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On recurrence relations for the 3-j coefficient
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A four-term recurrence relation for the 3-j coefficient is derived from a four-term recur-
rence relation for the 3F2(1) hypergeometric function, which is intimately connected
to the 3-j (or Clebsch-Gordan) coefficient. This new recurrence relation can also be
derived from two known three-term recurrence relations for the 3F2(1). Application of
the four-term recurrence relation to generate tables of the 3-j coefficients is discussed.
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1 Introduction

The Gauss hypergeometric function of unit argument, 2F1(1), satisfies a three-term
recurrence relation (c.f. Bailey, 1935; Slater, 1964). It is well-known that by suitably
combining two three-term recurrence relations in a single variable, it is possible to derive a
four-term recurrence relation for the given function. It is known that the 3F2(1) satisfies a
four-term recurrence relation and it forms the basis for our new recurrence relation for the
angular momentum coupling coefficient.

The intimate connection between the Clebsch-Gordan, or 3-j coefficient, and the general-
ized hypergeometric function of unit argument, 3F2(1), was established, independently,
by Vander Waerden (1932), Wigner (1931), Racah (1942) and Majumdar (1958), using
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diverse methods (cf. Biedenharn and Louck, 1981); and also by Srinivasa Rao et.al. (1992).

The discovery of six new symmetries for the 3-j coefficient, by Regge (1959), along with
its twelve ‘classical’ symmetries, resulted in a set of 72 symmetries for the 3-j coefficient.
The group theoretical aspects of these symmetries was studied, in terms of a set of six

3F2(1)s, by Srinivasa Rao et.al. (1978).

It is well-known, in literature, that every orthogonal polynomial satisfies a three-term
recurrence relation. The 3−j coefficient has been shown by Karlin and McGregor (1961)
to be related to the Hahn and the dual Hahn polynomials. This connection was exploited to
establish two new three-term recurrence relations for the 3-j coefficient by Rajeswari and
Srinivasa Rao (1989). These relations are different from the ones found earlier by Louck
(1958).

The relationship between the Clebsch-Gordan, or the 3-j angular momentum coupling co-
efficient, and the set of six 3F2(1) hypergeometric functions (c.f. Srinivasa Rao and Ra-
jeswari, 1993), of the Van der Waerden form, is:(

j1 j2 j3

m1 m2 m3

)
= δ(m1 +m2 +m3, 0)

3∏
i,k=1

[Rik!/(J + 1)!]1/2

×(−1)σ(pqr) [Γ(1−A, 1−B, 1− C,D,E)]−1

×3F2(A,B,C;D,E; 1), (1.1)

where

A = −R2p, B = −R3q, C = −R1r, D = 1 +R3r −R2p, E = 1 +R2r −R3q

and
Γ(x, y, · · · ) = Γ(x)Γ(y) · · · ,

for all permutations of (pqr) = (123), and

σ(pqr) =

{
R3p −R2q for even permutaions ,
R3p −R2q + J for odd permutations,

with J = j1+j2+j3. The defining relations for the numerator and denominator parameters,
Rik’s, are the elements of the Regge (1959) 3× 3 square symbol:

∥Rik∥ =

∥∥∥∥∥∥∥
−j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3

j1 −m1 j2 −m2 j3 −m3

j1 +m1 j2 +m2 j3 +m3

∥∥∥∥∥∥∥ . (1.2)
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In 1958, Regge made a discovery of six new symmetry properties for the 3-j coefficient.
He arranged the nine non-negative integer parameters, listed by Racah (1942):

−j1 + j2 + j3, j1 − j2 + j3, j1 + j2 − j3,

j1 −m1, j2 −m2, j3 −m3, j1 +m1, j2 +m2, j3 +m3,

into a 3× 3 square symbol and identified the 3-j coefficient with that symbol:

(
j1 j2 j3

m1 m2 m3

)
=

∥∥∥∥∥∥∥
−j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3

j1 −m1 j2 −m2 j3 −m3

j1 +m1 j2 +m2 j3 +m3

∥∥∥∥∥∥∥ ≡ ∥Rik∥.

Note that all the sums of the columns and the rows of the symbol add to J = j1 + j2 + j3,
as in the case of a magic square. Regge asserted that the 3-j coefficient being invariant
to 3! column permutations, 3! row permutations and to a reflection about the diagonal of
the 3 × 3 square symbol, gives rise to 72 symmetries. Of these, the symmetries due to 3!

column permutations and the interchange of rows 2 and 3 in (2), are called as ‘classical’
symmetries. In fact, in a short communication, Regge (1958) wrote down explicitly only
these six new symmetries, dramatically discovered by him.

It is possible, to invert the relation (1.1), to express the 3F2(1) in terms of the 3-j coefficient
(see Appendix for the details). After inversion, we get:

3F2(A,B,C;D,E; 1) = (−1)D−E Γ(1−A, 1−B, 1− C, s− 1)1/2

Γ(D −A,D −B,D − C,E −A,E −B,E − C)1/2

×Γ(D,E)

(
j1 j2 j3

m1 m2 m3

)
, (1.3)

where

j1 =
1

2
(E −A− C − 1), j2 =

1

2
(D −B − C − 1), j3 =

1

2
(D + E −A−B − 2),

m1 =
1

2
(E +A− C − 1), m2 =

1

2
(C −B −D + 1), m3 =

1

2
(D +B − E −A)

and s = D + E −A−B − C is called the parameter excess.

2 Main Results

The Pochhammer symbol is defined as:

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1)(x+ 2) · · · (x+ n− 1), (x)0 = 1
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and one of its properties is:

x(x+ 1)n = (x+ n)(x)n.

Using this property, for the n-th term, one obtains the following four-term recurrence rela-
tion:

(2 C −A−B) 3F2(A,B,C;D,E) + A 3F2(A+ 1, B, C;D,E)

+ B 3F2(A,B + 1, C;D,E) = 2 C 3F2(A,B,C + 1;D,E), (2.1)

where, following standard conventions, the unit argument of the 3F2(1) has been sup-
pressed.

The intimate relationship that exists between the 3F2(1) and the 3-j coefficient, given by
(1.3), enables one to obtain the following four-term recurrence relation satisfied by the 3-
j coefficient, as a direct consequence of the four-term recurrence relation for the 3F2(1)

given in (2.1):

(2j3 − j1 − j2 −m1 +m2)
√
(J + 1)

(
j1 j2 j3

m1 m2 m3

)

= [(j1 −m1)(j3 +m3)(j1 − j2 + j3)]
1
2

(
j1 − 1

2 j2 j3 − 1
2

m1 +
1
2 m2 m3 − 1

2

)

+[(j2 +m2)(j3 −m3)(−j1 + j2 + j3)]
1
2

(
j1 j2 − 1

2 j3 − 1
2

m1 m2 − 1
2 m3 +

1
2

)

−2 [(j1 +m1)(j2 −m2)(j1 + j2 − j3)]
1
2

(
j1 − 1

2 j2 − 1
2 j3

m1 − 1
2 m2 +

1
2 m3

)
. (2.2)

A numerical verification of the four-term recurrence relation, for

j1 = 2, j2 = 2, j3 = 1,m1 = 1,m2 = −1,m3 = 0,

using the tables of Rotenberg et.al. (1959), gave for the lhs and the rhs of (2.2) the value
of 4/

√
5.

The first entry, in page 47 of [7], is for the 3-j coefficient:(
1
2

1
2 0

1
2 −1

2 0

)
= 1 =

1√
2
,

where the notation 1 for the number is that of Rotenberg et.al. [7] – who used the
convention of underscoring negative exponents. The tables are for the squares of the
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3-j coefficients (or, symbols), whose values are expressed in terms of products of prime
factors (see p.33, [7]) and the value is preceded by an asterisk (*) for negative radicals.

When these ji, mi values are used in (2.2), we get the relation:(
1
2

1
2 0

1
2 − 1

2 0

)
=

1√
2
, since

(
0 0 0
0 0 0

)
= 1.

Repeated use of (2.2) guarantees the generation of the entire table of values. This is the
best application possible of the four-term recurrence relation, (2.2), derived in this paper.

To be specific, from the numerical point of view, choose(
j1 j2 j3

m1 m2 m3

)
=

(
2 2 1
1 −1 0

)
.

Using these values of ji and mi for the 3-j coefficient in (2.2), we get, after simplifications:

−4
√
6

(
2 2 1
1 −1 0

)
=

(
3
2 2 1

2
3
2 −1 −1

2

)

+

(
2 3

2
1
2

1 − 3
2

1
2

)
− 6

√
3

(
3
2

3
2 1

1
2 − 1

2 0

)
.

When we use for the LHS 3-j coefficient, in the four-term recurrence relation, (2.2), the
three 3-j coefficients on the RHS of this equation, and simplify, we finally get:

4
√
2√
5

(
1
2

1
2 0

1
2 −1

2 0

)
=

4
√
2√
5

× 1√
2
=

4√
5
.

Thus, there is a cascading effect produced by the four-term recurrence relation, so that
ultimately the last step in the sequence will be the first entry of Rotenberg’s Table.

It is note-worthy that (2.1) valid for unit argument is also valid for a 3F2(z), with arbitrary
z as argument.

Further, (2.1) is a consequence of the following two known contiguous relations:

A ∗ F (A+ 1)− C ∗ F (C + 1) = (A− C) ∗ F, (2.3)

B ∗ F (B + 1)− C ∗ F (C + 1) = (B − C) ∗ F, (2.4)

where we have used the obvious notation (see, for instance, Bailey, 1935; Slater, 1964)
F = 3F2(A,B,C;D,E; z), denoting only the parameter that changes.
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It is straight forward to derive, from the above three-term contiguous recurrence relations,
the following two 3-term recurrence relations for the 3-j coefficient:

(j2 − j3 +m1)
√

(J + 1)

(
j1 j2 j3

m1 m2 m3

)

= −[(j1 −m1)(j3 +m3)(j1 − j2 + j3)]
1
2

(
j1 − 1

2 j2 j3 − 1
2

m1 +
1
2 m2 m3 − 1

2

)

+ [(j1 +m1)(j2 −m2)(j1 + j2 − j3)]
1
2

(
j1 − 1

2 j2 − 1
2 j3

m1 − 1
2 m2 +

1
2 m3

)
, (2.5)

(j1 − j3 −m2)
√

(J + 1)

(
j1 j2 j3

m1 m2 m3

)

= −[(j2 +m2)(j3 −m3)(−j1 + j2 + j3)]
1
2

(
j1 j2 − 1

2 j3 − 1
2

m1 m2 − 1
2 m3 +

1
2

)

+ [(j1 +m1)(j2 −m2)(j1 + j2 − j3)]
1
2

(
j1 − 1

2 j2 − 1
2 j3

m1 − 1
2 m2 +

1
2 m3

)
. (2.6)

It is to be noted that these three-term recurrence relations are not given in literature [3, 7].
A combination of these two recurrence relations would imply (2.2). It relates a 3 − j

coefficient with J(= j1 + j2 + j3) to a 3-j coefficient with J − 1. Needless to say, in
principle, the relation can be used to generate all 3-j coefficients from those of a lower J .

3 Conclusion

To conclude, a four-term relation has been derived for the 3-j coefficient, from the cor-
responding relation for the 3F2(1) function. This is indeed a direct consequence of the
definition of the 3-j coefficient in terms of the 3F2(1). Such relations for angular momen-
tum coupling coefficients, from a theoretical point of view, are of relevance in the numeri-
cal computation of matrix elements of tensor operators, via the Wigner-Eckart theorem, in
atomic, molecular and nuclear (structure / reaction) studies.

4 Appendix

In this appendix, we give the details on how to invert (1.1) to get (1.3). The values of the
parameters A,B, · · · in (1.1) are

A = −R2p, B = −R3q, C = −R1r,

D = 1 +R3r −R2p, E = 1 +R2r −R3q, (4.1)
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with (pqr) = (123), cyclic. For p = 1, q = 2, r = 3, the above parameters become:

A = −R21 = −j1 +m1,
B = −R32 = −j2 −m2,
C = −R13 = −j1 − j2 + j3,
D = 1 +R33 −R21 = 1− j1 + j3 −m2,
E = 1 +R23 −R32 = 1− j2 + j3 +m1.

(4.2)

and these equations can be conveniently cast into the matrix form as:


A
B

C+1
D
E

 = M


j1

j2

j3 + 1

m1

m2

 (4.3)

where M is the 5× 5 matrix:

M =


−1 0 0 1 0

0 −1 0 0 −1

−1 −1 1 0 0
−1 0 1 0 −1

0 −1 1 1 0

 . (4.4)

The values of j1, j2, j3, m1 and m2 are obtained by inverting (4.3), to get:


j1

j2

j3 + 1

m1

m2

 = M−1


A
B

C+1
D
E

 . (4.5)

with

M−1 =
1

2


−1 0 −1 0 1

0 −1 −1 1 0
−1 −1 0 1 1

1 0 −1 0 1
0 −1 1 −1 0

 (4.6)
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Using M−1, to write down, Eq. (4.5) explicitly, we get:

j1 = 1
2 (−A− C + E − 1)

j2 = 1
2 (−B − C +D − 1)

j3 = 1
2 (−A−B +D + E − 2)

m1 = 1
2 (A− C + E − 1)

m2 = 1
2 (−B + C −D + 1)

m3 = −m1 −m2 = 1
2 (−A+B +D − E).

(4.7)
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