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Abstract: A new five-parameter distribution so-called the McDonal@sju_indley distribution is proposed. The new distribution
contains, as special submodels, several important disiitis discussed in the literature, such as the beta quadidyi, Kumaraswamy
quasi Lindley, beta Lindley, kumaraswamy Lindley and Ladtistributions, among others. The properties of this nastridution,
including hazard function, reversed hazard function, seamoments, entropy and moment generating function aireede¥Ve provide
the density function of the order statistics and their mamieMethod of maximum likelihood is used to estimate the pextars of the
new and related distributions. The flexibility and usefsef the new model are illustrated by means of an applicatioeal data set.

Keywords: Quasi Lindley distribution, McDonald distribution, Maxiim likelihood estimation, Moment generating function,
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1 Introduction

Recently, several lifetime distributions have been usedddel and analyze lifetime data. The Lindley (L) distriloutivas
originally proposed by Lindleyl5 in the context of Bayesian statistics as a counter examfdiewcial statistics. This
distribution is a mixture of exponential (E) and Lengthdgid exponential distributions to illustrate the differebetween
fiducial and posterior distributions. Ghitany et dl2] have discussed the properties of this distribution. Theyetfound
that the Lindley distribution performs better than expdr@mmodel because of its time dependent/increasing hazard
rate. Zakerzadeh and Dolaf29] obtained a generalized Lindley (GL) distribution and dissed its various properties
and applications. Nadarajah et a2(] studied the mathematical and statistical properties efgbneralized Lindley
distribution. Bakouch et al2] obtained an extended Lindley distribution and discussedarious properties. Merovci
and Sharmalg] introduced a new generalization of Lindley distributicalled beta-Lindley (BL) distribution. Shanker
and Mishra P] introduced and studied the mathematical and statisticgigrties of the quasi Lindley (QL) distribution
where it has the L distribution as a particular case. The datwe distribution function (cdf) of the QL distributiorsi
given by

6x

G(xa,0) :1—(1+0{—+1)e—9X (1)

and the corresponding QL probability density function jpsfgiven by

6(a+6X) g

g0xa.0)=—777

; 2)
for x> 0,6 > 0 anda > —1. Elbatal and Elgarly11] studied statistical properties of Kumaraswamy quasi lapd
(KumQL) distribution. The QL distribution reduces to L dibution whena = 68 and ata = 0, it reduces to the gamma
distribution with parametenrg, 0).

The density function of QL model is a mixture of exponentiad @amma distributions, that is

g(xa,0) =pfi(x0)+(1-p)fax0),
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with p = CYL—F].' where f1(x;8) = 8e % and f(x;8) = 62xe . It is also positively skewed. The hazard and mean
residual life functions of the QL distribution are given by

6(a + 6x
050.0) = 10 gy
and
m(x-a 6)—M
T (l+a+6x)’

respectively. The hazard functidrix; a, 6) is an increasing function whereas the mean residual lifettanm(x; o, 0)
is a decreasing function.

In recent years, many authors have proposed distributibisvean arise as special submodels within the McDonald
(Mc) generated or generalized beta (GB) generated classstfbdtions. Alexander et al.1] introduce a class of
generalized beta-generated distributions that have #itage parameters in the generator. They consider eleferedif
parents: normal, log-normal, skewed studgntaplace, exponential, Weibull, Gumbel, Brinbaum-Sausdgamma,
Pareto and logistic distributions. Other generalizatiame McDonald inverted beta distribution by Corderio and
Lemonte p], McDonald gamma distribution by Marciano et al6], McDonald normal distribution by Corderio et al.
[6] McDonald exponentiated exponential distribution by Guid et al. [/], McDonald log-logistic distribution by Tahir
et al. [24], McDonald arcsine distribution by Corderio and Lemor8g McDonald Weibull distribution by Corderio et
al. [9]. and McDonald Extended Weibull Distribution by Hashimetaal. [14].

One of the main reasons to consider the McDonald generaséidbdtion is its ability of fitting skewed datal9).

The McDonald generated family of densities allows for higlkeels of flexibility of its tails and has a lot of applicati®

in various fields such as economics, finance, reliabilitgieeering, biology and medicine. The main objective of this
paper is to construct and explore the properties of the faraipeter model called the McDonald quasi Lindley (McQL)
distribution. This distribution exhibits the desirabl@perties of increasing, decreasing, upside-down bathtdtpathtub
shaped hazard function.

This paper is organized as follows. The pdf, cdf and hazamdtfon of the McQL distribution are derived in Section
2. Some special models of the new distribution are desciibtds section. In Section 3, we present useful expansibns o
cdf and pdf of the McQL distribution. Some properties of thg pdf, kth moment and moment generating function of the
McQL distribution are discussed in Section 4. Moreover,dtder statistics, their moments and entropy are investthat
in this section. Maximum likelihood estimates (MLES) of thedel parameters are given in Section 5. An application of
the McQL distribution by using a real data set is performe8éation 6.

2 The McQL mode

The generalized beta distribution of the first kind or McDidrdistribution (denoted with the prefix "Mc” for short) was
introduced by 17]. McDonald (1984). The cdf of the McDonald distribution isen by

F(x)=1(x%a/c,b), 0<x<1,

b 1 - - . ~ :
BBV<(:b)) :mfg'ta 1(1—t)>-1dtandB(a,b) = [3t>1(1—t)° Ldt are the incomplete

beta function ratio and the beta function, respectively.
The cdf of McQL model is defined by

fora, b, c> 0, wherd (y;a,b) =

lta+ 6x
o+1
wheref > 0 anda > —1. The pdf corresponding t&) is given by

_  cO(a+Hx)je O \ ]t
f(X,a,b,C,a,G) = m |:1— (1+ a—_|_1) e

1- {1— (1+ aejl> e—f’xﬂ b_l. 4)

For random variablX with density function4), we writeX ~ McQL(a,b,c, a, 8). In fact, the McQL distribution belongs
to the new class of distributions called the McDonald-gatest distributions with cdf and pdf as

F(xab,ca,0)=1(1 e 9%a/c,b), x>0, (3)

X

. Clue - 1 S0 area b-1
F(x;a,b,c,p) =1(G*(x; ¢);a/c,b) = W/O t (1—-t)° dt
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and ¢
fxab.c.o) = grrpsalx PG (% 9)(1-G(x 9)°
respectively. The cdf is given ir8) can also be represented by
F(xa,b,c ) = %zﬁ(g,l—b,g—kl;G(X; qo)a), (5)
where .
JFa(abicx) — r(c) wlh(@+j)rb+j)x X < 1. ©)

Far®m 2, et i
@ = (a,0) andG(x; ) = 1— (1+ 2;)e s the cdf of QL model.

Theorem 2.1. Let f(x;a,b,c,a,8) be the pdf of McQL distribution given by4j. The limiting behavior of
f(x;a,b,c,a, 0) for different values of its parameters is given below:

i.Ifa=1,thenlim_q f(xab,c,a,8) = %.

ii.Ifa>1,thenlim_,+ f(xa,b,c,a,68) =0.

iii. If a< 1, then lim_,o+ f(X;a,b,c,a,8) = co.

iv. limy_ 4o f(X@,b,c,a,6) =0.

Proof. Itis straightforwared to show the above from the McQL danisitequation 4).
The hazard rate function (also known as the failure ratetfangh(t), which is an important quantity characterizing

life phenomenon, is defined Iht) = 1 j(li)(t) . The hazard rate function (hrf) of the McQL distribution isen by
_Ox a—1
hixab.c.a.0) - L0 - (rarg)e™
(a+1) [B(a/c,b) =By (1, ox ¢ oxc(a/C.b)]
Ox o cqb-1
[ (12 T 0
The reversed hazard rate functidg) is defined byr (t) = % The corresponding reversed hazard rate function of

the McQL distribution is given as

— Ox a1
cO(a + Ox)e {1_ (1+ ox ) e‘ex]
(@+1)B;_ (1, 6x e 6xc(a/C,b) a+1

a+1

X [1— {1— <1+ aejl> e—GXHbl. (8)

Figure 1 illustrates some of the possible shapes of the yeasd hazard functions of the McQL distribution for
selected values of the parameters. For instance, thesesplotv the hazard rate function of the new model is much more
flexible than the beta Lindley (BL), quasi Lindley (QL) andhdiey distributions. The hazard rate function can be bathtu
shaped, monotonically increasing or decreasing and uukide bathtub shaped depending on the parameter values.

The McQL distribution contains as sub-models the beta guesley (BQL), the Kumaraswamy quasi Lindley
(KumQL) [11], and McDonald Lindley (McL) distributions foc = 1, a=c anda = 6, respectively. Foc = 1 and
o = 6, the McQL distribution reduces to the beta Lindley (BL) dtafition, [18]. The subject distribution also includes
as special cases the generalized quasi Lindley distrib{8BQL), generalized Lindley (GL) distribution proposed by
Nadarajah et al.g0] and McDonald gamma (McG) distribution. The classes ofritistions that are included as special
sub-models of the McQL distribution are displayed in Fig2re

If the random variabl& has the McQL distribution, then it has the following projest
1. The random variabl¢ = [1— (1+ ae—jl) e~ ¢ satisfies the beta distribution with parametefs andb. Therefore,
1+a+6x

+1
X = G1(V) follows McQL distribution, wheres(.) is given in @). This result helps us in simulating data from McQL
distribution.
2.l1fa=iandb=n-i+1, wherel andn are positive integer values, then théx;a, b, c, a, 0) is the cdf of thath order
statistic of GQL distribution.

r(x;ab,c,a,0) =

the random variabl& = 6X —In( ) has the BGE (or McE) distribution3]. Furthermore, the random variable
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3 Expansion of the model
In this section we derive some representations of cdf andopdicQL distibution. The binomial series expansion is

defined by
(1-2™= - (_1)j<j>zj — < (_1)JMZ_j (9)
jZO m JZO Fr(m—j+1)jv

where|z| < 1 andmis a positive real non-integer.
The following proposition reveals that the McQL distritartican be expressed as a mixture of distribution function
of GQL distribution, whereas Propositi@provides a useful expansion for the pdf #).(

Proposition 1.The cdf in(3) is a mixture of GQL distributions on the form
F(xab,c,a,0)= zoquj(X), (10)
J:

where g = e b)( (1;’];?,) e’ Yi0dj =1and G(x) = (G (x;a,8))2" is the distribution function of a random

variable which has a GQL distribution with parametersf and a+ jc.

If ais a real non-integer, we can expaB@gx) as follows:

Gj(x) = (G(x a,0))H = [1— (1—G(x;a,0))H°

_ ii(_ni (af jc) (1-G(xa,0)), (11)
with
1-G(xa,0)) I (:) (xa,0),
so that -
Gj(x) = 1)+ (a JC) ( )Gf (xa,8). (12)

Now, equation 8) becomes
F(x;a,b,c,a,0) = Zobj,rG’(x;a,e),
J:

=gz (1))

b-1
F(xab,c,a,0) =Y q;Gj(x)
J; iGj

where

If b> 0is an integer, then

Proposition 2.The pdf of McQL model can be expressed as an infinite mixtud&af densities with parametees 6 and
(a+ jc) given by

f(x;ab,c a,8) = zoqjgj(x), (13)
J:

where g(x) = (a+ je)g(x; a,0)[G(x; a, 8)]#+1°~ L,

Similarly, if b > 0 is an integer, the pdf of McQL model is given by

-1
f(xab,c,a,0) =Y q;g;(x)
go i9]
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From equationsl(3) and (L2), the McQL density can be written in the form

f(x;a,b,c,a,0) =g(x;a,0) EOZOZ)p.”G xa,0).

e g (@4 (1)

where

andy o Sr—oPijr = 1.
4 Statistical properties

In this section, we deal with the basic statistical propsrof the McQL distribution, in particular, moments and
moment generating function.

4.1 Moments and moment generating function

In this subsection we derive théh non-central moment and moment generating function ferMitQL distribution.
Moments are necessary and important in any statisticaysisaespecially in applications.

Proposition 3.The kth moment, E&¥), of the McQL distributed random variable X, is given as

ar (k+i+1)  6r(k+i+2)
(9(r+1))k+i+1 9(r+1))k+i+2}’

Wir = er:omi;r B(a/cc, b) (a +61)i+1(_1)i+1<b} 1) (Cj +ra— 1) <:> '

Proposition 4.If X has the McQL distribution then the moment generatingfion (mgf) of X is given as follows

al(i+1) or (i+2)
Or+1) 0t (B(r+1) —t)i+2} '

H(X) = E(X) = wi j

where

Mx (t) =W jr (14)

4.2 Order Statistics

Order statistics make their appearance in many areas @tistalttheory and practice. Let the random variaklg be the
ith order statisticXy:n < Xom < -+ < Xqp) in @ sample of size from the McQL distribution. The pdf and cdf &, for
i=12,...,nare given by

fin(X) = mmx)[l: ()] 1= F(x)]"

B m:z; <n;i)(_1)kf(x)[F(X)]k+i_lv (15)
and
n—i /_1\k s .
Fin(X) :/ fin( B ni|+1) kzo (kj—-)l <nk I)[F(X)]k+l, (16)

respectively, wher& (x) = F(x;a, 6) = 37 ob;j (G"(x;a,8). We use throughout an equation by Gradshteyn and Ryzhik
(2007, page 17) for a power series ralsed to a positive integgven by

(gbr ) icmru (17)
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where the coefficientsy, (forr =1,2,...) are easily determined from the recurrence equation

r

Cmr = (rbo)” Z (M+1) —r + K| bxCmr—ks

wherecmo = by". Hence, the coefficientsy, can be calculated fromm, .. .,Cmr—1 and therefore, from the quantities
by, ..., br. Using (L7), the equationsl) and (L6) can be written as

1 nio
B n—T+1) 2y 2 Kt

Fnli,0) = g 3 3 04" senloica ol

An explicit expression for theth moments o¥;.,, can be obtained as

fin(0,0) = 04" osaxa.e)Gia. o) !

1 ni o n—i +oo
s1 - - ' (S . r—1
e = BrATT T ZOZ ( ) )c.m/o t5g(t; a, 0)[G(t; a1, 6)]"dlt
or(s+1) <& n—i
T B@i,n—i+1) kZOrzlkH < k )C'+k’r

1 rflzl.zfaiz_i3+1(_l)il Cl) (r—l)( [(st+is+l) (18)

6% Soif0io i1/ (a+1)ti(ip 4 1)stiatt

4.3 Entropy

The entropy of a random variable is defined in terms of its @bdlity distribution and can be shown to be a good measure
of randomness or uncertainty. The Rényi entropy is an siterof Shannon entropy. The Rényi entropy is defined to be

IR(Y) = = log( [ [f(0]"d. (19)

wherey > 0 andy # 1. The Rényi entropy tends to the Shannon entropy-asl. By using the pdf of McQL model, we
have

o . B cOa g
/0 fY(x;a,b,c,a,0)dx = (W)

400
></0 (1+ gx)ye‘eyx[G(x;a,9)]aV‘V[1—GC(x;a,G)]bV‘de

Setting
o+1+ Gx
. ay-y _ —0x | ay—y
[G(xa,0)] 1- a1 ]
. 0 .
© —1kql ~x)J
_ k (ay y)( )( 1) a (1+ UX) e—@kx (20)
= ) ’
== j (1+a)
and

o580 0)r

]
n n
a (1+ax)

—Omx
XWE . (21)
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By using 0) and 1), we obtain
o B cOa - - e w « (ay—VY) [k
| savea 00 (Grgmey) 2,2 ZnZ 2. ("()
b k+l+mn+j 0 o i
() B g L e

:<<a+1 a/cb) km% %Z;()(by V)

“ (cl) (n) (y+ i +n> (—1)kH+mgnj- u,—(u+1). 22

m u 0(1+ a)k+m(y+k+ m)u+t

Therefore, the Rényi entropy for McQL distribution is obid by above relation and ).
The Shannon entropy for the McQL distribution is defined dgvs:

Hsn(f) = —Eqlog( f / f(x)log f (x

Hence, the Shannon entropy for the McQL distribution cantpeessed as

Hen( 1) = log BT, Efloga+ Ox)

+ OE(X) + (1—a)E[logG(x; a, 8)] + (1 —b)E[log(1— G°(x; a, 6))].
We note that

8

Ellog(1—G%(X;a,8))] = — %E[GCk(x;a, 0)]
k=1

and
o0 |
EllogG(X;a,8)] Z ; <k> 1ia)| E[X'e*0x.

Therefore by using the results in Lemma 1 in Nadarajah e28LT), we have

o  1\kgk
Hal ) = log PG 1 5 L2

+ 6E(X)+ (1—a)E[logG(x; a,0)] + (1 —b)E[log(1— G%(x; a, 6))],

E(X¥)

where
E[logG(x a,8)] = a/c b) : > i Z;( )(a/cjjl_ )(bl_l) (i)
x %A((HA)C,G,I,G(H k)
and
Ellog(1-G(xa,0))] = a/c b) k 1|J Or20< ) (a/c+l )(bl_l) (:)
%A((r—klﬁ- 1)c,a,0,0),
and
st 533 ()00 ) pes
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5 Estimation

Let X3,...,X, be a random sample of sizefrom the McQL(a,b,c, a, 8) distribution and® = (a,b,c,a,8) be the
unknown parameter vector. The log-likelihood functioniieeg by

n

I(®) = nlog(cB) — nlog(B(a/c,b)) — nlog(a + 1) + _ilog(a +0x) — G_le.-

+(a—1) img [1— <1+ ae_:.1> e—*”v}

+(b—1)éllog[1 [1- <1+ 9+ 1>e—9V~']C]. (23)

The maximum likelihood estimation (MLE) of©® is obtained by solving the nonlinear equations,
U(@) = (Ua(@),Up(0),Uc(0),Uq(@),Uq(@))T =0, where

Ua(0) = 2 (;ae) =n/c[y(b+a/c)+ Y(a/c)+ ilog[l— <1+ ae_:.1> e %], (24)

Up(@) = % ny(b+a/c) —ny(b +Z log| (1+ e_):1> e e, (25)

Uc(O) = 0';?) =n/c2[c—ay(b+a/c)+ay(a/c)+ (b— 1)leog[<1+ ae—J):ll) e*9><"], (26)
O n e 2

Uor(e) =

da  a+1 Za+6 Zl (1+a+1)e—em

n ce 0% _O% [1 (1+a+1) —ex.}

(b-1) i; 1 +[1 (1+ ffl) e-0xc ”
(e . - X
Ug(O) = % =g—;”+;afem
n CX'§+1 —X€" (1+ a+1) [1 (1+ a+1) _gﬂc_l
HomhY, 11 (L4 gy e O
n 5% (14 ;’fl) (28)

M Ny e,

wherey(.) = %)) denotes the digamma function.

We need the observed information matrix for interval estiommand hypotheses tests on the model parameters. The
5x 5 Fisher information matrix] = J,(©), is given by

Jaa \]ab Jac Jaa Jae
Joa Job Jbe Jbar Jbe
J=—| Jea \]cb Jec Jea Jce )
Jaa Jab Jac Jaa \]ae
Joa Job Joc Joa Jee

where the expressions for the elementd afe in the appendix.
Under conditions that are fulfilled for parameters in thesiidr of the parameter space but not on the boundary,
asymptotically

VR(G -0) ~Ns5(0,1(0) 1),
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wherel (@) is the expected information matrix. This asymptotic bebris valid if | (@) replaced by]n(é) , i.e., the
observed information matrix evaluated@iCox and Hinkley, 1979).

6 Application of McQL to areal data set

In this section, we fit the McQL distribution to a real dataaed compare it with some models and submodels such as: the
McDonald Dagum (McD) by Rajasooriy21], the McDonald Weibull (McW) and the McDonald log-logis{i®cLL)
distributions and the KumQL, KumG, BQL, QL and L distribut®to show the superiority of the McQL distribution.
The data set is given by Suprawhardana and Prag3othat refers to the time between failures (thousands of$)caf
secondary reactor pumps. The data set consists of 23 olises/a

The MLEs of the parameters, -2log-likelihood, AIC (Akaikefdrmation Criterion), BIC (Bayesian Information
Criterion), AICC (Consistent Akaike Information Criten}y the KS statistic with its p-value and LRT statistic foisth
data set are displayed in Table 1.

From the values of these statistics, we conclude that thelMiiribution provides a better fit to this data than the
McD, McW, McLL, KumQL, BQL, QL and L distributions. Moreovethe plots of empirical cdf of the data set and
estimated cdf of seven models are displayed in Figure 3.€lplegs suggest that the McQL distribution is superior to the
other distributions in terms of model fitting.

Table 1: MLESs of the model parameters for the time between failureés,dae corresponding AIC, AICC, BIC, KS and LRT statistics.
Dist. MLE -2 Log L AlC AlCC BIC KS (p-value) LRT p-value
McQL(a,b,c,a, 6) a4=1.5594b=0.1193¢ = 22.814Q 61.5037 71.5037 75.0332 67.9918  0.1136 (0.8955) - -

=3.81656 = 3.5611

=7.8434b=41.7895¢ = 6.8431, 63.6685  75.6685 80.9185 71.4542  0.121(0.8497) 5.6044  5@.00

—=0.0816 6 = 3.3260 5 = 0.1362

=46.0331h=319924¢=00314 63.5928  73.5928 77.1222 70.0809  0.1204 (0.8539)  3.2457 21R.0

=0.1288 6 = 0.0915

=12.3203b=7.0308¢ = 3.5592 74.1614  84.1614 87.6909  80.6495  0.2061 (0.2466)  12.08160020.
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Fig. 3: Plots of the estimated pdfs and cdfs of KumQL, KumG, BQL, QL&hd L models using the time between failures data.
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Appendix

We can compute the elements of the observed informatiorbmafor the five parameter&, b, c,a, 6). We obtain the
following:
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