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1 Introduction Definition 1.2. Let X be a nonempty set. Suppose that the
mapping d: X x X — C satisfies the following conditions:
In 2011, Azamet al.[1] introduced the notion of complex . .
valued metric space which is a generalization of the (@) 2jd(x.,y), for allx,y € X and dxy) = 0if and only
classical metric spaces. They established some fixed point,.. x=y, i
results for a pair of mapping satisfying a rational (i d(xy) j d(y,x) for all x,y € X;
inequality. (iii) d(x,y) 2d(x,2)+d(zy), forall x,y,ze X.
A complex numbeiz € C is an ordered pair of real Then d is called a complex valued metric on X #&Kdd)
numbers, whose first co-ordinate is called(Beand s called a complex valued metric space.
second coordinate is called (@). A complex-valued , .
metric d is a function fromX x X into C, whereX is a ~ Exa@mple 1.3.Let X= C. Define the mapping oX x X —
nonempty set an@ is the set of complex numbers. C by
Let C be the set of complex numbers andz, € C.
Define a partial orders on C as follows:

z 32 if and only if Re(z1) = Re(z) and IMz1) = Then(X,d) is a complex valued metric space.
Im(z), that is,z; X z if one of the following holds:

d(z1,2) =2i|lzn — 2|, forallz;,z € X.

) Definition 1.4. Let (X,d) be a complex valued metric
(C1) Rez) = Re(z) and Imz;) = Im(ZZ)j space and x,} be a sequence in X andxX. If for every
(C2) Rez,) <Rez;) and IMzy) = Im(2p); c € C, with 0 < c there is ke N such that for all n> k
(C3) Rez) =Re(zp) and IM(z1) < Im(zp); 7 - ’
(C4) Réz) < Re(z) and Im(z;) < Im(z). (i) d(xn,x) < c, then{x,} is said to be convergent to x.
(i) d(%n,Xn+m) < ¢, where ne N, then{x,} is said to be
Cauchy sequence.
(i) If every Cauchy sequence in X is convergent, then
(X,d) is said to be a complete complex valued

In particular, we will writezy 3 z if z; # z and one of
(C2), (C3), and (C4) is satisfied and we will wrizg < z»
if only (C4) is satisfied.

Remark 1.1. We note that the following statements hold: metric space.
() abeRanda=b=azzbzvzeC. Lemma 1.5.Let (X,d) be a complex valued metric space
(N0 Zzaizn=lal<|z, and{x,} be a sequence in X. Thér,} converges to x if
(i) zz szzand 2 <23 = 7 < z3. and only if|d(xn,X)| — 0 as n— oo.
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Lemma 1.6.Let (X,d) be a complex valued metric space Proposition 2.5.Let S and T be continuous self mapping
and let{x,} be a sequence in X. Them,} is a Cauchy of a complex valued metric spa¢¥,d). If Sand T are
sequence if and only jf(xn, Xn+m)| — 0 as n— o, where ~ compatible, then they are compatible of type (A).

me N.

ProofSupposeS and T are compatible . Le{x,} be a

Definition 1.7. Let (X,d) be a metric space, f and g be sequence irX such thatnﬂgb(n _ MLTX” — ufor some

self maps on X. A point x in X is called a coincidence
point of f and g iff fx=gx. In this case, w= fx=gxis  U€E X. Now,

called a point of coincidence of f and g.
. . . d(SSx,TS%) 3 d(SSx,STx)+d(STx,TSx).
Jungck P] introduced the notion of weakly compatible
maps as follows: SinceSandT are compatible anfis continuous, we have

Definition 1.8. Two maps f and g are said to be weakly n- lim, d(SSx, TSx)| =
compatible if they commute at their coincidence points. S|m|larly , e haver11!mmj(TT>q1, STx)|=0

ThereforeSandT are compatible of type (A).

2 Main Results Proposition 2.6.Let (X,d) be complex valued metric
space and I : X — X be compatible mapping of type

Jungcket al. [3] introduced the concept of compatible (A). If one of S and T is continuous, then S and T are
mappings of type (A) in metric spaces. Patteikal. [6] compatible .
gives the concept of weak compatible mappings of type
(A). One can refer§,6,7] for more details. ProofWithout loss of generality, assume that is

In the same manner, we introduce the concept of wealcontinuous. To show th&andT are compatible, suppose
compatible mappings of type (A) in complex valued metric that {x,} is a sequence iX such thatSx, Tx, — u for
spaces as follows: someu € X. ThenT Sy — Tuasn — oo,

Definition 2.1. A mapping T from a complex valued SinceT is continuous,

metric spacéX,d) into itself is said to be continuous at x lim d(TSx. TTx)| =0 21
if for every sequence{xp} in X such that e (TS%,TTx)] (2.1)
Am|d(xn,x)| =0, Am|d(Txn,Tx)| =0 Now, we have
Definition 2.2. Let S and T be mapping from a complex

valued metric spacéX,d) into itself. The mapping S and d(ST%, TSx) Id(ST%,TTx) +d(TTx, TSx).

T are said to be compatible #im [d(STx,TSx)| =0, (2.2)
wheneveKx,} is a sequence in X such that For alln € N, sinceSandT are compatible mapping of
type (A),
rI]|m Sx]_llm TX, = u for some e X. ype (A)
% lim d(STx,TT) =0. (2.3)

Definition 2.3. Let S and T be mappings from a complex

valued metric spaceX,d) into itself. The mappings S and Using €.1) and @.3)in (2.2), we get Ilmd(STx, TSx) <
T are said to be compatible of type (A)

lim |d(TSx,SS¥)| = 0 and lim [d(STx,TTx)| =0, O thatis, Imd(STx, TSx)| =

wheneverx,} is a sequence in X such that Therefore, we have

lim Sx% = lim Tx,=u lim d(STx,TSx) = 0.
n—oo
for some ue X. HenceSandT are compatible.
From above two prepositions, we have the following

Definition 2.4. Let S and T be mappings from a complex
valued metric spacéX, d) into itself. The mappings S and
T are said to be weak compatible of type (A), if Proposition 2.7.Let S and T be continuous mappings
. . from a complex valued metric spa¢¥,d) into itself.
r!de(TS)ﬁ, SS¥)l < rl]mc|d(ST>ﬁ,SSx)| Then S and T are compatible iff they are compatible of
type (A).

The following prepositions shows that Definitions 2.2,
2.3, 2.4 are equivalent under some conditions.

result:

and
lim [d(ST», TTx)| < lim |d(T S, TTx)|,
n—oo n—oo

whenever {x,} is a sequence in X such that proposition 2.8.Every pair of compatible mappings of
lim Sx = lim Tx, = u for some & X. type (A) is weak compatible of type (A).

n—oo
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ProofSuppose that the paiS,T) is compatible of type Proposition 2.10.Let S and T are compatible mappings

(A), so of type (A) from a complex valued metric spéxed) into
) itself. If one of S and T is continuous then S and T are
lim d(STx, TTx) =0 compatible.
and ProofSuppose that S is continuous. et} be a sequence

in X such that limSx = lim Tx, = u for someu ¢ X.
n—oo n—oo
SinceSis continuous, we havne lilBT % =Su= r!im SSx.
—00 —500
Now, we have

lim d(TSx,SSx) =0,
n—oo

Whenever{x,} is a sequence iX such thatnEng, =

oim, T = ufor someu € X. d(STx%,TSw) < d(STx,SSK)+d(SSx, TSK).
Now, we have
) ) SinceSandT are weak compatible of type (A), we have
0= lim d(T$x,SS¥) 3 lim d(STx%, TTx)
lim d(STx,TSx) 30,

and
0= lim d(ST»,TTx) 3 lim d(T Sx, SSx). that is,
' i | im d(ST»,TSx)| =0,
Hence the mappingSandT are weak compatible of type oo
(A). . .
implies that,

Proposition 2.9.Let S and T be continuous mappings of
a complex valued metric spaf¥,d) intoitself. IfSand T
are weak compatible of type (A), then they are compatible
of type (A). ThereforeSandT are compatible.

As a direct consequence of Preposition 2.9 and
ProofSupposesandT are weak compatible of type (A).  Preposition 2.10, we have the following:

Let {x,} be a sequence inX such that
lim Sx, = ||m T X, = ufor someu € X. Proposition 2.11.Let S and T be continuous mappings

N—o00 . . .
SlnceSandT are continuous mappings, we have f;?]?na complex valued metric spagX,d) into itself.

lim d(ST», TSx)=0.
n—oo

lim d(STx, TTx) = lim d(TSx%, TTx)
n—oo n—oo

=d(Tu,Tu) =0,
that is,
| im d(STx,TTx)| =0,
n—oo
implies that,
lim d(STx,TTx) =0
n—o0
and
lim d(T Sx,SSx) = lim d(STx», SSx)
n—-o0 n—o0
=d(SuSu =0,
that s,
[ lim d(T Sx,SSx)| =0,
n—oo
implies that,

lim d(T Sx,SSx) = 0.
n—oo

ThereforeSandT are compatible mappings of type (A).

(i) Sand T are compatible of type (A) iff they are weak
compatible of type (A).

(i) Sand T are compatible iff they are weak compatible
of type (A).

Properties of weak compatible mappings of type (A) in
complex valued metric spaces

Proposition 2.12.Let S and T be compatible mappings of
type (A) from a complex valued metric spgeed) into
itself. If Su= Tu for some & X, then STu= SSu=T Tu=
TSu.

ProofSuppose thaftx, } is a sequence iX defined byx, =
un=123 ...andSu=Tu.
Then we have I|m3>§1 = I|m TX, =Su=Tu.

SinceS andT are compatlble mappings of type (A),
we have

d(STuTTu) = r!mn d(STx, TTx)
J1lim d(TS%, TTx)

n—oo
=d(TSuTTu) =0,
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implies that, implies that,
|d(STUTTU)| < O,thatisd(STuTTu) =0. lim d(STx,Tu) =0
Thus, we have Thus, we geglngTm =Tu.
STu=SSu=TTu=TSu (iii) Since T is continuous ati we havenﬂg}T Sx=Tu

By (i), sinceSis continuous ati we have limT Sx =
Proposition 2.13.Let S and T be weakly compatible y () how X

mappings of type (A) from a complex valued metric space>Y Hence by the uniqueness of limit, we haSea= Tu

(X,d) into itself. and so by Preposition 2.13Tu= T Su
Supposg]imon] = MLTX” =uforsomeuin X.
Then we have the following: 3 Coincidence point theorem

0] rI][}n T Sx¥ = Su, if Sis continuous at u.
(ii) L@ STx% =Tu,if T is continuous at u.
(i) STu=TSu and Su=Tu, if Sand T are continuous

Let A, B, SandT be mappings from a complex valued
metric spacéX,d) into itself such that

at u. AXUBX C SXNTX, (3.1)
d(Ax By) <kd(SxTy) forallx,yinX, 0<k< 1.
Proof(i) Suppose tha}}_l}inﬁ;x1 = r!@ TX, = u for some 3.2)
u € X. SinceSis continuous, we hav&LLrBTx] = Su= The sequence&} and {yn} in X are such thag, — x,
Ml) SSx. Yn — yimplies thatd(x,, yn) — d(x,y).

Now, we have Then by 8.1), sinceAX C TX, for any arbitrary point

Xo € X, there exists a point; € X such thatAxy = Tx.

d(T Sx%,SU =< d(TSx,SSx) +d(SSx,Su). SinceBx C SX, for this pointx;, we can choose a point

X2 € X such thaBx; = Sx» and so on. Inductively, we can
Therefore, since S and T are weakly compatible of typedefine a sequendg/n} in X such that

(A),
Yon = TXony1 = AXen @andyony1 = S¥ni2 = BXony 1,

lim d(TSx,Su 30, (3.3)

e foreveryn=0,1,2,....

that is, .

Lemma3.1.Let A, B, S and T be mappings from a

| lim d(T Sx,Su)| =0, complex valued metric spa¢,d) into itself satisfying
n—ye the conditions(3.1) and (3.2). Then the sequencfyn}

implies that, defined by(3.3) is a Cauchy sequence in X.
r!iﬂl)d(TSx],Su) —0 ProofFrom 3.2) we have
, d(Yzn, Yan+1) = d(A%n, BXen1)

Thus, we have T % = Su < kd(Sxn, Ten 1)

(ii) Suppose that lin6x, = lim Tx, = ufor someu € X. = kd(y2n-1,Y2n)-

Since S is continuous, we have Consequently, it can be concluded that

IMmTS¥x=Tu=lim TTx,.
n—oo

n—oo

Now, we have d(Yn,Yn+1) < Kd(Yn-1,Yn)
< kd(Yn_2Yn 1)
d(STo%, Tu) 2 d(STx, TTx)+d(TTx, Tu).

Therefore, sinc&S and T are weakly compatible of type < Kd

(A), ~ (yoayl)
. Now forallm>n

Ilnlcd(STx,,Tu) =0,

n—

d(yma)’n) = d(Yn7Yn+1) + d(Yn+17Yn+2) +--+ d(YmaYm—l)
that is, 3 K'd(yo,y1) + K" d(yo,y1) + ... + kK™ 1d(yo,y1)

) n
| lim d(STx,Tu)| =0, 3 1k_ Ao, y1).
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Therefore, we have Now, we prove thaAz= z
If Az+# z, then by (3.2), we have

d(Azyoni1) = d(AZBxons1) T KA(SZTxon ).
Hence,nig.j|d(ym,yn)| =0. Lettingn — o, we have
Thus{yn} is a Cauchy sequence ¥ d(Az2) < kd(z,2) = 0

n

K
|d(Ym, Yn)| = m|d(YO7Y1)|'

Theorem 3.2.Let A, B, S and T be mappings from a hati
complex valued metric spad,d) into itself satisfying thatis,

(3.1, (3.2 and the following: d(Az2)| =0
SXNT X is a complete subspace Xf (3.4)

implies that,
Then the pairgA,S) and (B, T) have a coincide point. d(Azz) = 0.
ProofBy Lemma 3.1, the sequenég,} defined by 8.3 Thus, we gefA\z=z
is a Cauchy sequence BXNTX. SinceSXNTX is a Hence, we havAz= z= Sz
complete subspace of, {yn} converges to a poirt in Similarly, we haveBz=Tz=z

SXNTX. On the other hand, since the subsequences Hencezis a common fixed point oA, B, SandT. For

{y2n} and{yon,1} of {yn} are also Cauchy sequences in the uniqueness, lgtbe another common fixed point &
SXNTX, they also converge to the same limitHence, B, SandT such thay +# z.

there exists two pointsl, v in X such thatSu= z and From (3.2), we have
Tv=zrespectively.
From @3.2), we have d(y.2) = d(Ay.Bz) S kd(SyT2) = kd(y,2).
d(Au,BXpn11) 2 KA(SUTXon41)- Thus, we have

Lettingn — o, we have [d(y,2)| =K|d(y,2)|,

|d(Au,z)| =0, a contradiction tk < 1.

Therefore A, B, SandT have a unique common fixed

implies that, point.

d(Au,z) = 0.
Thus.Au=z— Su Acknowledgement
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