α
∫ t

s
‖u(τ)‖p

Lp(Ω)
dτ

≤ ‖u(s)‖2+K
(

1+ ‖h‖2
)

(t − s)

and the boundedness ofΘ in the spaceH we deduce that
there existsC1 > 0 such that

t+1
∫

t

‖u(s)‖2
Vds≤C1(1+ ‖h‖2), ∀ t ∈ R.

So, for arbitraryt ∈ R we find τ ∈ [t, t + 1] such that
‖u(τ)‖2

V ≤ C1(1+ ‖h‖2). For problem (20) it is standard
to obtain the inequality

‖v(t)‖2
V ≤ e−δ (t−τ)‖v(τ)‖2

V +C2, ∀ t ≥ τ,

whereδ , C2 > 0. Thus

‖u(t)‖2
V ≤C1(1+ ‖h‖2)+C2, ∀ t ∈ R.

Hence, the global attractor is bounded inV.
Finally, let us prove thatΘ is compact inV. Consider

an arbitrary sequence{zn} ⊂ Θ . SinceΘ is bounded in
V, we can assume thatzn → z weakly inV. Then‖z‖V ≤
lim inf ‖zn‖V . It remains to prove thatzn → z strongly in
V. In view of (7) there existun ∈ K such thatzn = un (0).
Sincef n (t,x)= f (un (t,x)) is bounded inL∞((−1,0)×Ω)
and‖un (t)‖V ≤C3 for all n andt ∈ [−1,0], we obtain

∥

∥

∥

∥

dun

dt

∥

∥

∥

∥

2

+
d
dt

‖un‖
2
V ≤C4 (21)

and

∫ 0

−1

∥

∥

∥

∥

dun

dt

∥

∥

∥

∥

2

ds≤C5,

∫ 0

−1
‖∆un‖

2ds≤C6, for all n.

Hence, in a standard way using the Ascoli-Arzelà theorem
we have that up to a subsequence

un → u in C([−1,0],H), (22)

un → u weakly inL2(−1,0;H2(Ω)
)

,

dun

dt
→

du
dt

weakly inL2 (−1,0;H) .

Then a standard argument gives

un(tn)→ u(t) weakly inV if tn → t ∈ [−1,0].

On the other hand, the previous estimates imply by the
Compactness Theorem [18] that

un → u strongly inL2 (−1,0;V) . (23)

Also, it is standard to show thatu(·) is a weak solution to
(1) with u(0) = z.

In view of (21) the functionsJn(t) = ‖un(t)‖
2
V +C4t,

J(t) = ‖u(t)‖2
V +C4t are continuous and non-increasing

in [−1,0]. Moreover, (23) implies thatJn (t) → J(t) for
a.a.t ∈ (−1,0). Take−1 < tm < 0 such thattm → 0 and
Jn (tm)→ J(tm) for all m. Then

Jn (0)− J(0)

≤ Jn (tm)− J(0)

≤ |Jn (tm)− J(tm)|+ |J(tm)− J(0)| ,

c© 2015 NSP
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so that for anyε > 0 there existm(ε) andN (m) such that
Jn (0) − J(0) ≤ ε if n ≥ N. Then
lim supJ(tn)≤ lim supJ(0), so that

lim sup‖un(0)‖2
V ≤ ‖u(0)‖2

V .

As ‖z‖V ≤ lim inf ‖zn‖V , we obtain

‖zn‖V → ‖z‖V ,

so thatzn → zstrongly inV.

Further, we can prove the main result about the
structure of the global attractor for weak solutions.

Theorem 5.Under conditions (2) and h∈ L∞(Ω) equality
(10) holds.

Proof.First, we prove thatΘ =Θs. In view of Theorem4,
G(t,u0) = Gs(t,u0) for anyu0 ∈Θ . Also,Θ is compact in
V. Hence, for anyε > 0 there existsT (ε) such that

Θ = G(t,Θ) = Gs(t,Θ)⊂ Oε (Θs) for t ≥ T.

Thus,Θ ⊂Θs. Since the converse inclusion is obvious, we
obtainΘ =Θs.

Now, by Theorem3 we have

Θ =Θs = M+
s (R) = M−

s (R),

where

M−
s (R) =

{

z : ∃γ(·) ∈Ks, γ(0) = z,
distV(γ(t),R)→ 0, t →+∞

}

,

M+
s (R) =

{

z : ∃γ(·) ∈ Fs, γ(0) = z,
distV(γ(t),R)→ 0, t →−∞

}

.

Since M+
s (R) ⊂ M+(R), we haveΘ ⊂ M+(R). But

M+(R) ⊂ Θ follows from (7), so that Θ = M+(R)
follows. In the same way we obtainΘ = M−(R).

4.2 Regularity of weak solutions

In this section we will prove that with an additional
assumption onp every weak solution is in fact a regular
solution. From this fact we shall obtain formula (10).

Lemma 3. Assume that2 ≤ p ≤ 3 in condition (2). Then
any weak solution u(·) satisfies

u∈C([ε,T];V)∩L2 (ε,T;D(A)) ,

ut ∈ L2 (ε,T;H) ,

for all ε > 0, i.e., it is a regular solution.

Proof.From
∫

Ω
| f (u(t,x))|

p
p−1 dx≤C1+C2

∫

Ω
|u(t,x)|pdx

we obtain that

‖ f (u(t))‖2

L
p

p−1 (Ω)
≤C3+C4‖u(t)‖2p−2

Lp(Ω)
.

Using the Sobolev embeddingHr (Ω) ⊂ Lp (Ω) if

r =
(

3
2 −

3
p

)

≤ 1
2 (asp≤ 3) and the Gagliardo-Nirenberg

inequality

‖v‖Hr (Ω) ≤C5‖v‖
H

1
2 (Ω)

≤C6‖v‖
1
2 ‖v‖

1
2
H1(Ω)

,

we have

‖ f (u(t))‖2

L
p

p−1 (Ω)

≤C3+C7‖u(t)‖p−1‖u(t)‖p−1
H1(Ω)

≤C8+C9‖u(t)‖2‖u(t)‖2
H1(Ω) .

Thus,

‖ f (u)‖
L2

(

0,T;L
p

p−1 (Ω)

)

≤C10

(

1+ ‖u‖C([0,T];H) ‖u‖L2(0,T;H1(Ω))

)

.

Setd (t,x) = f (u(t,x)) for (t,x) ∈ (0,T)×Ω . Then

d ∈ L2
(

0,T;L
p

p−1 (Ω)
)

⊂ L2(0,T;H−r (Ω)
)

⊂ L2(0,T;V−r)⊂ L2(0,T;Vr−1)
.

We consider the problem






vt −∆v=−d (t,x)+h(x) , x∈ Ω , t > 0,
v|∂Ω = 0,
v(τ) = u(τ) .

We note thatu(τ) ∈ V ⊂ Vr for a.a.τ > 0. For suchτ in
view of [22, p.163, Th. 42.12] there exists a unique weak
solutionv(·) such thatv ∈ C([τ,T ];Vr)∩L2

(

τ,T ;Vr+1
)

.
Hence,u∈C([ε,T ];Vr)∩L2

(

ε,T ;Vr+1
)

for all ε > 0.
We shall prove thatf (u(·)) ∈ L2 (ε,T ;H). As this is

obvious if p= 2, we consider that 2< p≤ 3. We note that
Vr ⊂ Hr (Ω) ⊂ Lp (Ω). Also, by Lemma1 with α = r+1

2 ,

r = 3
(

1
2 −

1
p

)

, k= 1 we obtain thatVr+1 ⊂W1,q′ (Ω) for

anyq′ < p. On the other hand, by the Sobolev embedding
theorems we haveW1,q′ (Ω)⊂ Lq (Ω), for 1≤ q<

3p
3−p if

2 < p < 3 (q < +∞ if p = 3). Thus, the inequality
p(p−1)< 3p

3−p, for all 2< p< 3, implies that

u∈C([ε,T];Lp (Ω))∩L2
(

ε,T;Lp(p−1) (Ω)
)

.
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By (2) we have

‖ f (u(t))‖2

=

∫

Ω
| f (u(t,x))|2dx

≤C11+C12

∫

Ω
|u(t,x)|2(p−1)dx

≤C13+C14‖u(t)‖p−1
Lp(Ω)

‖u(t)‖p−1
Lp(p−1)(Ω)

.

Therefore, f (u(·)) ∈ L2 (ε,T;H). Then standard results
imply that

u∈C([ε,T];V)∩L2(ε,T;D(A))

andut ∈ L2 (ε,T;H).

Remark.For reaction-diffusion inclusions similar results
about the regularity of weak solutions has been obtained
in [9], [17].

Now, we can prove the result about the structure of the
global attractor for weak solutions.

Theorem 6.Assume that2≤ p≤ 3 in condition (2). Then
equality (10) holds.

Proof. First, we prove thatΘ = Θr . In view of Lemma3,
G(t,u0) = Gr(t,u0) for anyu0 ∈ H. Hence, for anyε > 0
there existsT (ε) such that

Θ = G(t,Θ) = Gr(t,Θ)⊂ Oε (Θr) for t ≥ T.

Thus,Θ ⊂Θr . Since the converse inclusion is obvious, we
obtainΘ =Θr .

Now, by Theorem2 we have

Θ =Θr = M+
r (R) = M−

r (R),

where

M−
r (R) =

{

z : ∃γ(·) ∈Kr , γ(0) = z,
distV(γ(t),R)→ 0, t →+∞

}

,

M+
r (R) =

{

z : ∃γ(·) ∈ Fr , γ(0) = z,
distV(γ(t),R)→ 0, t →−∞

}

.

Since M+
r (R) ⊂ M+(R), we haveΘ ⊂ M+(R). But

M+(R) ⊂ Θ follows from (7), so that Θ = M+(R)
follows. In the same way we obtainΘ = M−(R).
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