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Abstract: In this paper, we find estimates on the upper bound of the Halefterminant for a general clag(¢) of functions defined
by the known Salagean derivative operator as well agtlze whereg (z) are positive real part functions and symmetric with respect
to the real axis. Several useful consequences are obtasrsgukaial cases.
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1 Introduction In [13], Noonan and Thomas defined tlgh Hankel
determinant off (z) forq> 1 andn> 1 as

Let.«7 denote the class of functions of the form a8 @nsl - Angg-1

- an+1 ani2 -0 Anig

f(z) =z+ zzaka’ (1) Ho(n)=| oo
k=

Anig-1 @n+q " 8ny2g-2

which are analytic in the open unit disk

A ={ze C:|z7 <1}. Let. denote the subclass @  The Hankel determinant plays an important role in the
consisting of all univalent functions. Suppose that study of the singularities and in the study of power series
functionsf and.# be in the class”, then functionf is  with integral coefficients. Also, Arif et al3] determined
said to be subordinate t&, or equivalently, the function the rate of growth of the Hankel determindr(n) as

Z is said to be superordinate tb, if there exists a n — o for different classes of functions. In fact, many
Schwarz functionw with w(0) = 0,|w(z)| < 1(z€ A) authors(see}5,11,10,13,14,15]) have obtained sharp
such thatf(z) = .#(w(2)), written asf(z) < .#(z).(see, upper bounds oH,(2) for several classes of analytic

for detalils, B]). functions.
For f(z) € «7, SalageanZ0] defined the following We denote by a class of analytic function iA with
operator: #(0) =0and#(z) > 0. Here we assume that(z) € &,
satisfyingg (0) =0, ¢’(0) > 0 and¢g (A) is symmetric with
0 _ 1 _ Y respect to the real axis. Als@,(z) has a series expansion
D"f(z) = f(z), D*f(z) =Df(2) = zf'(2),..., of the form
D"f(2) = D(D™f (2)), $(2) =1+ Biz+ BoZ + B2 +...,(%1>0).  (3)

Using the Salagean operator and thg) defined asJ),

wheren € N = {1,2...., }. We note that we introduce the class,(¢) as follows:

PV _ _ . D™i(2)
D"f(2) z+kZ2kakzk,neNo OUN. (2) Zn(¢)_{fed.m<¢(z),zeA}. (4)
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By giving specific values to the parametaand¢ (z) with 3 Main Results

2n(¢), we can obtain the following important subclasses

studied by various authors in earlier works(see, for dgtail Theorem llet the function fz) € 2,(¢) and
[1,4,9,12,16,17,18,19,21,22)), for instance, = |apay — a3/, we can obtain

Z0($) =S(9), 21(9) = # (9); (1) I10< /M2 <2, then

Zo(iigz _S(AB), Zl(iigz _ 4 (AB): ///Smax{4T|K4|,Q*,8T|2K1+K2|+T|4K3+K4|},
ZO(1+(11__220,) ) _s(a). Zl(l+(11_220,)z) _ 4 (a) ) If /5 > 20r 2 <0orMy =0, then
142 iz //lgmax{4T|K4|,8T|2K1+K2|+T|4K3+K4|},
Zo(l— ) = Zl(l— ) A where K,Kz,Ks,Kq are defined by(5) and T= & &,
((1122) )_St’ = ((ﬁg? )_'%/V' mi : 4'?-ll—K'flKl— ZTI}*Z' :KI||Kj| %T4K23TL'E<2K44|r 2?7'&

In the present paper, we study the Hankel determinant2® = %[2K; + Kzl(m—f)2 + T14Ks + K4|m—f + Kz +
H2(2) = |agay — a_§| for class Z,_](cp). Throughout this K4|%( _m_i)+%|K4|( _m_i)z.
paper, for convenience of notation, we use the following

notations: Prooflf f(z) € Zn(¢), from (3) and @), then there exists a
5 Schwarz functiom(z), such that
d; = 931[2(@1 + @3) + 2981 % + @1(931 + Py — 931)
n+1
- 2% -4%) S — YW@ (zE ) ™
dp = B1(8(%> — B1) +6%2],
s = (B2 + By — B1)2, whered (2) = 1+ %12+ Bo?> + B+ ...(z€ D).

Define the function??,(z) b
Ao = 45, (52 + Pp— B1), 1(2) by

38 38, _l+w(z) 1t g £oF 1+2z
Kl_d1_§(§) ds, Kz—d2—§(§) da, 91(2)—1_\,\/() + &12+ 577 + .. <1 > (8)
K3 =8%2 K4= —6(—)“%’%. (5)  we can see that the?;(z) is a function with positive real

9 part. In view of the 8), we have
L. _ P1(2) -1 . 69124-69222-0—5323-0—...
2 Preliminary Results P (w(z) = ¢(g¢71(2) 1) = ¢<2+glz+(g>222+gszs+ )
To prove our main results we need the following Lemmas: _— ¢( Sz+ (g _ 7)22+ (gg_glngr 7)23+ )
2 2
Lemma 1.[6] Let the function#?; € &2, and be givenby  —1+ A, {‘Zl (@f’ - g_> + Pty }224—
the power series?;(z) = 1+ &12+ &2 + & +..(z€ 2 23 2 4 , ,
A), then |:<%1 o 5)1 P& é"l @351 :|
Z(s-asm+-~ G-+ =224

26 = E2 4 x(4— &2) ) 7 (Ba-abt )+ = (@ )+ =5+ |2
for some x)x| < 1, where theZ” is the class of functions ®)
with positive real part. From the ), we obtain
Lemma 2.[7] Let the function fz) given by(1) be in the D™1f(z) =D"f(2). ¢ (W(2)). (20)

class S[A,BJ. Then we have
After a simple calculation and using)(and @), the (L0)

1, k=1, yields the relationship:
lay| < pu o o
k=2 z+ ;k”“akzk = (z+ zzk”akzk) . {1+ A,
k=

The bound is sharp. B EZ. Brb? B &
w A A

Lemma3.[8] If p € & and pz) =1+ ze A,

(8 If p n2) nglpn '%Zgl(éa _5)_2) B3 }234_ 1)
then|pn| < 2. 2 2
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Following the (L1) and equating coefficients, we obtain  values of&, from (6) in (14), we have

2
4—
lapay — a3 = T’ch4 + chzwzcz) +Ksc?
11
a = 2n+1@1£1, % =g 28185+ EX (B2 + Bo — B1)), N K4c4 +X2(4— c2)2+ 22X (4 — ?) ’
- - = 2 _ T
= 2820 [2(931"‘ :933) + 293]5@2 + gl(ﬂl + @2 :931) _ Z ‘ (4K1—|— 2K2)C4+ (4K3+ K4)C2
— 2982 — AR\ E2 + [8(Bo — B1) + 657 5162+ 8%161}.
1 2] 1 [ ( 2 1) 1] 162 1(]:.].;’) —|—2(K2—|—K4)IJC2(4—C2)—|—K4“2(4—C2)2’
T T T
< Z|4K1+2K2|c4+ Z|4K3+K4|c2+ E|K2
T
From (12), therefore we have +Kaluc?(4—c?) + 7 Ka|p?(4—c?)?
=F(c.u) (15)
with = |x] < 1.
ayay— a3 = {%’1[ (B1+ B3) + 291%> Next, we assume that the upper bound Fc, i)
96 an T ;
9 4 occurs at an interior point of the rectand®?2] x [0,1].
+ B1( B + B — Pn) — 297 — 4By 6] Differentiating F(c, ) partially with respect tou, we
+ B1[8( B2 — PBr) + 6B\ ELE, + 8H2EL} have
11 2 2 2 o4 oF
~ gagn A1 EF + (B + PBo— $1)°&] o |K2+K4|c (4—c?) + —|K4|u(4—02)2. (16)
+ 4P\ (P2 + By — B1) E2ERY. (13)
We observe thgt > 0. Therefore F(c,u) is an
increasing function ofu, this contradicts our assumption
. that the maximum value df (c, ) occurs at an interior
Using (13), we get point of the rectanglé0,2] x [0,1]. Moreover, for fixed
ce[0,2],
1 maxF(c, 1) =F(c 1)—I|4K +2K |c4+I|4K +Kyc?
|aay — aj) = 968“'931[ (B1+ B3) + 25152 ’ ’ g!"T e 4"
T T
+ BB+ Bo— By) — 2982 — 4B 6P + 5 Ko+ Ka[c*(4— ) + 7 |Ka|(4— 42 = G(0). (17)
B 21 2 2 o2
+ ?15[;8(@2 %) +671)61 67+ 87161 Next, differentiatingG(c) with respect ta, it gives

5(5)" {4%167 + (#L+ B — £1)°6)

.
G/(c) = 2T|2Ky + Ka|c® + = |4K3 + Kyl
+4@1(%+%—%)£2£12}| (6) = 2T|2K1 + Kol + [4Ks + Ka|

= T|ché} + dp26, + 8267 — P{AFRE +2T|Kz + Kyl (2— ¢*)e — T|K4|(4— e

+ d3&i + A 52} :C[2T|2K1+K2|cz+£|4K3+ K|

= TI(d —Pob)éi + (0~ Py) 676 + 2T|Ky + Kl (2~ €)= TIKa| (4 )]
+8ALET — APHIES| — ¢[(2T| 2Ky + Ko + T|Ka| — 2T|Kp + Ka|)c

= T|K & + Kob2 6+ K& + Ka|, (14) T
K Reir e A e FATIK +Kal + 2]AKa 1 Kol —4TKql].  (18)

Now, takingM; = 2T |2Ky + Ko| + T|K4| — 2T |K2 + K4,
whereT = & & P=3(8)"anddy, dp,d3, ds, K1, K2, K, Ks Mz = 4T |Ky| — 4T|K + Ky | — |4K3 + Kg|, we need to
are defined ashj. discuss with different cases:

Case 1: If My = 0,M; # 0, thenG/(c) = 0 implies that

Since the functions”;(z) are members of the class the real critical point* = 0. Also, if My = 0,M, = 0, we
2 of functions with positive real part, we assume without can note thatG'(c) = 0, thus, theG(c) is a constant. In
loss of generality thaf; > 0. For convenience of notation, words, the maximum value dB(c) occurs atc = 0 or
we takes; = c(c € [0,2],LemmaB). Also, substitutingthe c=2.

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

38

L. Xiong: Upper bound of the second order Hankel...

M N
Case 2: If M—2 > 0, thenG'(c) = 0 implies that the real
1

critical point ¢* = 0 or ¢ =

My
0 < c* <2, SinceG(c) is a continuous function if0, 2],
so we can know that the maximum value®fc) occurs
atc=0, orc=c", or c= 2. Furthermore, we have
G(0) = 4T |Kal, G(2) = 8T|2K1 + Ko| + T|4K3z + K4| and
2* G(c*). Hence  |apay a3l <
max{4T |Ky|, 2*,8T|2K1 + Ko| + T|4K3 + K4|}.

M o
Case 3: Suppose that* > 2 or M—z < 0, this implies

Suppose that

there isn’t real critical irc € (0,2), in1 other wordsG(c)
is a monotone function onc, so we have
lagay — a3 < max{4T [Ky4|,8T|2K; + Ka| + T|4K3 + Ka|}.
This completes the proof of the Theorem.

4 Some consequences of the main results

In this section, we give some applications of the results
produced in the third section.

Corollary 1.Let the function fz) given by(1) be in the
class S, then we havéapas — 83| < & ~ 2.417.

ProofLettingn= 0, ¢(z) =

in Theoreml then Kl =
—24T = 96,M1 = 127M2 =
obtain the estimate of".

T =1+2z+22428+ ...
“B.Ky = 0.Kg = 32Ky =

— 32, thus, it is easy to

Corollary 2.Let the function §z) given by(1) be in the
class.#’, then we havéspas — a3| < £ ~0.194

Remark (1) In fact, we can know the corresponding
bounds for kinds of classes of function&) by Theorem
1, wheref (2) € {S'(¢)..% (9),S'[A,B], ¢ [AB],
S'(a), a),S;,ny,—l <B<A<10<a<10<
y < 1}. Furthermore, obviously, various other interesting
consequences of our main results can be derived by
appropriately specializing those parameter&\gB, a, y,
nand functiong (z).

(2) It seems that we can estimate the Hankel
determinanfayas — aj| for classZ;'") (A,B) by Lemma
2, but the the results are too rough relative to the
corresponding inequalities with Theoreth For this
point, we gives a special example: let
f(z) € #*[1,-1] = S, by Lemma2, then we have
lao| < 2,]ag] < 3,|la4| < 4, thus, we observe that
lapay — a3| < |apau| +|as|? < 8+ 9= 17. Furthermore, in
Corollary 1, we have|aas — a3 < & ~ 2.417. It is
obvious that 2417 < 17.

5 Conclusions

This paper gives an estimation of the coefficients for a
general class of analytic functions, which is related to the
Hankel determinant of order two. In fact, with giving
some applications of the main results, various other
interesting consequences (old and new) can be derived by
appropriately specializing parameters. In corresponding
places the obtained results have been supplemented by
Corollarys and Remarks.
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