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Abstract: In this paper we study the structure of the global attraaboraf multivalued semiflow generated by weak solutions of a
reaction-diffusion equation in which uniqueness of the €@guproblem is not guaranteed, improving the results of gipus paper.
Under suitable assumptions, we prove that the global &iraan be characterized using either the unstable manifotte set of
stationary points or the stable one but considering in #esdase only solutions in the set of bounded complete toajes.
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This paper is dedicated to the memory of Professomonlinear term satisfy suitable growth and dissipative
José Sousa Ramos. conditions, but there is no condition ensuring uniqueness
of the Cauchy problem (like e.g. a monotonicity
assumption). Such equation generates in the general case
1 Introduction a multivalued semiflow having a global compact attractor
(see L2, [15], [25]), which is the union of all bounded
The problem of studying the structure of global attractorscomplete trajectories of the semiflow. In our previous
for infinite-dimensional dynamical systems is amazing. Inpaper [L3] three different semiflows are considered,
the particular case of reaction-diffusion equationsdepending on the regularity of the solutions: weak,
beautiful results in this direction have been proved (seeegular or strong ones. In the case of the semiflows
e.g. B, [7], [11, [20], [21]). generated by either regular or strong solutions, it is
The first step in such problems is to establish that theproved that the global attractor is the unstable manifold of
global attractor is the unstable manifold of the set ofthe set of stationary points and the stable one but
stationary points. In the single-valued case, when forconsidering in this last case only solutions in the set of
example the nonlinear term is a polynomial or its bounded complete trajectories. However, in the case of
derivative satisfies some assumptions, this is well knownveak solutions such result was not obtained, but a weaker
[3], [4], [23]. The problem is more complicated when one stating that the attractor is the closure of the stalble se
uniqueness of the Cauchy problem is not guaranteed. Imestricted to the set of bounded complete trajectories.
such a case, a multivalued semiflow has to be definedNow, we improve the theorem ol 8] for weak solutions
rather than a semigroup, and different types of solutionsaand obtain, under additional assumptions on the
can be considered. Some results in this direction havearameters of the problem, the same result as for regular
been obtained for differential inclusions and and strong solutions.
reaction-diffusion equations (se&][ [10Q], [13]). We
observe that new interesting situations can appear in such
equations (se€]).
In this paper we will study the structure of the global
attractor of a reaction-diffusion equation in which the

* Corresponding author e-majlalero@umh.es

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090506

2258

N SS ¥

O.V. Kapustyan et al.

. Structure of the Global Attractor\Wéeak Solutions...

2 Setting of the problem

In a bounded domai®2 ¢ R* with sufficiently smooth
boundaryd Q2 we consider the problem

u—Au+f(uy=h, xeQ,t>0,
u|ﬁ_Q :07 (1)
u(0) = up,
where
heL2(Q),
f e C(R),
1 (2)
[f(u)] <Ci(1+][ufP™), VueR,
f(Wu>auP-Cy, YueR,

with2 < p<4,C,Cy,a > 0.
We denote byA the operator—A with Dirichlet
boundary conditions, so th@ (A) = H?(Q) NH}(Q).

As usual, denote the eigenvalues and the e|genfunct|on

of Aby Ai, g,i=1,2...
Denote F(u) = fé‘f(s)ds From @) we have that

an LJ” = o0, and for somé;,D,,d > 0,
u|—o0

IF(u) <D1(1+ulP), F(u)>3uP-Dz,  (3)
forallu e R.

In what follows we denotél = L?(Q), V = H}(Q),

It is well known [1, Theorem 2] or %, p.284] that for
any up € H there exists at least one weak solution df (
with u(0) = up (and it may be non unique) and that any
weak solution of {) belongs taC ([0, +);H). Moreover,
the functiont + ||u(t)||? is absolutely continuous and

5 U1+ [lu) I 4
+(f(u(t)),u(t)) — (h,ut)) =0a.e
We define
K* ={u(-) : u(-)is a weak solution of)},
G:RT xH —P(H), (5)
G(t,uo) = {u(t) : u(-) € K*, u(0) = uo}.

Definition 1. Let X be a complete metric space with metric
p. A multivalued map GR™ x X — P(X) is a multivalued
semiflow (m-semiflow) if:

1.G(0,up) = ug, Yup € X;
2.G(t+s,ug) C G(t,G(s,up)), Vt,5> 0, Vug € X.
Itis called strict if
G(t+s,up) = G(t,G(s,Up)),

forallt,s>0, uge X

and|| -], (-,-) will be the norm and the scalar product in Definition 2. A set© C X is called a global attractor of
L?(Q). We denote by - ||x the normin the abstract Banach G, if:
spaceX, whereaq-, )y will be the scalar product in the

abstract Hilbert spaceé. Also, P (X) will be the set of all
non-empty subsets .
On the other hand, we define the usual spaces

V2 =D(AY) ={ueH: i/\iz" |(u,8)]? < o},

wherea > 0. We recall the following well known result,

which is a particular case oRP, Lemma 37.8] for our
operatolA = —A in a three-dimensional domain.

Lemma 1. D (A%) ¢ Wkd (Q) whenever > 2 and k is
an integer such that

3 3
k—a<2a—§.

Also, it is well known thatvs C H5(Q) forall s> 0
(see R4, Chapter IV] or [L9)).
A function
U € Lic(0, 00 V) (L (0, +0; LP(Q))

is called a weak solution ofLf on (0, +o) if for all T >
0,veV,neCy(0,T),

]
/uvr]tdt—/ (U V)y + (F(U),v) — (h,v)) ndt.
0

10 c G(t,0),
semi-invariant);
2.For any bounded set 8 X,

disix (G(t,

vt > 0 (i.e. it is negatively

B),0) — 0, ast— +oo, (6)

where
distx (A,B) = sup|nf pP(X.Y);
xcAYE
3.ltis minimal, that is, for any closed set C satisfyigj (
it holds© c C.

The global attractor is called invariant® = G(t,09),
vt > 0.

The mapG defined by §) is a strict multivalued
semiflow which possesses a global compact invariant
connected attractorlp], [15], [16]. Our aim is to give a
characterization of the attractor. First we shall define
complete trajectories for problerh)(

Definition 3. A mapy: R — H is called a complete
trajectory of K" if

(- +h)ljo4w) € KT, VhER,

that is, if y|;.o) IS a weak solution of 1) on
(1,+), VT € R. We denote b¥ the set of all complete
trajectories of K'.
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Let K be the set of all bounded (in thid norm)
complete trajectories. It is shown i1 that the global
attractor of G is the union of all bounded complete
trajectories, and also that-) is a complete trajectory of
K+ if and only if the mag ~ y(t) is continuous and

y(t+s) € G(t,y(s)), vt > 0,seR.

We recall that the global attractér is called stable if
for anye > 0 there exist® > 0 such that

G(t,05(0)) C 0g(@), V't > 0.

In [14, Theorem 3.18] the global attractor of the
m-semiflowG is proved to be stable.

Summarizing all these results we have the following

theorem.

Theorem 1.Under conditionsZ) the m-semiflows) has
a global compact invariant attracto® C H which is
connected, stable and

© ={y(0) : y(-) e K} = [J{v(t)

teR

JeK}. (7)

Let R be the set of all stationary points df)(i.e., the
pointsu € V such that
—Au+f(uy=hinH1(Q). (8)
Itis proved in L3, Lemmas 12, 14 and Theorem 13] that
R £ & and the following properties are equivalent:

lug € 9R;
2.Up € G(t,up) forall t > 0;
3.The functioru(t) = up belongs taK .

We define now the sets:

) 3 0) =
M= (%) = {détH(y(( )) )—>yc§ \ —>Z+oo} o
. 3y(-) € F, y(0) =
M* (@) = { digh(%i)),ii) —>y(g, )t — — }

M*(R) is the unstable set aR. M~ (R) is the stable
set of | but considering only bounded complete
trajectories.

It is known [3], [4, p.106], R3] that under additional
assumptions ensuring th@tis a single-valued semigroup,
the se® is bounded irH?(Q) NH(Q) and

O =M"(R).
Moreover, in B, p.106] it is proved that
O =M"(R) =M (R). (20)

We observe that an equivalent definition of the set

M* (%) is the following

M (%) = { et (Y13 }

as for every complete trajectory(-) € F as in Q) we

, Y(0) =2
)—>0 t— —o

3 Previous results

If we consider the multivalued semiflow generated by
regular or strong solutions o), then formula £0) is
shown to be true in1[3]. We shall recall these theorems in
this section. We note that, although ih3] these results
are stated fop = 4, the proofs work for the more general
case where £ p< 4.

3.1 Regular solutions
The function
U € Le(0,+00;V) [LP(0,+00; LP(Q))

is called a regular solution ol on (0, +) if forall T >
0,veV andn € C3(0,T) we have

]
/i
0

T

uvmdt= [ (uvy +(fW) ~ () ndt, @1)
0

and
uel”(e,T;V), (12)
wel?(e,T;H),V0O<e<T. (13)
Any regular solutioru satisfies
ucl?(e,T;D(A)). (14)

Also, for any ug € H there exists at least one regular
solutionu(-) such thau(0) = up.
Let

;={u(:) :uis aregular solution ofl)}.
We define now the ma@; : R™ x H — P(H) by
G (t,up) =

which is a multivalued semiflonG, possesses a global
compact attracto®;. Moreover, for any seB bounded in
H we have

{u(t) :ue K" andu(0) = up},

dist; (G, (t,B),06;) — 0 ast — +oo, (15)
and also tha®; is compact irv.

We can characterize the attractor as the union of all
bounded complete trajectories. The maR — L2 (Q) is
called a complete trajectory &§" if

y(-+h) |01 € K foranyh e R.

have that the setycry(t) is bounded, so that the The set of all complete trajectories k" will be denoted

inclusiony(-) € K follows.
The aim of our paper is to obtaii@ for K+ under
suitable assumptions.

by F;. Let K, be the set of all complete trajectories which
are bounded irH, and letK}! be the set of all complete

trajectories which are boundedVh These sets are proved
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to coincide, that isK, = Kl Moreover,©; is the union of

all points lying in a bounded complete trajectory, that is,
={y(0):y() €K}
={y(0):v() K}
=Uer{y(t) 1 y(-) € K¢}
= Uer{y(t) 1 y(-) €K7}

As in the case of weak solutions, the following
properties are equivalent:

1l.ug € R;
2.Up € Gy (t,up) forallt > 0;
3.The functioru(t) = up belongs toK;".

(16)

It is clear that if the map/: R — H is a complete
trajectory ofK;t, then
y(t+s) € G (t,y(s) forallse Randt >0. (17)

Conversely, the map: R — H isa complete trajectory of
K" if and only if y € L (R;V), % € L2, (R;H) and (L7)

hoIds
We define the sets
oy ) Z03Y() eK, y(0) =2
M) =1 it (V(0.58) 5 0. € 1o [
_ z:3y(-) €Ty, y(0) =2
M () = disty (y(0).90) >0, 1 e

As in the case of weak solutions, in the definition of
M;"(2R) we can replac&| by KK, since every as given in
the definition ofM,;" () belongs tdK.

Theorem 2.Under conditions2) it holds

Or =M (R) =M, (R). (18)
Moreover,
_ K¢, y(0) =
M () = dlsk/())//((t)),ei)%) —>0( '2—>Z+oo ’ (19)
M () = Jy(-) € Fr, y(0) =z
r d|s&/(y(t),£)%) —0,t— —o0

3.2 Strong solutions

Any strong solutioru satisfies
ueL?(0,T;D(A))NC([0, +o0);V).

For anyup €V there exists at least one strong solution
u(-) such thau(0) = uo.
Let

K& ={u(:) : uis a strong solution ofl))}.
We define now the ma@s: Rt xV — P(V) by

Gs(t, Up) = {u(t) : u € Kg” andu(0) = uo},
which is a strict multivalued semiflonGs possesses a
global compact attractol©s in the phase spac¥.
Moreover, @; = @, that is, the regular and strong
attractors coincide.

The mapy: R — V is called a complete trajectory of
Gs |f

y(-+h) |oe)€ Kg foranyh e R.

The set of all complete trajectories §f” will be denoted
by Fs. Let Ks be the set of all complete trajectories which
are bounded iV. It holdsKg = Krl =K. Thatis, the sets
of regular and strong complete bounded solutions are the
same.

As before, we can characterize the attracgias the
union of all points lying in a bounded complete trajectory:

Os={y(0) :y() € Ks} = Uerf{y(t) : v(-) € Ks}.
Also, the following properties are equivalent:
luo € R,
2.up € Gs(t,up) forallt > 0;
3.The functioru(t) = up belongs tK{ .

As in the case of weak solutions the mafR — V is a
complete trajectory akJ if and only if y(-) is continuous
and

y(t+s) € Gs(t,y(s)) forall se R andt > 0.

Finally, we have the following result.

Theorem 3.Under conditionsZ?) it holds

In this section we shall define a semiflow in the phase

spaceV. For this aim we introduce now a stronger
concept of solution forX).
The function

U € Lite(0,+00;V) (LR (0,+00; LP(Q))

is called a strong solution oflf on (0, +) if for all T >
0,veV andn € Cy(0,T) we have that11) holds and

uelL”(0,T;V),
e l2(0,T;H), VT >0.

where
_ Ks, =
Ms (%) dls&/();((t)),ei)%) — 0( 2—>Z+oo ’
Fs,
Mg () = d.sn,(ﬁt%,g%) cg G

RemarklIn the case of trajectory attractors some results in
regular spaces have been obtained als@8Jin [
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4 Structure of the global attractor So, for arbitraryt € R we find T € [t,t + 1] such that

) ) Ju(T) |2 < C1(1+|h||?). For problem 20) it is standard
We shall prove that formuld.() is true for weak solutions {4 gptain the inequality

if we assume additionally that eithere L*(Q) or p < 3.
IVOIG < e D v(D)|[G+Co, V> T,

4.1 Regularity of the attractor in V whered, C; > 0. Thus
We shall prove that the global attractor is compacYVin ||u(t)|\\2, <C(1+ |\h|\2)+C2, VteR.
under the additional assumptidne L*(Q). Using this
result we will obtain formulaZ0). Hence, the global attractor is bounded/in
First, we recall the following result about the Finally, let us prove tha® is compact iriV. Consider
boundedness of the global attractor in the sgate?). an arbitrary sequencfz,} C ©. Since® is bounded in

V, we can assume tha{ — z weakly inV. Then||z|,, <

Lemma 2.[13, Lemma 20] Under condition®) and he liminf |za|ly . It remains to prove that, — z strongly in

L*(Q) the se®® is bounded in E(Q). V. In view of (7) there existn € K such thaiz, = un (0).

Using this lemma we can prove now the compactness>iNcefn (t,x) = f(un (t,x)) is bounded L™ ((—1,0) x Q)
of the attractor inv. and||un (t)[\, <Czforall nandt € [—1,0], we obtain
Theorem 4. Under conditions Z) and he L*(Q) the dw,|> d )
global attractor® is compact in V — | T 5 Inlly <Ca (21)

. , . dt dt

Moreover, any weak solution(y with up € © is a
strong solution. Hence, @&,up) = Gs(t,up) for all and
Up € O.

. , O || dup |2
Proof. Let us consider an arbitrary bounded complete / at ds<Cs,
-1

trajectoryu(-) € K. Due to the definition of weak solution
u(t) e V for a.at € R. We take suclt € R thatu(t) e V

0
2
and consider the following Cauchy problem /,1 1Aun[|"ds < Ce, for all n.

i =Av—f(t,x)+h(x), x€Q, t>T, Hence, in a standard way using the Ascoli-Arzela theorem
Vjgo =0, (20)  we have that up to a subsequence
Vot = u(r), .
up — uin C([—1,0],H), (22)
wheref (t,x) = f(u(t,x)). Sinceu(t) € ©, for anyt € R, Un — Uweakly inL2 (—1,0;H2(Q)),
and O is bounded inL"(Q) by Lemma2, we have that q q
f € L°(R x Q). Thus for the linear problem2() from G, O eakly inL2(~1,0;H).
well-known results one can deduce that dt — dt

v € C([r,T;V) NL?(0,T;D(A)) for all T > 1. From

Then a standard argument gives
uniqueness of the solution of the Cauchy probletf) ( g g

V=uon|T,+») and, thereforey(t) € V forall t > 1. It Un (th) — u(t) weakly inV if t, — t € [—1,0].
means thatu(t) € V for all t € R and from formula ),
O CV. On the other hand, the previous estimates imply by the

It follows that the restriction ofi (-) € Kto any interval ~ Compactness Theorerhg] that
[T,+) is a strong solution. Hence, any weak solutigr)

with ug € @ is a strong solution an (t, up) = Gs(t,Uo) un — u strongly inL? (—1,0;V). (23)
forallug € ©.
From the energy inequality (se&q)) Also, it is standard to show that(-) is a weak solution to
. . (1) withu(0) =z
Hu(t)||2+/ ||u(r)||\2,dr+20!/ HU(T)HEP(_Q>dT In view of (21) the functionsJ,(t) = ||un (t)H\Z, + Cyt,
s s J(t) = |\u(t)||\2, + C4t are continuous and non-increasing
< [lu(s)?+K (1+ ||h|\2) (t—s) in [1,0]. Moreover, £3) implies thatd, (t) — J(t) for

a.a.t € (—1,0). Take—1 < ty < 0 such that,, — 0 and
and the boundedness 6fin the spacéd we deduce that  Jn (tm) — J (tm) for all m. Then
there exist€; > 0 such that
Jn (0) —J (0)

< Jn(tm) —J(0)
< [3n (tm) = I (tm) [+ 3 (tm) — I (0)],

t+1
/ u(9)|2ds< Ca(1+ [h]2), V't € R.
t

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2262 %N S\ 0O.V. Kapustyan et al. : Structure of the Global Attractor\éeak Solutions...

so that for anye > 0 there exism(g) andN (m) such that ~ Proof. From
Jh(@Q — J0O) < ¢ if n > N. Then

lim supJ (tn) < lim supJ (0), so that / I (u(t,x)[P1 dx < cl+c:2/ lu(t,x)|Pdx
Q Q
lim sup]|u" (0)”\2/ < ||u(0)||\2/ we obtain that
As |||y < liminf ||z[ly , we obtain It (u(t))||ip%pl(m <Ca+Calu®)lha)-
Izally = lizll Using the Sobolev embeddingi’ (Q) c LP(Q) if
so thatz, — z strongly inV. r= (% — %) < 1 (asp < 3) and the Gagliardo-Nirenberg
inequality

Further, we can prove the main result about the Ve < Cs |lv < CelivllE v 2
structure of the global attractor for weak solutions. WVl @) < Gl ”H%(Q) < GolVIE Mls )
Theorem 5.Under conditions?) and he L (Q) equality we have
(10) holds. £ (Ut

IF@OI? e,
Proof. First, we prove tha® = Gs. In view of Theoren¥, p—1 p—1
G(t,ug) = Gs(t, up) for anyug € ©. Also, © is compact in < G+ G luOI Ml )
V. Hence, for any > 0 there existd (¢) such that < Cg+Collu(t)|? IIU(t)IIﬁl(Q) )
O =G(t,0) = Gs(t,0) C O (Gs) fort >T. Thus,

Thus,® C Gs. Since the converse inclusion is obvious, we | f (Ul p
obtain®@ = G, L2 (QPLW{Q))

Now, by Theoren8 we have
<Cio (1+ l[ulleqo.yimy ||UH|_2(0,T;H1(Q))) .
© =0s=MJ (R) = Mg (R),

Co ° Setd (t,x) = f(u(t,x)) for (t,x) € (0,T) x Q. Then

where
del?(0T;LPT(Q)) L2 (0,T:H " (2))
M (9%) z:3y() €K, v(0) =2 , : .
s dist (y(t),R) = 0, t — 4o [’ cL*(0,T;V") cL2(0,T;VI ).
z:3y(-)eFs y(0)=2 .

Mg (R) = dis&/(ﬁt%,m):‘& )t—> o (- We consider the problem
Since MJ (R) ¢ M*(R), we have® ¢ M*(%R). But zt|—A_v§ —d({t)+h(, x€Q,t>0,
M*(R) C © follows from (7), so that® = M*(R) v(arg;u’(r)

follows. In the same way we obta® = M~ (R).

We note thau(t) € V c V' for a.a.1 > 0. For suchr in
view of [22, p.163, Th. 42.12] there exists a unique weak

4.2 Regularity of weak solutions solutionv(-) such that € C([r,T];V")NL? (7,T;V'*1).
Henceu e C([e, T|;V")NL? (e, T;V 1) forall € > 0.
In this section we will prove that with an additional We shall prove thaf (u(-)) € L2(g,T;H). As this is
assumption orp every weak solution is in fact a regular obvious ifp = 2, we consider that 2 p < 3. We note that
solution. From this fact we shall obtain formulkd]. V' CH"(Q) C LP(Q). Also, by Lemmal with a = 552,
_ 1 1 _ ; r+1 1q
Lemma 3. Assume tha? < p < 3 in condition @). Then ' 3(2 P) » k=1 we obtain thav"*= C W (@) for ]
any weak solution (1) satisfies anyq < p. On the other hand, by the Sobolev embedding
theorems we hawe/*9 (Q) C L9(Q), for 1< q < 255 if
ucC([e,T;V)NL2 (e, T;D(A)), 2<p<3(q< 4o if p=3). Thus, the inequality
wel2(e,T:H) p(p—1)<33Tpp,foraII2< p < 3, implies that
forall € > 0, i.e., it is a regular solution. ueC([e,T;LP(Q))NL? (a,T; LP(P-1) (Q)) :
(@© 2015 NSP
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