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Abstract: Neural populations encode sensory information, memory andmotor patterns through electro-chemical firings, which
propagate throughout the nervous system via synapses, a structure that couples neurons together. A powerful tool to investigate
synchronization issues in such systems are the Phase Resetting curves. However these are best suited for brief and smallperturbations.
Motivated by the observation of strong inhibition in some neural circuits, we investigate a resetting model with similar features to a
known neural population calledstriatum, in which three groups of neurons inhibit themselves. The model is intrinsically based on
Kuramoto oscillators, and is analytically treatable. We derive a synchronization threshold in this model, and show numerically an
unexpected complex dynamics.
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1 Introduction

The key mechanism underneath several complex
phenomena and behaviors in biological systems is in the
dynamics of well coordinated coupled units [1,2,3]. In
special, large interacting populations of neurons can
generate complex motor patterns [4,5] and behaviors [2,
6] that drive life. On the mainstream there are the Central
Pattern Generators, representing core circuits, often with
intricate information flow despite a relatively small
number of neurons [7], responsible for the maintenance of
vital functions such as circulatory rhythms [8,9].

These systems have been successfully studied using
interdisciplinary techniques led by biology, physics and
dynamical systems. They are usually described by a
group of interacting (non-linear) oscillators [10,11],
trapped in limit cycles with huge basins of attraction,
resulting in robust closed trajectories that encode
important patterns [12,13,6]. Powerful and elegant

methods have been proposed to deal with such often
complex systems, and the main toolkit are the Phase
Resetting curves (PRCs) [14,15], which assess how the
trajectory of a system deviates when an external
perturbation is prompted. With this technique, it is
possible to derive informative dynamical variables, such
as the Lyapunov exponent, and then understand
synchronization and phase-locking effects [14,6]. This
technique has been extensively applied to neuroscience
[16], especially to experimental setups [17,18,19,20,21]
and medical applications [22,23,24,25,26,27,28]

Nevertheless a primary assumption in such
formalisms is that the perturbation is brief and weak, as a
very short and small amplitude pulse. Once it is
established that this is the case, a lot of information can
be derived from the PRCs itself using differential calculus
[6]. Specifically, regardless of the phase in which a
perturbation is presented the oscillator will always stay
very close to the original limit cycle. Such systems are
thus classified as type 1 [2].

This may be the case in several systems, but if the
interaction between the oscillators does not fit into this
class, then it is harder to properly estimate the PRCs,
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which hinders further development [29,14]. Depending
on the system this may manifest drastically on the PRCs,
for instance, in form of discontinuities. This defines a
second class of PRCs, the type 0.

Even with a PRC properly estimated, further
analytical results on strong perturbations may not hold as
infinitesimal arguments are not valid anymore. Not
surprisingly, in real systems interactions may be strong
[30,18,31,32,33,34,35,13,55]. To fill this gap, we
propose a simple model for synchronization in an
inhibitory circuit, in which the interaction is short but not
weak. As its elements are based on Kuramoto oscillators
[36,37], it has the virtue of being analytically tractable
and can be universally applied [38].

The connections are displayed in mutually inhibiting
groups, as in thestriatum, a subcortical region of the
forebrain [39,40]. Although we do not intend to
thoroughly study the striatum here, it is a central structure
for generating time patterns and control complex motor
behaviors [41,42,43]. Malfunction of the striatum may
result in Parkinson’s desease, Huntington’s disease, and
other movement disorders usually linked to
synchronization issues [44,45,46]. Very recent models
have dwelled with the mechanisms underlying
endogenously firing patterns which sequentially switch
cell assemblies [39] and how such systems are capable of
timing control [47].

In this paper we use the striatum connectivity as a
benchmark while developing a framework intended to
predict synchronization of strongly coupled populations
of neurons. We show that some simple initial
configurations undergo a phase transition from an
unordered phase (non-synchronized oscillators) to an
ordered phase (fully synchronized oscillators) at a critical
value of the coupling constant. This core result will be
illustrated with numerical simulations using a similar
model, closer to the dynamics of neuron cells, implying
the possibility of new investigations and efforts targeted
at rigorous results with strong inhibition.

This paper is organized as follows. We first define the
model in Section2 and in Section3 we note details of the
numerical simulations. In sections4 and5 we exploit the
model and simulations to understand conditions under
which synchronized states are possible. At the end, we
find a necessary condition for full synchronization to take
part in the dynamics. We finally conclude our findings in
Section7.

2 The mathematical model

The model consists of 3 groupsGn of N phase oscillators
φn

k (t) (n = 1,2,3, k = 1, ...,N) having an inhibitory
coupling with all oscillators in the “previous” group,
where we understand that the three groups are cyclically
ordered. These phases evolve in time according to the

system of differential equations

φ̇n
k (t) = ωn

k −
ε
N Fn−1(t), (1)

t ≥ 0, where

– φn
k (t) is a real-valued function to account for more

than one complete turn in either direction. To locate a
phase on the unit circle, we takeφn

k (t) mod 2π in the
interval[0,2π), unless otherwise stated;

– ωn
k > 0 is thenatural frequencyof oscillatork∈ Gn;

– ε > 0 is thecoupling strength, which is the same for
all oscillators; and

– Fn−1(t) is theinteraction termwhich, as indicated by
the notation, depends on the oscillators ofGn−1. Its
precise expression will be given below. Let us only
mention at this point that 0≤ Fn−1(t) ≤ N for any n
andt.

Henceforth we stick to notation in (1), i.e., lower
indices k, j, ... (possibly accompanied by other lower
indices) label the phase oscillators belonging to the group
indicated by the upper index (n, n− 1, ...). Note that the
interaction term is the same for all oscillators in a group.

Since 0≤ Fn−1(t)≤ N for anyn andt, then

ωn
k − ε ≤ ωn

k −
ε
N Fn−1(t)≤ ωn

k , (2)

that is
ωn

k − ε ≤ φ̇n
k (t)≤ ωn

k . (3)

Integration of (1) between 0 andt > 0 yields

φn
k (t) = φn

k (0)+ωn
k t − ε

N

∫ t

0
dτFn−1(τ). (4)

According to (3),

(i)if ε ≤ ωn
k then φn

k (t) will grow forever (i.e., circle in
positive direction), while

(ii)if ε > ωn
k thenφ̇n

k (t) may become negative.

We suppose for the time being that (ii) is the case.
Thus, letε > ωn

k , φ̇n
k (0) > 0, andtn

k,1 be the first time
thatφn

k (t) mod 2π reaches the value 0 with negative speed:

φn
k (t

n
k,1) mod 2π = 0, φ̇n

k (t
n
k,1)< 0. (5)

Let nowtn
k,2 > tn

k,1 be the earliest time (tn
k,2 = ∞ otherwise)

such that the speeḋφn
k reverses sign (from a negative to a

positive speed), i.e.,

φ̇n
k (t

n
k,2) = 0, φ̈n

k (t
n
k,2)> 0, (6)

whereφ̈n
k (t) =− ε

N Ḟn−1(t) according to (1).
In our model, the observable quantities (or the

quantities with a possibly biological meaning) are not
going to be the phases themselves but theiractivityΦn

k (t),
defined by

Φn
k (t) =

{

φn
k (t) mod 2π if t ∈ [0, tn

k,1]
0 if t ∈ [tn

k,1, t
n
k,2]

. (7)
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Note that
Φn

k (0) = φn
k (0) mod 2π .

We say that the phase oscillatork ∈ Gn has been reset (to
0) at timetn

k,1 to describe the fact that its activityΦn
k (t)

vanishes in the time interval[tn
k,1, t

n
k,2]. We anticipate thatk

(its activity proper) will be “reactivated” at timetn
k,2.

If tn
k,2 < ∞, this procedure can be repeated. The final

result is a finite sequence of ordered times

0< tn
k,1 < tn

k,2 < ... < tn
k,smax

, (8)

or an infinite one,

0< tn
k,1 < tn

k,2 < ... < tn
k,2r < tn

k,2r+1 < ... (9)

(smax= ∞), wheretn
k,2r+1, r ≥ 0, are thereset times, i.e.,

φn
k (t

n
k,2r+1) mod 2π = 0, φ̇n

k (t
n
k,2r+1)< 0, (10)

andtn
k,2r , r ≥ 1, are thereactivation times, i.e.,

φ̇n
k (t

n
k,2r) = 0, φ̈n

k (t
n
k,2r)> 0. (11)

Formally we can settn
k,0 = 0. Note that tn

k,1 = 0 if

φn
k (0) mod 2π = 0 and φ̇n

k (0) < 0. We come back to
oscillators with zero initial phase below.

The definition of the activityΦn
k (t) in the intervals

[tn
k,2r , t

n
k,2r+2] with r ≥ 1 is formally the same as before.

Specifically,

Φn
k (t) =











φn
k (t) mod 2π

0
(

φn
k (t)−φn

k (t
n
k,2r)

)

mod 2π
(12)

if














if t ∈ [0, tn
k,1]

if t ∈ [tn
k,2r−1, t

n
k,2r ] for r = 1,2, ...,

⌊

smax−1
2

⌋

if t ∈ [tn
k,2r , t

n
k,2r+1] for r = 1,2, ...,

⌊

smax−2
2

⌋

respectively. Ifsmax < ∞, then tn
k,smax+1 := ∞. As stated

above, the activity function or ‘actual’ phaseΦn
k (t) is the

observable quantity, the phaseφn
k (t) acting as a

mathematical scaffolding. The reason why we need to
deal with both phases is thatφn

k (t) is the solution of the
time evolution law (1), while Φn

k (t) results fromφn
k (t) via

ad hoc decision rules (reset and reactivation) on the
values ofφn

k (t), see (12).
We can summarize the above discussion by saying

that the phase oscillatork∈ Gn is reset at timestn
k,2r−1 and

reactivated at timestn
k,2r , although it is properly its activity

Φn
k which is reset and reactivated at those times.

Sometimes we also say that the oscillator is ‘active’ if
Φn

k (t) 6= 0 (i.e., if t ∈ (tn
k,2r , t

n
k,2r+1)), then otherwiseΦn

k (t)
is constantly equal to 0. In the latter case we say that the

oscillator is inactive. Iftn
k,1 = 0 then (12) holds also true if

we dispense with the first “interval”[0, tn
k,1] = {0}.

The geometrical meaning of the reset and reactivation
times is the following. Att = tn

k,2r+1 the curvet 7→ φn
k (t)

on the Cartesian plane(t,φ) crosses a level line axis
φ = 2πν (ν ∈ Z) with a negative slope, while at
t = tn

k,2r+1 it has local minima. The resulting activity
curve t 7→ Φn

k (t) vanishes in the inactivity periods,
[tn

k,2r−1, t
n
k,2r ], and it is a translate ofφn

k (t) mod 2π in the
activity periods, [tn

k,2r , t
n
k,2r+1]. Reset and reactivation

times alternate: an oscillator can only be reset if active,
and it can only be reactivated if inactive.

For the interaction termFn(t) we use hereafter the
ansatz

Fn(t) =
N

∑
k=1

χ[2π−∆ ,2π)(Φn
k (t)), (13)

whereχ[2π−∆ ,2π) is the indicator functionof the interval
[2π −∆ ,2π), 0< ∆ < 2π , i.e.

χ[2π−∆ ,2π)(Φ) =

{

0 if Φ /∈ [2π −∆ ,2π),
1 if Φ ∈ [2π −∆ ,2π).

Therefore,Fn(t) counts the number of oscillatorsk ∈ Gn
such that 2π −∆ ≤ Φn

k (t)< 2π .
From a mathematical point of view,Fn(t) is a

piecewise constant function. Therefore, its derivative is
actually a generalized function. Nonetheless, we will
consider below only the case of a continuous distribution
of oscillators so asFn(t) will be a continuous function.
This being the case, we assume henceforth thatFn(t) is
differentiable except possibly at a finite set of points. As a
result, the auxiliary phasesφn

k (t) are continuous and
piecewise differentiable functions, while the actual phases
Φn

k (t) are, in general, only piecewise continuous and
differentiable.

For further reference we prove the following result.

Proposition 1. A necessary and sufficient condition for
φn

k (t
n
k,2r)> φn

k (t
n
k,2r+2), r ≥ 0, to hold is

∫ tnk,2r+2

tnk,2r

tdFn−1(t)≡
∫ tnk,2r+2

tnk,2r

tḞn−1(t)dt < 0. (14)

Proof. From (see (11) and (1))

φ̇n
k (t

n
k,2r) = 0 ⇔ ωn

k =
ε
N

Fn−1(tn
k,2r),

we obtain (see (4))

φn
k (t

n
k,2r) = φn

k (0)+ωn
k tn

k,2r −
ε
N

∫ tnk,2r

0
Fn−1(t)dt

= φn
k (0)+

ε
N

(

Fn−1(tn
k,2r)t

n
k,2r −

∫ tnk,2r

0
Fn−1(t)dt

)

= φn
k (0)+

ε
N

∫ tnk,2r

0
tdFn−1(t).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
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Therefore,

φn
k (0)−φn

k (t
n
k,2r) ≡ φn

k (t
n
k,0)−φn

k (t
n
k,2r)

= −
ε
N

∫ tnk,2r

0
tdFn−1(t),

and

φn
k (t

n
k,2r)−φn

k (t
n
k,2r+2) =−

ε
N

∫ tnk,2r+2

tnk,2r

tdFn−1(t),

for r ≥ 1, which proves the proposition.�

The main scope of this paper is to study the
possibility of synchronization in the above model. We say
that two oscillatorsj,k ∈ Gn are synchronized (or activity
synchronized) if there is a timet0 such thatΦn

j (t) =
Φn

k (t) for all t ≥ t0. In the remaining sections we are
going to study the possibility of full synchronization, i.e.,
that all oscillators in a group are synchronized from a
given finite time on. Owing to the complexity of the
model, a theoretical analysis of this question will require
some simplifying hypotheses. Further recourse to the
auxiliary phasesφn

k (t) will be still needed to keep track of
the activitiesΦn

k (t).

3 Numerical results in a similar model
network

This study is motivated by the observations of strongly
coupled phase oscillators present in biological systems,
mostly in neuroscience [14,3,15]. Thus, we also show
results from simulations of a slightly different model that
represents pulse oscillators close to neurons coupled
through inhibitory synapses, complementing the
mathematical formulation. The connections are
instantaneous. The only difference relies on the functional
form (13): instead of the activityΦn

j , we use the phase
itself – explicitly defined below. We show that, in this
scenario, our mathematical conclusions still hold and this
motivates new efforts targeted at new rigorous results
with strong inhibition.

We have simulated three mutually inhibitory groups of
phase oscillators, whose interaction term is

Fn(t) =
N

∑
j=1

χ[2π−∆ ,2π)(φn
j (t)), (15)

which means that whenever the phase of an oscillator lies
on the interval[2π −∆ ,2π), it is inhibiting the following
group of oscillators. This is very common in excitable
models, in which there are (at least) an excited state and a
resting state. The differential equation (1) is then
integrated during a time windowT large enough so that
the equilibrium is achieved. Also, the phases are restricted
to the interval[0,2π). To assess synchronization, we have
used the usual Kuramoto order parameter [37].

If not stated otherwise,N = 3× 103, ω(n)
j = ω(n) =

1∀ j,n, T = 105 and the initial condition for all oscillators
was drawn from a uniform distribution over the interval
[0,2π). Finally,∆ will be set so that the oscillator is active
only during 10% of the whole interval, i.e.,∆ = 0.1×2π .

4 Study case I:ε ≤ ωn
k

In this case, see (3), all oscillators circle counterclockwise
with variable or constant angular speed, hence their phases
are not reset. By (4)

φn
k (t)−φn

j (t) = φn
k (0)−φn

j (0)+ (ωn
k −ωn

j )t,

This shows that phase synchronization is not possible.
By way of illustration, suppose that

ωn
k = ωn,

for all k∈ Gn, i.e. all oscillators of Groupn have the same
natural frequency. Then all phases wind around the unit
circle with a constant relative phase difference:

φn
k (t)−φn

j (t) = φn
k (0)−φn

j (0) = const (16)

Any distribution of initial phases rotates around the circle
as a rigid ring. We say that the phases are locked. In
particular, the uniform distribution,ρn(0,φ) = N

2π , is also
stationary, i.e.,ρn(t,φ) = N

2π for t ≥ 0.

5 Study case II:ε > ωn
k

To illustrate the dynamics of this supposedly simple model
and to gain some insight, we first show in Figures1 and2
the time evolution of some phases in each group run. We
assume thatωn

k =ωn for 1≤ n≤ 3 and allk, andρ(0,φ) =
N
2π . Therefore, (16) holds also true in this case, i.e., the
curve t 7→ φn

k (t) is a vertical translate of the curvet 7→
φn

j (t) on the(t,φ) plane for allk, j within each group (see
Figure1). Consequently, all oscillatorsk∈ Gn are initially
activity-locked and will become partially synchronized as
some of them become reset and jointly reactivated.

Furthermore, note that a complete oscillation of 2π
rad in positive direction does not change the activity of
the phases, while it synchronizes the activity of them all if
in negative direction; from then on the whole group
remains synchronized. This being the case, we may
restrict our attention to oscillations whose angle range is
not greater than 2π rad. Specifically we assume hereafter
that there is an angleφ = α,

∆ < α ≤ 2π , (17)

such that
−α ≤ φn

k0
(t)≤ 2π −α (18)
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Fig. 1: Here we show the time evolution of two oscillators per
group with ε = 8. Each curve is a randomly chosen oscillator
within a same group, as labeled in the top right of each graph.We
can not only see the phase synchronization after some transient
time, but also clearly see that Equation (16) holds also true in
this case: the curvet 7→ φn

k (t) is a vertical translate of the curve
t 7→ φn

j (t) on the(t,φ) plane for allk, j within each group. Not all
oscillators may synchronize for every value ofε though, and this
is expected as for low values ofε the system itself is basically
uncoupled.
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Fig. 2: Same as in Figure1, setting ε = 10. We see
several complex behaviors throughout the time evolution: phase
locking, overlapping of phases, intermittency and, finally,
synchronization. At the end, we will see that in factε =
10 will play an important hole as the transition point to full
synchronization.

for all t ≥ 0, wherek0 ∈ Gn is (without restriction) the
oscillator with initial phaseφn

k0
(0) = 0. The parameter∆

is the same that appears in the expression ofFn(t), Eq.
(13). Therefore, we are assuming thatk0 may take both
positive and negative phases and it oscillates in such a

way that 2π − α is its maximal amplitude in positive
(counterclockwise) direction, and−α is its maximal
amplitude in negative (clockwise) direction. We say then
that the phases of Groupn are performing small
oscillations1.

It is possible that some oscillators synchronize for
small values ofε, but the system as a whole may not
synchronize. In this section, the phase oscillators with
zero initial phases will play an important role in the
formal description of the activity synchronization.

5.1 Synchronization separatrices

Let
0= tn

k0,1 < tn
k0,2 < ... < tn

k0,smax

smax ≥ 2, be the finite (tn
k0,smax

< ∞) or infinite
(tn

k0,smax
= ∞) sequence of reset times (tn

k0,2r−1) and
reactivation times (tn

k0,2r ) of the oscillatork0 ∈ Gn with
initial phaseφn

k0
(0) = 0. We call the curveφn

k0
(t) the 0th

separatrix of synchronization.
By (16), if

φn
k1
(0) =−φn

k0
(tn

k0,2),

(as real-valued function), thenφn
k1
(tn

k0,2
) = 0 in virtue of

φn
k1
(t) = φn

k0
(t)+φn

k1
(0)

(see (16)). We call φn
k1
(t) the first separatrix of

synchronization. All oscillators with initial phases

φn
k (0) ∈

[

0,φn
k1
(0)

]

=
[

0,
∣

∣

∣
φn

k0
(tn

k0,2)
∣

∣

∣

]

will be reset in the time interval[tn
k0,1

, tn
k0,2

) and hence
altogether will be reactivated at timetn

2 and remain
activity synchronized withφn

k1
(t) for t ≥ tn

k0,2
. Therefore,

by time t = tn
k0,2

there are at leastN2π φn
k1
(0) oscillators

synchronized.
The construction of separatrices can be iteratively

continued —there is one for each reactivation time. Thus,
the rth separatrix of synchronizationcorresponds to the
phase trajectory of the oscillatorkr ,

φn
kr
(t) = φn

k0
(t)+φn

kr
(0) (19)

(see (16)) such that

φn
kr
(tn

kr−1,2) = 0, i.e., φn
kr
(0) =−φn

k0
(tn

kr−1,2).

By definition,

φn
kr−1

(tn
kr−1,2)< 0= φn

kr
(tn

kr−1,2),

and thus,
φn

kr−1
(t)< φn

kr
(t) for all t ≥ 0 (20)

1 In the simulations we useαn = 0 for n= 1,2,3 though.
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because they are solutions of the same differential
equation. Furthermore,

tn
kr ,2 = tn

k0,2(r+1) (21)

as long as 2(r +1)≤ ⌊smax/2⌋, but the above construction
of therth separatrices can be done even ifsmax= 2.

Likewise as before, it follows that all oscillators such
that

φn
k (0) ∈

[

φn
kr−1

(0),φn
kr
(0)

)

=
[∣

∣

∣
φn

k0
(tn

kr−2,2)
∣

∣

∣
,
∣

∣

∣
φn

k0
(tn

kr−1,2)
∣

∣

∣

)

(22)
will be reset for the first time in the time interval
[tn

kr−1,1
, tn

kr−1,2
). Note that the interval (22) is non-empty

because of (20). We conclude that all oscillatorsk ∈ Gn
with

φn
k (0) ∈

[

0,φn
kr
(0)

)

=
[

0,
∣

∣

∣
φn

k0
(tn

kr−1,2)
∣

∣

∣

)

(23)

will be reset in the period[tn
kr−1,1

, tn
kr−1,2

) and hence
altogether will be reactivated at timetn

kr−1,2
and

synchronized withφn
kr
(t).

The activity synchronization in the whole period
[tn

kr−1,2
, tn

kr ,2
] for oscillators of Gn with initial positive

phase is the following:

Φn
k (t) =















[

φn
kr
(t)

]

+
if φn

k (0) ∈
[

0,φn
kr
(0)

)

[

φn
k (t)

]

+
if φn

k (0) ∈
[

φn
kr
(0),φn

kr+1
(0)

)

φn
k (t) otherwise

(24)

whereφn
kr
(t) is given by (19).

Till now we have considered only separatrices in the
positive direction from the 0th separatrix. To introduce
negative separatrices, callτn

r the reversal timeof φkr (t)
immediately before the reset timetn

kr ,1
, r ≥ 1. If tn

k0,1
= 0

(i.e., φ̇n
k0
(0)< 0), then setτn

0 = 0. Thus,

φ̇n
kr
(τn

r ) = 0, φ̈n
kr
(τn

r )< 0, (25)

where 0≤ τn
0 ≤ tn

1, andtn
kr−1,2

< τn
r < tn

kr ,1
for r ≥ 1. At the

reversal times the functionsφn
k (t) have local maxima.

Consider now oscillators with negative initial phase.
Similarly to what we did above, if

φn
k−1

(0) =−φk0(τ
n
0), (26)

thenφn
k−1

(τn
0) = 0. We call

φn
k−1

(t) = φn
k0
(t)+φn

k−1
(0)

the separatrix of order−1. It follows that all oscillators
k∈ Gn with

φn
k (0) ∈

(

φn
k−1

(0),0
]

=
(

−φk0(τ
n
0),0

]

will be reset in the time interval(τ0, tk0,1) and reactivated
at timetk0,2, providedtk0,1 > 0. If tk0,1 = 0 thenφn

k−1
(t) =

φn
k0
(t).
Separatrices of order−r, φn

k−r
(t), are defined as

follows:

φk−(r+1)
(τn

r ) = 0, i.e.,φk−(r+1)
(0) =−φk0(τ

n
r )< 0,

see (19). As in the case of separatrices of positive order,
we conclude that all oscillatorsk∈ Gn such that

φn
k (0) ∈

(

min
0≤i≤r

φk−(i+1)
(0),0

]

=

(

− max
0≤i≤r

φk0(τ
n
i ),0

]

(27)
will be reset in the time interval[τn

r , tkr ,1), and reactivated
at time tkr ,2. Here we have to take the minimum
min0≤i≤r φk−(i+1)

(0) because, contrarily to (20), the
separatrices φk−1(t), ...,φk−(r+1)

(t) need not be
monotonically ordered. From then on, the phases (27) are
synchronized withφkr+1(t).

Proposition 2. A necessary and sufficient condition for
φn

k (0) < φn
k (τ

n
0) (if τn

0 > 0), and φn
k (τ

n
r ) < φn

k (τ
n
r+1),

r ≥ 0, to hold is

∫ τn
0

0
tḞn−1(t)dt > 0 (28)

and
∫ τn

r+1

τn
r

tḞn−1(t)dt > 0 (29)

respectively.

Proof. For a given oscillatork∈ Gn,

φ̇n
k (τ

n
r ) = 0,

since the solution flow of (1) has local maxima at all
separatrix reversal times. Replace thenφn

k (t
n
k,2r) by

φn
k (τ

n
r ) in the proof of Proposition 1 to obtain (29). �

In sum, if forn= 1,2,3,

...∪ (φn
k−2

(0),φn
k−1

(0)]∪ (φn
k−1

(0),0)∪

[0,φn
k1
(0))∪ [φn

k1
(0),φn

k2
(0))∪ ...

= (−αn,2π −αn)

or, equivalently,

...∪ (−φn
k0
(τn

1),−φn
k0
(τn

0)]∪ (−φn
k0
(τn

0),0)∪

[0,φn
k0
(tn

k0,2))∪ [φn
k0
(tn

k0,2),φ
n
k0
(tn

k1,2))∪ ...

= (−αn,2π −αn),

where some intervals with negative separatrices might be
repeated, then all oscillators end up activity synchronized.
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5.2 Evolution equations for small oscillations

Remember that all phases in a group move under the same
force, and we are assuming a uniform initial distribution
of the initial phases,ρn(0,φ) = N/2π .

Consider the geometrical representation of a phase
oscillatorφn(t) as a point on the unit circle. Ifφn(0) = 0
then its time evolution corresponds to the 0th separatrix of
synchronization of the groupGn. In the notation of the
previous section,φn(t) = φn

k0
(t); quantities likeφn and

tn without the subscriptk refer hereafter to the 0th
separatrix,k= k0, of Gn. In a typical oscillation, the phase
φn(t) changes from negative to positive speed at the first
reactivation timetn

2. It starts then moving in the positive
direction till it stops at the first reversal timet = τ1 and
bounces back in the negative direction, and stops again at
t = tk1,2 before reversing direction once more, and so on.

According to (23) and (27), whetherφ̇n(0) < 0 (in
which case 0= τn

0 = tn
1, φ(τn

0) = 0) or φ̇n(0) > 0 (in
which case 0< τn

0 < tn
1, φ(τn

0) > 0), all oscillatorsk ∈ Gn
such that

φn
k (0) ∈

(

min
0≤i≤r

φk−(i+1)
(0),φn

kr+1
(0)

)

=

(

− max
0≤i≤r

φk0(τ
n
i ),

∣

∣φn(tn
kr ,2)

∣

∣

)

(30)

will be synchronized att = tn
kr ,2

with φkr+1(t), their
common activity being

Φk(t) = φkr+1(t) = φ(t)+φkr+1(0)

for t ∈ [tn
kr ,2

, tn
kr+1,1

]. Thus, full synchronization is possible
via the combination of two mechanisms:

Mechanism 1. There is a sequence of separatrix
reactivation timestn

kr ,2
such thatφn(tn

kr ,2
)→−αn.

Mechanism 2. There is a sequence of separatrix reversal
timesτn

r such thatφn(τn
r−1) < φn(τn

r ) for everyr, and
φn(τn

r ) → 2π −αn.

Exceptionally, full synchronization might be also
achieved via Mechanism 1 alone (αn = 2π).

Proposition 3. Let φn be the 0th synchronization
separatrix ofGn.

(i) A necessary and sufficient condition for the
synchronization of the oscillators k∈ Gn with

φn
k (0) ∈

[

0,
∣

∣

∣
φ(tn

krs,2
)
∣

∣

∣

)

⊂ [0,2π −αn], s≥ 0, is

∫ tnkr0 ,2

0
tḞn−1(t)dt < 0 (31)

and, ifs≥ 1,
∫ tnkri+1 ,2

tnkri ,2

tḞn−1(t)dt < 0 (32)

for i = 0,1, ...,s−1.

(ii) A necessary and sufficient condition for the
synchronization of the oscillators k∈ Gn with
φn

k (0) ∈
(

−φ(τn
rh
),0

]

⊂ [−αn,0] is the existence of a
subsequence of separatrix reversal timesτn

r1
, τn

r2
, ...,

τn
rh

, h≥ 1, such that

∫ τn
r1

0
tḞn−1(t)dt > 0

and, ifh≥ 2,
∫ τn

ri+1

τn
ri

tḞn−1(t)dt > 0 (33)

for i = 1, ...,h−1.

Proof. (i) For t = tn
kri ,2

,

φ̇ (tn
kri ,2

) = 0

since the solution flow of (1) has local minima at all the
separatrix reactivation times. Replace thenφn

k (t
n
k,2r) by

φ(tn
kri ,2

) ≡ φk0(t
n
kri ,2

) in the proof of Proposition 1 to

obtain (32).
(ii) Replace φn

k (τ
n
r ) by φn(τn

r i
) in Proposition 2. It

follows thenφn(0)< φn(τn
r1
)< ... < φn(τn

rh
). �

The bottom line is that the separatrix reactivation
times tn

k0,2
, tnk1,2

, ..., and reversal timesτn
0 , τn

1 , ... (or a
subsequence of them) describe the whole activity
synchronization process in the setting considered in this
section.

To extract further information out of Proposition 3,
we are going to exploit the specific form (13) of the
interaction termFn(t) in the regimen of small oscillations
(17)-(18). According to (13), Fn(t) counts the number of
oscillatorsk ∈ Gn with Φn

k (t) ∈ [−∆ ,0). Note that the
proviso (17) guarantees that reactivated oscillators do not
enter the angular sector[−∆ ,0) becauseΦn

k (t) ≥ 0 for
them. In view of (30), the separatrices that inform about
which other oscillators have their activities in[−∆ ,0) at
time t are

φn(t;τn
r ) := min

0≤i≤r
φk−(i+1)

(t) = φn(t)− max
0≤i≤r

φn(τn
i ), (34)

wherer is fixed by the condition thatτn
r is the greatest

reversal time such thatτn
r < t. If τn

0 > 0 andt < τn
0 , set

φn(t;τn
0) := φn(t), although we are interested in the

asymptotic dynamic. The separatrices (34) divide the
oscillatorsk ∈ Gn with φn

k (t) ∈ [−∆ ,0) which have been
reset, namely,

φn(t;τn
r )< φn

k (t)≤ 0

(and henceΦn
k (t) ≥ 0), from those which have not been

reset yet, namely,

−∆ ≤ φn
k (t)≤ φn(t;τn

r )
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(and henceΦn
k (t) = φn

k (t)), for τn
r ≤ t < τn

r+1.
This being the case, we find that, fortn

kr−1,2
≤ t < τn

r

(tn
kr−1,2

= 0 for r = 0),

Fn(t) =







N∆
2π
N∆
2π + N

2π φn(t;τn
r−1)

0
(35)

if







0≤ φn(t;τn
r−1)≤ 2π −αn

−∆ ≤ φn(t;τn
r−1)≤ 0

−αn ≤ φn(t;τn
r−1)≤−∆

while for τn
r ≤ t ≤ tn

kr ,2
,

Fn(t) =

{

N∆
2π + N

2π φn(t;τn
r ) if −∆ ≤ φn(t;τn

r )≤ 0
0 if −αn ≤ φn(t;τn

r )≤−∆
(36)

since φn(t;τn
r ) ≤ 0 in the period[τn

r , t
n
kr ,2

]. From (1) it

follows that fortn−1
kr−1,2

≤ t < τn−1
r ,

φ̇n(t) =







ωn− ε∆
2π

ωn− ε∆
2π − ε

2π φn−1(t;τn−1
r−1 )

ωn
(37)

if







0≤ φn−1(t;τn−1
r−1 )≤ 2π −αn−1

−∆ ≤ φn−1(t;τn−1
r−1 )≤ 0

−αn−1 ≤ φn−1(t;τn−1
r−1 )≤−∆

while for τn−1
r ≤ t ≤ tn−1

kr ,2
,

φ̇n(t) =

{

ωn− ε∆
2π − ε

2π φn−1(t;τn−1
r )

ωn (38)

if

{

−∆ ≤ φn−1(t;τn−1
r )≤ 0

−αn−1 ≤ φn−1(t;τn−1
r )≤−∆

Finally, upon differentiation of (35) and (36), we obtain for
tn
kr−1,2

≤ t < τn
r ,

Ḟn(t) =







0 if 0 < φn(t;τn
r−1)≤ 2π −αn

N
2π φ̇n(t) if −∆ < φn(t;τn

r−1)< 0
0 if −αn ≤ φn(t;τn

r−1)<−∆
(39)

and forτn
r ≤ t ≤ tn

kr ,2
,

Ḟn(t) =

{

N
2π φ̇n(t) if −∆ < φn(t;τn

r )< 0
0 if −αn ≤ φn(t;τn

r )<−∆ (40)

5.3 Full synchronization

Suppose thatφn(t) is performing small oscillations, see
(17) and (18).

Proposition 4.A necessary condition for the oscillators k
to reach full synchronization in the three groupsGn
through a finite number of small oscillations is

ε >
2πωn

∆
(41)

for n= 1,2,3.

Proof. According to Proposition 3(i), a necessary
condition for the synchronization in allk∈ Gn with

φn
k (0) ∈ [0,2π −αn]

is that
∫ tnk0,2

0
tḞn−1(t)dt < 0,

∫ tnkr+1,2

tnkr ,2

tḞn−1(t)dt < 0 (42)

for r = 0,1, ..., rn
max−1 (if rn

max≥ 1), with
∣

∣

∣
φn(tn

krnmax
,2)

∣

∣

∣
=

2π −αn, andn= 1,2,3.
From (37) we obtain

inf
{

φ̇n(t) : tn−1
kr−1,2

≤ t ≤ τn−1
r

}

= ωn−
ε∆
2π

(tn−1
kr−1,2

= 0 for r = 0) becauseφn−1(t;τn−1
r−1 ) ≤ 0.

Therefore, see (39),

Ḟn(t)

{

≥ N
2π

(

ωn− ε∆
2π
)

if −∆ ≤ φn−1(t;τn−1
r−1 )≤ 0

= 0 otherwise
(43)

for tn−1
kr−1,2

≤ t ≤ τn−1
r (φn−1(t;τn−1

r−1 ) = φn−1(t) if r = 0).
Likewise, from (38) we obtain

inf
{

φ̇n(t) : τn−1
r ≤ t ≤ tn−1

kr ,2

}

= ωn−
ε∆
2π

becauseφn−1(t;τn−1
r )≤ 0. Hence, see (40),

Ḟn(t)

{

≥ N
2π

(

ωn− ε∆
2π
)

if −∆ ≤ φn−1(t;τn−1
r )≤ 0

= 0 otherwise
(44)

for τn−1
r ≤ t ≤ tn−1

kr ,2
. Altogether, (43) and (44) amounts to

Ḟn(t)

{

≥ N
2π

(

ωn− ε∆
2π
)

= 0
if tn−1

kr−1,2
≤ t ≤ tn−1

kr
. (45)

Therefore, ifT = min{t1
k
r1max,2

, t2
k
r2max,2

, t3
k
r3max,2

} we conclude

that

Ḟn(t)

{

≥ N
2π

(

ωn− ε∆
2π
)

= 0
if 0 ≤ t ≤ T (46)

for n= 1,2,3.
Assume now that

ωn ≥
ε∆
2π

(47)

for n= 1,2,3. It follows then from (46) that

∫ tn+1
kr+1,2

tn+1
kr ,2

tḞn(t)dt ≥ 0

for every [tn+1
kr ,2

, tn+1
kr+1,2

] ⊂ [0,T]. This proves by
contradiction with (42) the necessity of (41) for the
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Fig. 3: Phase transition in the Kuramoto order parameter. The
network achieve full synchronization only when conditionsof
equation (41) hold. We also note that precisely at the boundary of
inequality (41) the convergence of the dynamics is considerably
slower. In fact, this was depicted in Figure2: transient dynamics
is 10 times slower than for both smaller and larger couplingε.

oscillators k ∈ Gn with φn
k (0) ∈ [0,2π −αn] to

synchronize, hence, for full synchronization.�

Proposition 4 is an important prediction about the
dynamics of the system, as it defines a critical coupling
value εc = 2πωn/∆ under which there cannot be full
synchronization. In Figure3 we show the phase transition
from an unsynchronized (unordered) phase to a
synchronized (ordered) phase obtained by simulations
varying ω . Since ∆ = 0.1 × 2π , then the necessary
condition (41) becomes

ε > 10ωn. (48)

Not only Figure3 complies with this result, showing that
εc = 10ω is a threshold point to synchronization, but we
also have tested several values of∆ as well to actually
verify that this condition holds (not shown).

Additionally, we note that near the critical couplingεc
the oscillators always tend to delay its synchronization,
going through a transient dynamics that may last up to ten
times more than with values larger or smaller thanεc. For
instance, in Figure2 we have shown the network exactly
at the critical pointε = εc = 10. For networks set up with
ε = 8 (see Figure1) or ε = 12, for all initial conditions
tested the transient dynamics did not last more than 100
time units, which is a quarter of the transient period
shown in Figure2 for ε = 10. This is completely
unexpected, since usually the transient dynamics tend to
subside quickly as a stronger coupling/inhibition takes
place. This resembles notwithstanding effects seen in
statistical physics models, in which at the edge of a phase
transition several thermodynamics potentials and
variables may diverge, as the time scales defining
correlations among the units [48].
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Fig. 4: Phase transition curve for a initial configuration of phases
drawn from a truncated gaussian distribution, with mean 3.0
and variable varianceσ2. The necessary condition (41) for full
synchronization does not hold anymore: full synchronization is
achieved for a lowerε than expected, showing that the initial
phases distribution plays an important role in the mechanism
of synchronization. Asσ grows, the gaussian becomes more
scattered and thus become similar to an uniform distribution. As
σ grows the same results from the uniform initial distribution is
regained.

6 Final considerations on the model

Most of our results are derived for a specific initial phases
distribution, namely, an uniform distribution. To check if
those results are robust to changes in this distribution, we
have performed simulations with a truncated Gaussian in
the interval[0,2π) with different values of variance. As a
result, the critical couplingεc may change with the
variance: as the variance grows,εc also grows. We show
this effect in Figure4. Naı̈vely, one can expect that with a
lower variance in the distribution of initial conditions the
oscillator phases would be already grouped together, thus
needing a smaller coupling to achieve a higher level of
synchronization. For a larger enough variance, the same
results with uniform distribution are retrieved.

Finally, we have also briefly tested how noise affects
the system, as it is one of the most important ingredients
in real natural systems [49,50,51], and its effects on PRCs
have been investigated in the past [52]. To account for a
simple source of noise, we turned the equation (1) into the
stochastic differential equation

φ̇n
k (t) = ωn

k −
ε
N

Fn−1(t)+σdW, (49)

whereσdW is a Wiener process. This adds a white noise
with varianceσ2 and zero mean, as shown in Figure5
top. A slightly more complicated case is to add a small
phase dependence on the noise [52], but we shall stick to
the this simpler and more illustrative case. As result, the
phase transition seems more smooth, although the
inequality seems to still hold (see Figure5 bottom). Such
changes in the phase transitions are expected and usual in
the dynamics of Kuramoto oscillators or excitable units
[53].
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Fig. 5: Top: the time evolution of a phase oscillator, without
interaction, following Equation (49) with increasing values ofσ .
A vertical splitting was added to each case for easy identification.
Bottom: Phase transition curve when the oscillators are in
presence of noise. It is clear that the transition has become
smoother, although inequality41 seems to still hold.

7 Concluding remarks

In this study we have investigated how synchrony
emerges in a simple analytical resetting model based on
Kuramoto oscillators driven by strong inhibition. In
particular, the oscillators are divided into three mutually
inhibiting groups, mimicking a common architecture
found in forebrain subcortical region (striatum). For small
oscillations, we have shown in Proposition 4 a necessary
condition for the full synchronization of all oscillators in
each of these groups, also verified by simulations of a
very similar model, slightly closer to realistic neurons
connected by fast and strong inhibitory connections. With
this necessary condition, we can predict what is the
minimum coupling strengthεc capable of generating a
synchronous state, apparently robust to noise. We have
also shown that the initial phase distribution may break
down this necessary condition.

Similar studies also investigated in the past the effects
of strong couplings. In particular, strongly excitatory phase
resetting models, with a dissipative contribution in their
dynamics (e.g., leaky integrate-and-fire models), present
synchronous states independently of the initial conditions
and/or strength of their connections [54].

We believe our findings motivate the search for
further rigorous results on networks of non-linear

oscillators with strong couplings. This is the case, for
instance, of a network consisted of conduction-based
model neurons, interacting through non-linear couplings.
A better understanding of such mechanisms may lead to
important developments on our understanding of how
synchronization takes place in the brain.
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