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Abstract: Traditional integrated SPC-EPC studies are based on linear transfer function models to describe the relationship 
between the input and output variables. However, these linear models are unable to model complex nonlinear input-output 

relationships, which are closer to real situations. In order to solve this problem, this paper presents an integrated SPC-EPC 
method based on a nonparametric transfer function model to describe the input-output relationship in the system. A controller 
and integrated SPC-EPC control system based on this model are built. The performance of this method for checking assignable 
causes resulting in trend and sustained shift is analyzed using examples and simulations. The results indicate that the integrated 
SPC-EPC control method based on nonparametric transfer function model is effective in controlling complex nonlinear 
systems, which have assignable causes resulting in trend or sustained shift. 
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1   Introduction 

Statistical process control (SPC) and engineering 

process control (EPC) are two different techniques 
originated from distinct fields to guarantee the 

quality of products. The paths they achieve their 

own goals are totally different, but they have the 
same goal of reducing variation in the quality 

characteristics. Control chart is a useful tool of 

statistical process control. Traditional control chart 
assumes that the mean values of the process 

fluctuate around a constant value, and they are 

independent. Typical control charts include 
Shewhart control charts, EWMA control charts, 

CUSUM control charts and Hotelling T
2
 charts for 

multivariate processes [1]. 

Engineering process control originated from 

process industry and it is mainly used in some 

continuous processes such as chemical process. 
Sometimes EPC is also called automatic process 

control (APC). The methods of EPC are based on 

feedforward or feedback adjustment to control the 
process, by tuning the input variables to reduce the 

deviation in the output variables in order to 

minimize the variation within the process. EPC 
assumes that the output variables are not stable, 

they are autocorrelated, engineers can do 

adjustment based on this relationship. Typical EPC 

controllers are MMSE controller, PID controller, 

EWMA controller and adaptive controller [2]. 

However, due to the reason that quality 

engineers lack the knowledge of dynamic and 

continuous control, control engineers lack the 
knowledge of statistics. The communication 

between them was very little for a long time. 

Montgomery et al [3] pointed out, “Statistical 
Process Control” is not an appropriate name, control 

chart didn’t really play the role of “control”, a more 

suitable name is “Statistical Process Monitoring”. 
Control chart only plays the role of finding the 

signal of assignable causes. EPC is doing some 

adjustment to eliminate the deviation which can be 
forecasted in order to keep the output close to the 

target value. EPC really does “control” to the 

process, but EPC cannot remove the reason of the 
deviation. Zhang [4] studied the complementary 

features of SPC and EPC and the new trend of 

modern manufacturing environment: small batch of 
manufacturing, frequent adjustment in the process, 

using sensor to collect data and so on. She pointed 

out that integrating SPC and EPC had many 
advantages, and reached the following conclusions: 

1) Modern manufacturing environment resulting in 

the output data are highly autocorrelated, this 
violates the two traditional assumptions of the 

control chart: the data are independent and normally 
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distributed. EPC can filtrate this autocorrelation in 

the data; 2) EPC can avoid some deviations caused 

by inner reasons which cannot be eliminated. This 
can reduce some fluctuations in the process; 3) 

Using SPC to monitor the process in order to find 

and eliminate assignable causes can improve the 
process; 4) Integrated SPC-EPC can reduce the cost 

of quality improvement. Because of the advantages 

of integrating SPC-EPC and the new need in 
modern manufacturing, more and more researchers 

are starting to be aware of these advantages. 

2   Studies in Integrated SPC-EPC 

Along with the development of manufacturing 

techniques and the mixed industries, more and more 

products have autocorrelationships in their 
manufacturing processes. So the barrier between 

SPC and EPC is starting to be removed. Integrated 

application of SPC and EPC is now considered to 
be an effective way to control and guarantee the 

quality of products. Early ideas of integrated SPC- 

EPC was proposed by MacGragor. He said we 
should remove the barrier between SPC and EPC, 

and he proposed the concept of “Online Quality 

Control” [5]; Van der Wiel et al analyzed the 
characteristics of APC (another name for EPC) and 

SPC, they proposed the concept of ASPC 

(Algorithmic Statistical Process Control) [6]; Box et 
al proposed the idea of the integration of SPC and 

APC. They introduced the knowledge of statistical 

monitoring and dynamic feedback control and gave 
a comparison of the two fields. They indicated that 

SPC was used to reduce some outside disturbance 

and EPC was used to compensate some deviation 
cannot be avoided. They also explained some 

criticized viewpoints on integrating SPC and EPC 

[7]; Messina and Montgomery et al gave a frame of 
SPC-EPC integration, they said we could use EPC 

to remove the autocorrelation in the process and use 

the control chart to get a complementary effect. 
They verified that using SPC and EPC together is 

better than using either alone [8-9]. In the books of 

Box et al, Del Castillo and Montgomery, integrated 
SPC-EPC was elaborated specifically [10, 1-2].  

Now the studies on integrated SPC-EPC mainly 

use linear transfer function models proposed by Box 
et al [11] to describe the input-output relationships 

in processes [12-18]. Although linear transfer 

function models sometimes can be used to model 
some simple processes well, they have many errors 

and limitations when the relationships are nonlinear. 

Nonlinear transfer function models can be used to 
describe some nonlinear relationships, but modeling 

biases always exist in the selection of the explicit 

parametric nonlinear forms. To solve the problem of 

lacking study on the control of nonlinear input-
output relationships, this paper proposes a method 

using nonparametric transfer function models, 

which do not have a specific form to describe the 
dynamic input-output relationships within the 

system and then build an integrated SPC-EPC 

control system based on this model. Trend and 
sustained shift are two typical forms of results of 

the assignable causes, which may happen in the 

process. Trend is very common in some continuous 
processes such as chemical processes and sustained 

shift is very common in some parts manufacturing 

processes. Using a controller alone cannot remove 
the assignable causes, so we need to use integrated 

SPC and EPC to get best control results. The 

research of this paper focuses on the two forms of 
results of assignable causes, and the integrated SPC-

EPC method based on the nonparametric transfer 

function model. 

3   Nonparametric Transfer Function Model 

3.1 Introduction to Nonparametric Transfer 

Function Model 

Linear transfer function model was proposed by 

Box et al [11] to describe the relationship between 

input and output variables. This model has been 
extensively and successively applied in many fields. 

However, linear transfer function model is only the 

first step to discover the relationship between input 
and output variables. Most applications have 

nonlinear features between input and output 

variables. An example is the effect of rainfall on the 
river flow [19]. These complex relationships cannot 

be well approximated by linear models. A direct 

solution for this problem is to use nonlinear transfer 
function models instead of linear models. Chen et al 

proposed a kind of nonlinear transfer function 

model [19]: 

( ,..., ; )t t d t d p tY C f X X N     
     

(1) 

Where f(.) is a parametric function assuming the 

Volterra series representation and Nt is a stationary 

ARMA process. 

The problem in using nonlinear transfer function 

models is that it is very difficult to justify the 

explicit parametric functional forms. Modeling bias 
always exists for the selection of the parametric 

models. Nonparametric smoothing methods provide 

a more flexible alternative to model nonlinear time 
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series. Liu et al provided a kind of nonparametric 

transfer function model [20]: 

                       
( )t t tY f X e 

              
       (2) 

Where f(.) is an unknown and smooth function. The 
processes {Xt} and {et} are assumed to be strictly 

stationary. The transfer function f(.) is modeled by 

nonparametric smoothing and the innovation 
process {et} is modeled as a stationary and 

inevitable ARMA(p,q) process: 

                         
( ) ( )t tB e B   

               
    (3) 

Where 
1

( ) 1
p

i

i

i

B B


    ; 
1

( ) 1
q

j

j

j

B B


    ;  

1( ,..., )p

    and 1( ,..., )q

    are unknown 

parameters and {εt} is a sequence of independent 

random variables with mean 0 and variance σ
2
, {Xt} 

and {εt} are assumed to be independent [20]. 

By modeling the transfer function f(.) 

nonparametrically, the model is flexible therefore 
can be used to model nonlinear relationships of 

unknown functional forms. By modeling {et} as an 

ARMA(p,q) process, the autocorrelation in the data 
is removed so f(.) can be estimated more efficiently 

[20]. 

3.2   Estimation Algorithm of Nonparametric 

Transfer Function Model 

Liu et al [20] proposed an estimation algorithm 

of the nonparametric transfer function model. 
Assume {et} is a stationary AR(p) process, model (2) 

can be written as 

( )t t tY f X e 
   

( ) t tB e  
          

(4) 

Under normal assumption and with observations 

1{( , )}n

t t tX Y 
, the maximum likelihood estimation for 

f(.) and  boils down to the following optimization 

problem: 

2

,
1 1

inf { ( ) ( ( ))}
pn

t t i t i t i
f

t i

Y f X Y f X 


 

    
 (5) 

Where the infimum is taken over all smooth 

function f and 
pR  satisfies the stationary 

condition. 

First obtain a preliminary estimator for f(.) by 

local linear regression, ignoring the correlation in 

{et}. Namely,  
0( )f x a , and  

0 1( , ,)a a  minimizes: 

2

0 1

1

{ ( )} ( )
n

t t b t

t

Y a a X x K X x


   
   

  (6) 

Where
1(.) (. / )bK b K b is a kernel function in R, 

and b>0 is a bandwidth. 

Let ( )t t te Y f X  be the initial estimate of the 

innovation series et, define: 
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And
0

{ ( )}
p

t i

i

W diag w X 



  , where w(.) is a 

weight function controlling the boundary effect in 
nonparametric estimation. The following estimation 

procedure is used [20]: 

1. Specify an initial value     defined as: 

                
 1

1 1 1 1( )T TX WX X WY 
          

    (8) 

2. For given  , let   
0( )jj

f f X a  , where    

 
0 1( , )a a minimizes: 


2

0 1

1 1 1

( ) [ ( )] ( ) ( )
ppn

t t j i t i t i h t j t i

t i i

Y a a X X Y f X K X X w X  

  

 
       

 
  

                                                                                       (9) 

Where
1(.) (. / )hK h K h , and h>0 is a bandwidth. 

Obviously 1a  is an estimator for
  ( )jjf f X . 

3. Obtain 


 by minimizing: 

  
2

1 1 1 1

( ) [ ( )] ( ) ( ) ( )
ppn n

t t j i t i t i h t j j t ij j

j t i i

Y f f X X Y f X K X X w X w X  

   

 
       

 
  

                                                                              (10)

 Step 2 and step 3 are repeated until convergence. 

3.3   Nonparametric Estimation of a Real Process 

In order to test the advantage of the 

nonparametric transfer function model over linear 
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transfer function models in modeling real processes, 

this part uses a real process to verify this.  

A gas furnace was employed in which air and 
methane combined to form a mixture of gases 

containing CO2. The air feed was kept constant, but 

the methane feed rate could be varied in any desired 
manner and the resulting CO2 concentration in the 

off gases measured [11]. The input variable (gas 

feed rate) and corresponding output variable (CO2 
concentration) are in Fig. 1. The time intervals are 9 

seconds [11]. 

 

 
Figure 1.   Input gas rate and output CO2 concentration 

from a gas furnace 

In the book of Box et al [11], the final form of 
the combined linear transfer function-noise model 

estimation result for the gas furnace data is: 

2

3 2

(0.53 0.37 0.51 ) 1

1 0.57 1 1.53 0.63
t t t

B B
Y X a

B B B


  
 

   (11) 

And the corresponding transfer function model is: 

2

3(1 0.57 ) (0.53 0.37 0.51 )t tB Y B B X     
(12)   

The final estimation variance of the linear transfer 

function-noise model is 0.048. 

We also use nonparametric estimation method 
in 3.2 to estimate the same process in Fig. 1. 

Assume the model is Yt=F(Xt-3) and the noise is an 

AR(2) process, which is the same with the results in 
the book of Box et al. In step 1, the initial 

estimation results of  are 1 =1.531630 and 2 =-

0.730715. Then repeat step 2 and step 3, the 

convergence is achieved at about the 30th time of 

calculation. The results from the estimation of  are 

1 =0.8434287 and 2 =-0.1589558. The final 

estimation variance of the nonparametric transfer 
function-noise model is only 6.07×10

-5
. 

In the results of the two different transfer 

function models, the final variance of the 
nonparametric transfer function model is smaller 

than the result of the linear model. So in the 

estimation of this real example, the nonparametric 
model has better performance than the linear model, 

it can preserve more information about the data. So 

the nonparametric transfer function model is closer 
to real situations, it is more suitable and flexible 

than other linear transfer function models in 

modeling different kinds of complex processes.    

4   Effect of Integrated SPC-EPC Control 

Method Based on Nonparametric Transfer 

Function Model 

4.1   Controller Based on Nonparametric Transfer 

Function Model 

Because the nonparametric transfer function 
model is more suitable in modeling real processes, 

this part uses a nonparametric transfer function 

model to build an EPC controller. A popular model 
that describes the dynamic behavior of the quality 

characteristics and noise-disturbance effects is 

given by Van der Wiel [6]: 

                       1( )t t tY T B X N 
               

   (13) 

Where Yt is the output of the quality characteristic, 

assume its target value is 0; Xt is the control action 

employed with transfer function T(B), and B is the 
backshift operator; Nt is the dynamic noise of the 

system that can be represented by a time series 

model. This model is similar to model (1) and (2), 
transfer function T(B) is unknown. In 

manufacturing process, if no control action is made, 

the output during this time is the dynamic 
autocorrelated noise Nt. Deviation in this output 
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may cause the loss in quality, so we need to reduce 

deviation in this output. If we want to get an MMSE 
output, assume the form of Nt is known, we need to 

adjust input Xt in order to cancel the MMSE 

forecast of Nt, and the transfer function T(B) is 
gotten by nonparametric smoothing: 

                          1
ˆ( ) t tT B X N 

                
    (14) 

4.2   Effect of Controller Based on Nonparametric 

Transfer Function Model 

The purpose of building a controller is to reduce 

the deviation in the output quality characteristics. 
However, in a large number of real manufacturing 

processes, due to some reasons, the process would 

have one or more assignable causes. So to study the 
performance of the controller under assignable 

causes is very necessary. Trend and sustained shift 

are two typical forms of the results of assignable 
causes, which would happen in the process. So this 

part will study the performance of the controller 

(14) and the integrated SPC-EPC method in 
controlling trend and sustained shift. 

We generate 200 data points from (15): 

2 3

1 1 10.2 0.5t t t t tY X X X N     
      

(15) 

Where Nt is a AR(2) process with 1 =0.6 and 2 =-

0.05, and Xt have normal distribution of mean 0 and 
standard deviation 5. 

We assume the form of Nt is known and can be 

removed from the combined data, so we can get the 
relationship between Xt and Yt without noise. We 

also assume how much compensation has been 

made by Xt is known. We use these 200 points to 
estimate the nonparametric transfer function. We 

also generate another 200 points of Nt for control. 

To evaluate the effect of the controller and the 
integrated control method, the paper chooses the 

mean of the squared error as the performance 

measure. The smaller this value is, the better the 
control method. The formula is: 

                      

2

1

1
( )

n

t

t

PM Y T
n 

 
                      

(16) 

Where n is the number of data points; Y is the 
output of quality characteristics; T is the target 

value, in this paper T=0. 

First we assume there are no assignable causes 
in the process. We adjust the last 200 points using 

controller (14). Before adjustment, PM=31.31662, 

after adjustment, PM=23.68302. Results are in Fig. 

2: 

 

 
Figure 2.   Process after control with no assignable 

causes 

From the PM comparison and the results in Fig. 
2, the EPC controller based on the nonparametric 

transfer function model can reduce deviation further 

at the output in the process which is in control. 
Then we assume there are assignable causes 

resulting in a trend at the 101st point in the last 200 

points. The trend has an increase of 0.2 per unit 
time point. We use controller (14) to do adjustment 

in the process. Before adjustment, PM=79.17783, 

after adjustment, PM=33.71696. Results are in Fig. 
3: 
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Figure 3.    Process after control with assignable causes 

resulting in a trend 

We also assume there are assignable causes 

resulting in a sustained shift at the 101st point in the 

last 200 points. The sustained shift is an increase of 
10. We use controller (14) to do adjustment in the 

process. Before adjustment, PM=58.67332, after 

adjustment, PM=33.84610. Results are in Fig. 4: 

 

 
Figure 4.   Process after control with assignable causes 

resulting in a sustained shift 

In the comparison of the PM and the results in 

Fig. 3 and Fig. 4, the controller (14) can reduce a 
large amount of variations in the processes 

compared with the original processes. This 

demonstrates that the controller is effective in 
controlling processes with assignable causes 

resulting in the form of trend and sustained shift. 

However, there are still a small amount of trend and 
sustained shift at the output after control, so the 

controller (14) cannot compensate all the deviations 
in the processes. The reason behind this result is 

that the EPC controller only compensated some 

deviation which can be forecasted. But it cannot 
remove the deviation caused by the assignable 

causes. At this time, the assignable causes still exist 

within the process. So if we want to reduce the 
variation further, we need to use a control chart to 

help us remove the assignable causes. 

4.3  Effect of Integrated SPC-EPC Method 

Based on Nonparametric Transfer 

Function Model 

From the study of the previous sections, we can 

see the EPC controller based on the nonparametric 
transfer function model is effective in controlling a 

nonlinear process which is in control or has 

assignable causes resulting in trend or sustained 
shift. But a small amount of deviation still exists at 

the output. So a method that can apply the 

advantages and avoid the disadvantages of EPC 
controller is to use integrated SPC-EPC method, 

that is simultaneously using controller and control 

chart.  

In the processes of Fig. 3 and Fig. 4, we 

simultaneously use controller (14) and Shewhart 3σ 

control chart for individuals, assume the assignable 
causes can be removed immediately after the alarm 
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of the control chart. The final PM=24.39389 for 

trend and PM=26.81842 for sustained shift. Results 
are in Fig. 5: 

 

 
Figure 5.   Process after integrated control based on 

nonparametric transfer function model 

In the results of Fig. 5, the integrated SPC-EPC 

method has solved the problem of using the 
controller alone when the process is out of control. 

We can use a control chart to find and eliminate the 

assignable causes in time and use a controller to 
reduce the deviation which can be forecasted. The 

PM=24.39389 for trend is smaller than 

PM=79.17783 which do not control and 
PM=33.71696 of using a controller alone. The 

PM=26.81842 for sustained shift is also smaller 

than PM=58.67332 which do not control and 
PM=33.84610 of using a controller alone. If using 

the control chart alone, the results are 

PM=32.02090 for trend and PM=36.94402 for 
sustained shift, they both larger than the results of 

the integrated SPC-EPC method. So in the 

controlling of the complex nonlinear process, 
integrated SPC-EPC is better than using either 

alone. The total results are in Tab. 1. 

 

Table 1.   Results of different control methods 

Control 

Method 
No Control 

Only 

Controller 

Only 

Control 

Chart 

Controller + 

Control 

Chart 

Trend 79.17783 33.71696 32.02090 24.39389 

Sustained 

Shift 
58.67332 33.84610 36.94402 26.81842 

5   Simulation Study of the Integrated SPC-EPC 

Method Based on Nonparametric Transfer 

Function Model 

5.1 Simulation Study on the Assignable Causes 

Resulting in Trend 

In order to further investigate the integrated 

SPC-EPC control system based on nonparametric 
transfer function model, we conduct a simulation 

study. Based on a large amount of simulations, we 

study the performance of the system. First we 
assume processes of (15) have assignable causes 

resulting in trend of increase 0.05, 0.1, 0.2, 0.3, 0.5 

per unit time point. All these out-of-control signals 
happen from the 101st time point, and we assume 

the assignable causes can be removed as soon as it 

was detected by the control chart. We use controller 
(14) to do adjustment in these processes. We use 3 

different kinds of control charts to monitor the 

processes. They are Shewhart chart; EWMA chart 
of λ=0.1 and EWMA chart of λ=0.4. The reason of 

chose λ=0.4 is that when λ=0.4, current and 

previous observations nearly have identical weights 
[8]. Based on 500 simulations, we check the mean 

of sum of squared error and average run length 

(ARL1) of all these cases, we set ARL0=370. 
Results are in Tab. 2 and Tab. 3  

Table 2.   Mean of squared error of different degree of 

trend 

Deviation 0.05 0.1 0.2 0.3 0.5 

No chart 14.23847 18.06374 37.92582 96.31947 / 

Shewhart-

Output 
19.28803 17.50712 15.17858 15.59571 23.88990 

Shewhart-

Input 
12.36702 12.14782 16.51118 18.88842 40.96622 

EWMA-

Output 

(λ=0.1) 

14.96499 14.37515 12.78832 12.96059 15.23776 

EWMA- 

Input 

(λ=0.1) 

14.20630 14.27362 14.41544 14.92915 31.85255 

EWMA-

Output 

(λ=0.4) 

12.63705 16.49736 13.58133 12.98117 12.94381 

EWMA- 

Input 

(λ=0.4) 

14.30899 17.28226 38.75358 46.73027 277.9397 
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Table 3.   ARL of different degree of trend 

Deviation 0.05 0.1 0.2 0.3 0.5 

Shewhart-

Output 
86.04 71.52 45.71 37.02 26.72 

Shewhart-

Input 
5.04 5.08 6.57 11.12 45.94 

EWMA-

Output 

(λ=0.1) 

47.65 33.67 24.07 21.23 16.33 

EWMA- 

Input (λ=0.1) 
96.05 69.68 50.37 40.84 58.01 

EWMA-

Output 

(λ=0.4) 

46.70 39.92 28.22 23.26 16.24 

EWMA- 

Input (λ=0.4) 
- - 92.88 74.47 83.17 

In the results of Tab. 2 and Tab. 3, we can see 

when the process has assignable causes resulting in 

the form of trend, only using the nonparametric 
controller (14) is effective when the deviation is 

very small, but it is not effective when the deviation 

is large. When the controller is used with a control 
chart, controller + EWMA chart can reduce the 

deviation in the process, and monitoring the output 

variable is more effective than monitoring the input 
variable; using the controller + Shewhart chart is 

better than using a controller alone, and monitoring 

the input is better than the EWMA chart when the 
deviation is small. Through the comparison of the λ 

values of the EWMA chart, using λ=0.1 is a little bit 

effective than λ=0.4, and the ARL values of this 
two λ values is not very large. Using Shewhart chart 

monitoring the input has the smallest ARL when the 
deviation is small. EWMA chart monitoring the 

output has the smallest ARL when the deviation is 

large. Small ARL is helpful in finding and 
removing the assignable causes in time. 

After the analysis of this part, we can get a 

conclusion that if a complex process has assignable 
causes resulting in the form of trend, if we don’t 

know the degree of deviation, or we know the 

deviation is large, we can use the controller based 
on nonparametric transfer function model and the 

EWMA control chart monitoring the output variable. 

When we know the deviation is small, we can use 
the controller based on nonparametric transfer 

function model and the Shewhart control chart 

monitoring the input variables. 

5.2   Simulation Study on the Assignable Causes 

Resulting in Sustained Shift 

We assume processes of (15) have assignable 
causes resulting in sustained shift of increase 0.5; 1; 

2; 5; 10. All these out-of-control signals happen 

from the 101st time point, and we assume the 

assignable causes can be removed as soon as it was 

detected by the control chart. We use controller (14) 

to do adjustment to these processes. We use 3 
different kinds of control charts to monitor the 

process. They are Shewhart chart; EWMA chart of 

λ=0.1 and EWMA chart of λ=0.4. Based on 500 
simulations, we check the mean of sum of squared 

error and average run length (ARL1) of all these 

cases, we set ARL0=370. Results are in Tab. 4 and 
Tab. 5. 

Table 4.   Mean of squared error of different degree of 

sustained shift 

Deviation 0.5 1 2 5 10 

No chart 13.16874 12.64734 16.86644 16.23207 31.31908 

Shewhart-

Output 
12.69791 14.82094 21.01615 15.05096 17.59686 

Shewhart-

Input 
12.50452 12.35310 13.86978 12.44581 12.23439 

EWMA- 

Output 

(λ=0.1) 

12.93107 22.46007 15.94912 12.91471 14.06941 

EWMA- 

Input 

(λ=0.1) 

17.74330 15.57995 12.92898 15.41068 23.64010 

EWMA- 

Output 

(λ=0.4) 

15.76331 12.34718 12.60039 12.94052 12.99853 

EWMA- 

Input 

(λ=0.4) 

12.81632 12.60330 12.93822 16.61562 26.52534 

Table 5.  ARL of different degree of sustained shift 

Deviation 0.5 1 2 5 10 

Shewhart-

Output 
86.30 86.96 83.63 58.70 23.78 

Shewhart-

Input 
5.67 5.58 5.17 1.91 1.33 

EWMA- 

Output 

(λ=0.1) 

60.91 60.08 38.05 15.09 7.05 

EWMA- 

Input (λ=0.1) 
97.83 96.05 95.51 63.17 20.37 

EWMA- 

Output 

(λ=0.4) 

65.75 60.45 53.02 20.69 6.31 

EWMA- 

Input (λ=0.4) 
- - - - 89.62 

In the results of Tab. 4 and Tab. 5, we can see 
when the process has assignable causes resulting in 

the form of sustained shift, the results of using the 

controller (14) alone are the same with trend. It is 
effective when the deviation is very small, but not 

effective when the deviation is large. When the 

controller is used with the a control chart, controller 
+ Shewhart can reduce the deviation in the process, 

and monitoring the input variable is more effective 
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than monitoring the output variable; using the 

controller + EWMA is not better than using 
Shewhart chart, and using the controller + Shewhart 

chart also has the smallest ARL value. 

After the analysis of this part, we can get a 
conclusion that if a process has assignable causes 

resulting in the form of sustained shift, no matter 

the degree of the sustained shift, integrating 
controller based on nonparametric transfer function 

model and the Shewhart control chart monitoring 

the input variable can get the best effect. 

6   Conclusion 

According to all the studies above, 
nonparametric transfer function model can be used 

to model some complex nonlinear input-output 

relationships, which are closer to real situations. 
Compared with the parametric linear transfer 

function model, nonparametric model can preserve 

more information about the process, so this will 
give a method to achieve a more accurate control. 

EPC controller based on the nonparametric transfer 

function model can reduce a large amount of 
variations, if it is used together with a control chart, 

variation will be reduced further because the reason 

of variation is removed. 

SPC-EPC integration is a very effective way in 

quality control. The integrated method includes 

features from both SPC and EPC and could get a 
complementary performance. Using the 

nonparametric transfer function model to describe 

the relationship within a system and built 
controllers based upon this model can result in more 

effective control. 
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