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Abstract: In this paper, we find estimates on the upper bound of the Hankel determinant for a general classΣn(ϕ) of functions defined
by the known Sălăgean derivative operator as well as theϕ(z), whereϕ(z) are positive real part functions and symmetric with respect
to the real axis. Several useful consequences are obtained as special cases.
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1 Introduction

Let A denote the class of functions of the form

f (z) = z+
∞

∑
k=2

akz
k
, (1)

which are analytic in the open unit disk
∆ = {z∈ C : |z| < 1}. Let S denote the subclass ofA

consisting of all univalent functions. Suppose that
functions f andF be in the classS , then functionf is
said to be subordinate toF , or equivalently, the function
F is said to be superordinate tof , if there exists a
Schwarz functionω with ω(0) = 0, |ω(z)| < 1(z ∈ ∆)
such thatf (z) = F (ω(z)), written as f (z) ≺ F (z).(see,
for details, [8]).

For f (z) ∈ A , Sălăgean [20] defined the following
operator:

D0 f (z) = f (z), D1 f (z) = D f (z) = z f′(z), ...,

Dn f (z) = D(Dn−1 f (z)),

wheren∈ N = {1,2, ...,}. We note that

Dn f (z) = z+
∞

∑
k=2

knakz
k
,n∈ N0 = 0∪N. (2)

In [13], Noonan and Thomas defined theqth Hankel
determinant off (z) for q≥ 1 andn≥ 1 as

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2
.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The Hankel determinant plays an important role in the
study of the singularities and in the study of power series
with integral coefficients. Also, Arif et al.[3] determined
the rate of growth of the Hankel determinantHq(n) as
n → ∞ for different classes of functions. In fact, many
authors(see[2,5,11,10,13,14,15]) have obtained sharp
upper bounds ofH2(2) for several classes of analytic
functions.

We denote byP a class of analytic function in∆ with
P(0) = 0 andP(z)> 0. Here we assume thatϕ(z) ∈P,
satisfyingϕ(0)=0, ϕ ′(0)>0 andϕ(∆) is symmetric with
respect to the real axis. Also,ϕ(z) has a series expansion
of the form

ϕ(z) = 1+B1z+B2z2+B3z3+ ...,(B1 > 0). (3)

Using the Sălăgean operator and theϕ(z) defined as (3),
we introduce the classΣn(ϕ) as follows:

Σn(ϕ) =
{

f ∈ A :
Dn+1 f (z)
Dn f (z)

≺ ϕ(z),z∈ ∆
}

. (4)
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By giving specific values to the parametersn andϕ(z) with
Σn(ϕ), we can obtain the following important subclasses
studied by various authors in earlier works(see, for details,
[1,4,9,12,16,17,18,19,21,22]), for instance,

Σ0(ϕ)≡ S∗(ϕ), Σ1(ϕ)≡ K (ϕ);

Σ0

(1+Az
1+Bz

)

≡ S∗(A,B), Σ1

(1+Az
1+Bz

)

≡ K (A,B);

Σ0

(1+(1−2α)z
1− z

)

≡S∗(α), Σ1

(1+(1−2α)z
1− z

)

≡K (α);

Σ0

(1+ z
1− z

)

≡ S∗, Σ1

(1+ z
1− z

)

≡ K ;

Σ0

(

(1+Az
1+Bz

)γ
)

≡ S∗γ , Σ1

(

(1+Az
1+Bz

)γ
)

≡ Kγ .

In the present paper, we study the Hankel determinant
H2(2) = |a2a4 − a2

3| for class Σn(ϕ). Throughout this
paper, for convenience of notation, we use the following
notations:

d1 = B1[2(B1+B3)+2B1B2+B1(B
2
1 +B2−B1)

−2B
2
1 −4B2],

d2 = B1[8(B2−B1)+6B
2
1],

d3 = (B2
1 +B2−B1)

2
,

d4 = 4B1(B
2
1 +B2−B1),

K1 = d1−
3
2
(
8
9
)nd3, K2 = d2−

3
2
(
8
9
)nd4,

K3 = 8B
2
1, K4 =−6(

8
9
)n

B
2
1. (5)

2 Preliminary Results

To prove our main results we need the following Lemmas:

Lemma 1.[6] Let the functionP1 ∈ P, and be given by
the power seriesP1(z) = 1+E1z+E2z2 +E3z3+ ...(z∈
∆), then

2E2 = E
2
1 + x(4−E

2
1 ) (6)

for some x,|x| ≤ 1, where theP is the class of functions
with positive real part.

Lemma 2.[7] Let the function f(z) given by(1) be in the
class S∗[A,B]. Then we have

|ak| ≤











1, k= 1,

1
(k−1)!

k−2

∏
i=0

(A−B+ i), k≥ 2.

The bound is sharp.

Lemma 3.[8] If p ∈ P and p(z) = 1+
∞
∑

n=1
pnzn,z∈ ∆ ,

then|pn|6 2.

3 Main Results

Theorem 1.Let the function f(z) ∈ Σn(ϕ) and
M = |a2a4−a2

3|, we can obtain

(1) If 0≤
√

M2
M1

≤ 2, then

M ≤ max
{

4T|K4|,Q
∗
,8T|2K1+K2|+T|4K3+K4|

}

,

(2) If
√

M2
M1

> 2 or M2
M1

< 0 or M1 = 0, then

M ≤ max
{

4T|K4|,8T|2K1+K2|+T|4K3+K4|
}

,

where K1,K2,K3,K4 are defined by(5) and T = 1
96

1
8n ,

M1 = 2T|2K1 + K2| + T|K4| − 2T|K2 + K4|,
M2 = 4T|K4| − 4T|K2 + K4| −

T
2 |4K3 + K4| and

Q∗ = T
2 |2K1 + K2|(

M2
M1

)2 + T
4 |4K3 + K4|

M2
M1

+ T
2 |K2 +

K4|
M2
M1

(4− M2
M1

)+ T
4 |K4|(4−

M2
M1

)2.

Proof.If f (z) ∈ Σn(ϕ), from (3) and (4), then there exists a
Schwarz functionw(z), such that

Dn+1 f (z)
Dn f (z)

= ϕ(w(z))(z∈ ∆), (7)

whereϕ(z) = 1+B1z+B2z2+B3z3+ ...(z∈ ∆).
Define the functionP1(z) by

P1(z) =
1+w(z)
1−w(z)

= 1+E1z+E2z
2+ ...≺

1+ z
1− z

, (8)

we can see that theP1(z) is a function with positive real
part. In view of the (8), we have

ϕ(w(z)) = ϕ
(

P1(z)−1
P1(z)+1

)

= ϕ
(

E1z+E2z2+E3z3+ ...

2+E1z+E2z2+E3z3+ ...

)

= ϕ
(

1
2
E1z+

1
2

(

E2−
E 2

1
2

)

z2+
1
2

(

E3−E1E2+
E 3

1
4

)

z3+ ...

)

= 1+
B1E1

2
z+

[

B1

2

(

E2−
E 2

1
2

)

+
B2E

2
1

4

]

z2+

[

B1

2

(

E3−E1E2+
E 3

1
4

)

+
B2E1

2

(

E2−
E 2

1
2

)

+
B3E

3
1

8

]

z3+ ...

(9)

From the (7), we obtain

Dn+1 f (z) = Dn f (z) �ϕ(w(z)). (10)

After a simple calculation and using (2) and (9), the (10)
yields the relationship:

z+
∞

∑
k=2

kn+1akz
k = (z+

∞

∑
k=2

knakz
k) �

{

1+
B1E1

2
z

+
[

B1

2
(E2−

E 2
1

2
)+

B2E
2
1

4

]

z2+
[

B1

2
(E3−E1E2+

E 3
1

4
)

+
B2E1

2
(E2−

E 2
1

2
)+

B3E
3
1

8

]

z3+ ...

}

. (11)
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Following the (11) and equating coefficients, we obtain

a2 =
1

2n+1B1E1, a3 =
1
8

1
3n [2B1E2+E

2
1 (B

2
1 +B2−B1)],

a4 =
1
48

1
4n{[2(B1+B3)+2B1B2+B1(B

2
1 +B2−B1)

−2B
2
1 −4B2]E

3
1 +[8(B2−B1)+6B

2
1]E1E2+8B1E1}.

(12)

From (12), therefore we have

a2a4−a2
3 =

1
96

1
8n{B1[2(B1+B3)+2B1B2

+B1(B
2
1 +B2−B1)−2B

2
1−4B2]E

4
1

+B1[8(B2−B1)+6B
2
1]E

2
1 E2+8B

2
1E

2
1 }

−
1
64

1
9n{4B

2
1E

2
2 +(B2

1 +B2−B1)
2
E

4
1

+4B1(B
2
1 +B2−B1)E2E

2
1 }. (13)

Using (13), we get

|a2a4−a2
3|=

1
96

1
8n |B1[2(B1+B3)+2B1B2

+B1(B
2
1 +B2−B1)−2B

2
1 −4B2]E

4
1

+B1[8(B2−B1)+6B
2
1]E

2
1 E2+8B

2
1E

2
1

−
3
2
(
8
9
)n{4B

2
1E

2
2 +(B2

1 +B2−B1)
2
E

4
1

+4B1(B
2
1 +B2−B1)E2E

2
1 }|

= T|d1E
4
1 +d2E

2
1 E2+8B

2
1E

2
1 −P{4B

2
1E

2
2

+d3E
4
1 +d4E2E

2
1 }|

= T|(d1−Pd3)E
4
1 +(d2−Pd4)E

2
1 E2

+8B
2
1E

2
1 −4PB

2
1E

2
2 |

= T|K1E
4
1 +K2E

2
1 E2+K3E

2
1 +K4E

2
2 |, (14)

whereT = 1
96

1
8n ,P= 3

2(
8
9)

n andd1,d2,d3,d4,K1,K2,K3,K4
are defined as (5).

Since the functionsP1(z) are members of the class
P of functions with positive real part, we assume without
loss of generality thatE1 > 0. For convenience of notation,
we takeE1 = c(c∈ [0,2],Lemma3). Also, substituting the

values ofE2 from (6) in (14), we have

|a2a4−a2
3|= T

∣

∣

∣
K1c4+K2c2c2+ x(4− c2)

2
+K3c2

+K4
c4+ x2(4− c2)2+2xc2(4− c2)

4

∣

∣

∣

=
T
4

∣

∣

∣
(4K1+2K2)c

4+(4K3+K4)c
2

+2(K2+K4)µc2(4− c2)+K4µ2(4− c2)2
∣

∣

∣

6
T
4
|4K1+2K2|c

4+
T
4
|4K3+K4|c

2+
T
2
|K2

+K4|µc2(4− c2)+
T
4
|K4|µ2(4− c2)2

= F(c,µ) (15)

with µ = |x|6 1.
Next, we assume that the upper bound forF(c,µ)

occurs at an interior point of the rectangle[0,2]× [0,1].
Differentiating F(c,µ) partially with respect toµ , we
have

∂F
∂ µ

=
T
2
|K2+K4|c

2(4− c2)+
T
2
|K4|µ(4− c2)2

. (16)

We observe that∂F
∂ µ > 0. Therefore F(c,µ) is an

increasing function ofµ , this contradicts our assumption
that the maximum value ofF(c,µ) occurs at an interior
point of the rectangle[0,2]× [0,1]. Moreover, for fixed
c∈ [0,2],

maxF(c,µ) = F(c,1) =
T
4
|4K1+2K2|c

4+
T
4
|4K3+K4|c

2

+
T
2
|K2+K4|c

2(4− c2)+
T
4
|K4|(4− c2)2 = G(c). (17)

Next, differentiatingG(c) with respect toc, it gives

G′(c) = 2T|2K1+K2|c
3+

T
2
|4K3+K4|c

+2T|K2+K4|(2− c2)c−T|K4|(4− c2)c

= c[2T|2K1+K2|c
2+

T
2
|4K3+K4|

+2T|K2+K4|(2− c2)−T|K4|(4− c2)]

= c[(2T|2K1+K2|+T|K4|−2T|K2+K4|)c
2

+4T|K2+K4|+
T
2
|4K3+K4|−4T|K4|]. (18)

Now, takingM1 = 2T|2K1 +K2|+T|K4| − 2T|K2 +K4|,
M2 = 4T|K4| − 4T|K2 + K4| −

T
2 |4K3 + K4|, we need to

discuss with different cases:
Case 1: If M1 = 0,M2 6= 0, thenG′(c) = 0 implies that
the real critical pointc∗ = 0. Also, if M1 = 0,M2 = 0, we
can note thatG′(c) ≡ 0, thus, theG(c) is a constant. In
words, the maximum value ofG(c) occurs atc = 0 or
c= 2.
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Case 2: If
M2

M1
> 0, thenG′(c) = 0 implies that the real

critical point c∗ = 0 or c∗ =

√

M2

M1
. Suppose that

0 ≤ c∗ ≤ 2, SinceG(c) is a continuous function in[0,2],
so we can know that the maximum value ofG(c) occurs
at c = 0, or c = c∗, or c = 2. Furthermore, we have
G(0) = 4T|K4|, G(2) = 8T|2K1+K2|+T|4K3+K4| and
Q∗ = G(c∗). Hence |a2a4 − a2

3| ≤
max{4T|K4|,Q

∗,8T|2K1+K2|+T|4K3+K4|}.

Case 3: Suppose thatc∗ > 2 or
M2

M1
< 0, this implies

there isn’t real critical inc ∈ (0,2), in other words,G(c)
is a monotone function on c, so we have
|a2a4−a2

3| ≤ max{4T|K4|,8T|2K1+K2|+T|4K3+K4|}.
This completes the proof of the Theorem.

4 Some consequences of the main results

In this section, we give some applications of the results
produced in the third section.

Corollary 1.Let the function f(z) given by(1) be in the
class S∗, then we have|a2a4−a2

3| ≤
29
12 ≈ 2.417.

Proof.Lettingn= 0, ϕ(z) = 1+z
1−z = 1+2z+2z2+2z3+ ...

in Theorem 1, then K1 = −8,K2 = 0,K3 = 32,K4 =
−24,T = 1

96,M1 = 1
12,M2 = − 13

24, thus, it is easy to
obtain the estimate onS∗.

Corollary 2.Let the function f(z) given by(1) be in the
classK , then we have|a2a4−a2

3| ≤
7
36 ≈ 0.194.

Proof.Letting n= 1, ϕ(z) = 1+z
1−z= 1+2z+2z2+2z3+ ...

in Theorem1, then K1 = − 16
3 ,K2 = 16

3 ,K3 = 32,K4 =

− 64
3 ,T = 1

768,M1 = 0,M2 =− 1
24, thus, it is easy to obtain

the estimate onK .

Corollary 3.Let the function f(z) given by(1) be in the
class S∗1

2
, then we have|a2a4−a2

3| ≤
1
3 ≈ 0.333.

Proof.Lettingn= 0,ϕ(z) = (1+z
1−z)

1
2= 1+z+ 1

2z2+ 1
2z3+ ...

in Theorem1, thenK1 =
1
8,K2 =−1,K3= 8,K4 =−6,T =

1
96,M1 = − 13

192,M2 = − 5
12,

M2
M1

≈ 6.15> 4,thus, it is easy
to obtain the estimate onS∗1

2
.

Corollary 4.Let the function f(z) given by(1) be in the
classK 1

2
, then we have|a2a4−a2

3| ≤
1
24 ≈ 0.0417.

Proof.Lettingn= 1,ϕ(z) = (1+z
1−z)

1
2

= 1 + z + 1
2z2 + 1

2z3 + ... in Theorem 1, then
K1 = 1

6,K2 = − 2
3,K3 = 8,K4 = − 16

3 ,T = 1
768,M1 =

− 1
128,M2 = − 1

48,
M2
M1

≈ 2.67< 4, thus, it is easy to obtain
the estimate onK 1

2
.

Remark (1) In fact, we can know the corresponding
bounds for kinds of classes of functionsf (z) by Theorem
1, wheref (z) ∈ {S∗(ϕ),K (ϕ),S∗[A,B],K [A,B],
S∗(α),K (α),S∗γ ,Kγ ,−1 6 B < A 6 1,0 6 α < 1,0 <

γ 6 1}. Furthermore, obviously, various other interesting
consequences of our main results can be derived by
appropriately specializing those parameters asA, B, α, γ,
n and functionϕ(z).

(2) It seems that we can estimate the Hankel
determinant|a2a4 − a2

4| for classΣn,m
λ1,λ2

(A,B) by Lemma
2, but the the results are too rough relative to the
corresponding inequalities with Theorem1. For this
point, we gives a special example: let
f (z) ∈ S ∗[1,−1] ≡ S∗, by Lemma 2, then we have
|a2| ≤ 2, |a3| ≤ 3, |a4| ≤ 4, thus, we observe that
|a2a4−a2

3| ≤ |a2a4|+ |a3|
2 ≤ 8+9= 17. Furthermore, in

Corollary 1, we have |a2a4 − a2
3| ≤

29
12 ≈ 2.417. It is

obvious that 2.417< 17.

5 Conclusions

This paper gives an estimation of the coefficients for a
general class of analytic functions, which is related to the
Hankel determinant of order two. In fact, with giving
some applications of the main results, various other
interesting consequences (old and new) can be derived by
appropriately specializing parameters. In corresponding
places the obtained results have been supplemented by
Corollarys and Remarks.
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