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Abstract: With increasing marine transportation and logistics, the ship autopilot has become much more important not only to 
lower the seaman's operating intensions, but also to reduce the seaman's deployment. It is still a challenge to design ship course-
keeping controller because of ship's uncertain dynamics and time-varying environmental disturbance. This study focuses on 

backstepping adaptive course-keeping controller design for ship autopilot. Takagi-Sugeno (T-S) fuzzy approximation can 
formulate ship motion's uncertainties. Therefore, the proposed controller has no need of a priori knowledge about ship's system 
dynamics. Command filtering can bypass the iterative differential manipulations in adaptive backstepping controller for 
conventional ship course. The design can guarantee the ultimate uniform boundedness of the signals in closed-loop system. 
Finally, simulation study verifies the efficiency of the ship course-keeping design. 

 

Keywords:Backsteping control, strict-feedback nonlinear system, adaptive control, shipcourse-keeping control, fuzzy model 

control. 

1. Introduction 

Nowadays, the large and high-speed ships have 

become more and more popular because of the 

increasing marine transportation and logistics. Thus, 
traffic density also increases during the past 

decades. To promote the economic profits, it is 

expected not only to lower the seaman’s operating 
intensions, but also to reduce the seaman’s 

deployment. In 1920s, classic control theories were 

applied to ship’s course-keeping controller design, 
and proportional-integral-derivative (PID) autopilot 

was invented. In 1970s, adaptive control theory was 

also applied. However, because of the complexities 

of ship’s dynamics, the randomness and 
unpredictability in environmental disturbances, 

these methods can’t handle the ship’s course control 

problem completely [1, 2]. During recent years, 
kinds of the algorithms were applied to ship’s 

course control, such as model reference adaptive 

control, self-tuning control with minimal variance, 
neural network control, fuzzy control, variable 

structure control, robust control, generalized 

predictive control, intelligent control, etc [3]. Some 

of these algorithms had become the theoretical 
bases of recently developed autopilot. Furthermore, 

some works had been published to study marine 

craft control [3]. 

On the other hand, a great deal of attention has been 

received in the field of nonlinear control [4, 5]. 

Many methods employ a synthesis approach where 

the controlled variable is chosen to make the time 

derivative of a negative definite Lyapunov 

candidate. A design methodology that has attracted 

much interest is “integrator backstepping” [6–9]. 

Particularly, the book [10] develops the 

backstepping approach to the point of a step-by-step 

design procedure. Backstepping is a technique to 

control the nonlinear systems with parameter 

uncertainty, particularly those systems in which the 

uncertainties do not satisfy matching conditions. 

Adaptive backsteping is a powerful tool for the 

design of controllers for nonlinear systems systems 

in or transformable to the parameter strict-feedback 

form, where nx  is the state, u  is the control 

input, and p   is an unknown constant vector. 

The adaptive backstepping approach utilizes 

stabilizing functions 
i
and tuning functions 

i
 for 

1, ,i n  . Calculation of these quantities utilizes 

the partial derivatives 
1i jx   and 

1
ˆ

i l   . 

Motivated by the pioneering work [11], a novel 
backstepping adaptive tracking fuzzy controller 

strategy is proposed for ship steering. The ship 

dynamics is formulated into a class of nonlinear 
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system in strict-feedback form. The control 
objective is to force the ship’s course to track the 

output of the specified reference model. It is 

assumed that The ship motion’s dynamics are 
unknown. We use fuzzy logic system to 

approximate the unknown system functions. The 

proposed algorithm can guarantee the boundedness 
of all the signals in the closed-loop ship steering 

system. The main differences between our strategy 

and aforementioned methods [8] are that, 

compensated tracking errors, not conventional 
tracking errors, are used to construct the course-

keeping adaptive fuzzy controller. Then, the 

proposed design avoids the repeated differential of 
virtual control law completely, which make the 

controller structure quite simple and easy to 

implement in engineering. The simulation results 
demonstrate the effectiveness and usage of the 

proposed course-keeping controller. 

The remainder of this paper is organized as 

follows: Section 2 describes ship course-keeping 
control system modeling, some useful preliminaries 

and Takagi-Sugeno fuzzy system. Section 3 

presents design procedures of model-reference 
adaptive fuzzy controller law. Some simulation 

results are given in Section 4. Finally, Section 5 

concludes the paper. 

2. Problem Formulation & Preliminary 

A. Ship Control System Modeling 

Japanese scholar Nomoto [2] had put forward 

the 2nd-order linear mathematical model between 
ship’s rudder and course as follows 

 T K      (1) 

where   is ship course,  is ship rudder angle,the 

constant T is the ship’s straight-line stability index, 

the constant K is the ship’s turning ability index. 

From the linearization theory of nonlinear system, 

only under the condition of small perturbations of 

ship’s motion state variables from its basis states 

can this linear model (1) be applied to. The basis 

states refers to that of constant forward speed from 

longitudinally middle section. If ship motion’s 

amplitude is very large or large rudder angle is 

utilized, nonlinear ship course control model should 

be used. Based on the Nomoto’s ship’s 2nd-order 

nonlinear model, Norrbin[2] gavethe following 2nd-

order nonlinear model 

 ( )NonT H K      (2) 

 3 2

3 2 1 0( )NonH              (3) 

where 
0
, 

1
, 

2
and 

3
are the uncertain coefficients. 

In this paper, we will research the more general 

case, namely, it is assumed uncertain nonlinear part 

( )NonH  in (2) is completely unknown. For the 

convenience, we introduce 
1x  , 

2x   , and u  . 

Then, the Norrbin model can be transformed into a 

class of nonlinear system in strict-feedback form as 

follows 

 
1 2

2 ( ) ( )

x x

x f x g x u




 




 (4) 

where  1 2,
T

x x x , ( ) ( ) /Nonf x H T  , 

( )f x denotes the system’s unknown dynamics, 

( ) /g x K T . In this paper, we will design ship’s 

course-keeping adaptive fuzzy controller for the 

uncertain nonlinear system in the strict-feedback 

form in (4). 

B. Definition and Useful Lemmas 

The proposed adaptive fuzzy controller will 
guarantee ultimate uniform boundedness of the 

closed-loop system. Therefore, the definition of 

stability of systems is given as follows. Given a 
nonlinear system 

 0( ) ( , ) , ( , ) , ( ) ,nx t f x t y h x t x t t t      (5) 

if there exists a compact nU  such that for all 

0 0( )x t x U  , and there exists an 0  and a 

number 
0( , )T x  such that ( )x t  for all 

0 0( , )t t T x  , it is said that the solution of (5) is 

ultimately uniformly bounded (UUB) [12]. 

To proceed, the following definition and simple 

lemmas play an important role in the manipulation 
of our main results on adaptive fuzzy controller 

design. 

Lemma 1 (Young’s inequality) [13] For scalar 

time functions ( )x t  and ( )y t  , it holds that 

 2 21
2xy x y


   (6) 

for any 0  . 

Lemma 2 (Cauchy’s inequality)[13] The 

inequality is given by 

 Tx y x y  (7) 

Lemma 3 (Completing squares)[13] For scalar 

time functions ( )x t  and ( )y t  , 
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 2 2 2 2 22 2x xy x xy y y y         (8) 

Lemma 4[14] The following inequality holds for 

any 0  and for any x  

 0 tanh( )
x

x x 


    (9) 

where   satisfies ( 1)e    , i.e. 0.2785   . 

Lemma 5[15]Let  : 0,V    satisfies the 

inequality 

 0 02 , 0,V a V b t     (10) 

where 
0a and 

0b are positive constants. Then 

 0
0 0 0

0

( ) ( )exp[ 2 ( )]
2

b
V t V t a t t

a
     (11) 

C. Descriptions of Takagi-Sugeno Fuzzy System 

In this section, we introduce the structure of the 

Takagi-Sugeno (T-S) fuzzy model [16] in order to 

approximate unknown ship’s dynamics. T-S fuzzy 
rules are a set of linguistic statements in the 

following form 

jR : IF 
1x  is 1

jF and 
2x  is 2

jF  and and
nx is 

j

nF , 

THEN
0 1 1 , 1,2, , ,j j j

j n ny a a x a x j K       

where , 0,1, ,j

ia i n   are the unknown constants to 

be adapted, 
jy  is the output variable of the fuzzy 

system. In this paper, it’s assumed that singleton 

fuzzifier and center-average defuzzifier are chosen. 

Then, f(x) can be expressed as the following 

 1 1

1

1 1

( )

( ) ( )

( )

i

j

K n
j

j F i K
j i

j jK n
jj

F i

j i

y x

f x x y

x







 



 

 
 
 

 
 
 
 

 


 

 (12) 

where 

 
0 1 1 ,j j j

j n ny a a x a x    (13) 

 1

1 1

( )

( ) ,

( )

i

i

n
i

F i

i
j K n

j

F i

j i

x

x

x









 


 
 
 



 
 (14) 

which is called fuzzy basis function. To proceed, 

the following lemma plays an important role on 

adaptive fuzzy controller design. 

Lemma 6 (Universal Approximation Theorem) 

[17] Let the input universal of discourse U be a 

compact set in r . Then, for any given real 

continuous function h(x) on U and arbitrary 0d  , 

there exists a fuzzy system in the form of (12) such 

that sup ( ) ( )
x U

h x f x d


  . 

Based on Lemma 6, it is well known that the 

aforementioned T-S fuzzy logic system is capable 

of uniformly approximating any well-defined 
nonlinear function over a compact set Uc to any 

degree of accuracy with triangular or Gaussian 

membership function. 

The membership function ( )
i

j

F ix in f (x) is 

denoted by some type of membership function, 

( )j x  is a known continuous function. So (12) can 

be restructured into as follows 

 0 1( ) ( ) ( ) ,Z Zf x x A x A x d     (15) 

where 

 

 

 

1 2

1 2

0 1 2

0 0 0

1 1 1

1 2

2 2 2

1 1 2

1 2

( ) ( ), ( ), , ( ) ,

, , , ,

, , , ,

.

K

T

n

T
K

Z

n

n

Z

K K K

n

x x x x

x x x x

A a a a

a a a

a a a
A

a a a

   



   

 
 
 
 
  
 











   



 

3. Ship Course-Keeping Adaptive Fuzzy 

Controller Design 

The control objective is to steer ship course
1cx  to 

track the output of the prescribed reference model, 

and guarantee the ultimate uniform boundness for 
all the signals in the close-loop system. 

Step 1: Define two tracking errors for the state
1x  

 
1 1 1cx x x   (16) 

 
1 1 1x x    (17) 

where
1cx  is the desired ship course,

1x is ship course 

tracking error, and
1x  is the ship course’s 

compensated tracking errors. In this paper, it is 

assumed that
1cx is continuous and has 1-order 

derivative. 

 0

1 1 1 2 2( )c ck x x      (18) 

 
0

2 1 2cx     (19) 

where 
2
 will be defined in the step 2,

2cx  and
2cx are 

obtained after the filtering of
0

2cx , 
1
is virtual control 
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input,
1 0k   is the constant to be chosen by the 

designer. Then, we obtain 

 1 2 1 1 1 1cx x k x       (20) 

Choose the following Lyapunov candidate 

function 

 2

1 1

1
( )

2
V t x  (21) 

Then, the derivative of Lyapunov candidate 

function (21) is given by 

 
1 2 1 1 1 1 1 1 1( ) cV t x x x k x x x       (22) 

We construct the following virtual control input 

1
as follows 

 
1 1 1 1ck x x      (23) 

Substituting the virtual control input (23) into 
(22) results in 

 1 1 1 1 2( ) ( )V t c V t x x    (24) 

where 
1 12c k . 

Step 2: Similar to Step 1, two tracking errors 

for
2x  is defined as follows 

 
2 2 2cx x x   (25) 

 
2 2 2x x    (26) 

where 
2x is tracking error, 

2
will be defined in the 

subsequent descriptions,
2x is compensated tracking 

error,
2cx is generated by the following filter 

 02
2 2

2

( ) ( )c c

K
x t x t

K s
   

 (27) 

where 
2 0K   is the constant to be chosen by the 

designer. Generally, there should be
2 2K k . 

T-S fuzzy system (12) is used to approximate 

the unknown dynamics f (x) in ship course control 
system. Then we obtain 

 1 0 1

1

( ) ( ) ( )( )

           ( )

cf x x Q x x Q Q x

x Q d

 

 

  

 
 (28) 

where  1 2

T
x x x ,  1 2

T

c c cx x x ,  1 2

T
   . 

From (4) and (28), we obtain 

 
1 1 0 1

1 2

1

( ) ( ) ( )( )

       ( )

( ) ( )

c

c

x g x u x Q x x Q Q x

x Q d x

g x u x Q x

 

 



   

  

  



  (29) 

where   is introduced for the reason of the 
convenience, and 

 

0 1 1 2

0 1 1

2

0

2

( )( ) ( )

( ) ( )

       

( )

       

( )

c c

c

c

U c U

c

x Q Q x x Q d x

x Q Q x x Q

d x

Q Q x Q x

d x

x

  

  

   

 

     

  

 

  

 









 (30) 

where   denotes the vector’s Eulidean norm or 

matrix’s induced 2-norm, 
1 UQ Q , 1UQ  ,   is 

the unknown constant, whose accurate value is 

necessarily known, d is the maximal approximate 

error for T-S fuzzy system, namely d   , 

 
 0

1 2max , ,

( ) 1 ( ) ( )

c cQ x x

x x x

  

   

    

  


  

Next, we introduce the definition 

 0

2 2 2 ( )( )c ck g x u u      (31) 

where
2 0k   is the constant to be chosen by the 

designer,
0

cu is filtered to output
cu , 

cu u . Generally, 

we choose
0

c cu u u  . 

Combining (25), (26), (29) and (30) yields 

 2 1 2 2( ) ( )x x Q x g x u k     (32) 

Formulate the following Lyapunov candidate 
function 

 2 1 2 1 2

2 1 2 1 2

1 1 1
( ) ( )

2 2 2
V t V t x           (33) 

where ˆ    , ˆ    , ̂  and ̂  are the 

estimated value of the adapted parameters  
and  

, 

1 0   and 
2 0   are chosen by the designer. The 

derivative of the Lyapunov candidate function is 

given by 

 
2 1 2 1 2 2

1 1

2 2 2 1 2

( ) ( ) ( ) ( ) ( )

ˆ ˆ          

V t V t x x Q x x x x g x u

x k

 

   

   

   

 

  
 (34) 

The items 
2 1( )x x Q x  and 

2 ( )x x  in (34) are 

discussed as follows, respectively. By use of 
Young’s inequality in Lemma 1, we obtain 

 

2
2

2 1 2

2

2

( ) ( ) ( )
2 2

1
( ) ( )

2 2

T T T

U U

T T

w
x x Q x x x x x Q Q x

w

w
x x x x x

w


  

  

 

 
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2

2

2

2

1
          ( ) ( )

2 2

1
ˆ             ( ) ( )

2

T T

T

w
x x x x x

w

x x x
w

  

  

 





 (35) 

where 0w   is chosen by the designer. 

By use of Lemma 4, we obtain 

 

2 2

2 2

2

2
2

( ) ( )

ˆ   ( ) ( )

   ( ) 0.2785

ˆ ( )
ˆ       ( ) tanh

x x x x

x x x x

x x

x x
x x

   

   

  

 
 



 

 

 

 
  

 



  (36) 

We choose the following ship course-keeping 

control law 

 
2 2 2 1

2

1 1
ˆ ( ) ( )

( ) 2

ˆ ( )
ˆ     ( ) tanh

Tu k x x x x x
g x w

x x
x

  







   



 
  

 



 (37) 

and adaptive law 

 2

1 2 1 0

1
ˆ ˆ= ( ) ( ) ( )

2

Tx x x
w

     
 

   
 

  (38) 

 
2 2 2 0

ˆ ( ) ( )x x         
  (39) 

where 
1 0  , 

2 0  , 
0 0  and 

0 0  are chosen by 

the designer. 

By completion of squares, we obtain 

 
0 2 0 2 0 2ˆ ˆ2 ( ) ( ) ( )                (40) 

 
0 2 0 2 0 2ˆ ˆ2 ( ) ( ) ( )                (41) 

For the convenience, we introduce the following 

definition 

  2 1 2 1 1 2 2: min 2 ,2 , ,c k w k w        (42) 

 0 2 0 21 2: ( ) ( ) 0.2785
2 2

 
           (43) 

Combining (34), (35), (36)-(41) results in 

 2 2( ) ( )V t cV t     (44) 

From (44) and Lemma 5, we obtain 

  2 0 0 0( ) ( )exp ( ) ,V t V t c t t c t t      (45) 

Then we know ( 1,2)ix i  ,  ,  belong to the 

following compact sets 

  2( , , ) ( ) (0)ix V t V c      (46) 

This also indicates that
ix ,  ,  in the closed-

loop system is ultimate uniform bounded. 

Furthermore, it can be concluded from (18) and (31) 

that 0

ic icx x  can be arbitrarily small through 

appropriate choice of the filter’s parameters. Then, 

we obtain 0i   and
ix ,  , 

ix . Hence, course 

tracking error
ix is UUB, and may be arbitrarily 

small by reasonably choosing design parameters. 

From (27), the filter’s output is also bounded. From 

the aforementioned, the control law (37) can ensure 
the UUB of all the signals in the closed-loop 

system. 

4. Simulation Experiment 

We takes Dalian Maritime University’s training 
ship ”Yulong” as example. By use of Simulink 

Toolbox in Matlab 7.2, simulation experiments are 

carried out for the ship course controller design. 
Ship Yulong’s main particulars are as follows: 

design speed 14 knots, length between main 

particulars 126 meters, breadth 20.8 meters, draft 8 
meters, cubic coefficient 0.681, buoyant center 

position 0.25 meter, rudder area 18.8 meters. From 

these parameters, K = 0.4343, T = 238.7592 could 

be calculated. The control objective is to force the 

ship course
1x  to track a reference signal

1cx , where is 

the output of the following transfer function 

 
1 1 ,2

0.0025
( ) ( )

0.08 0.0025
c c rx t x t

s s
    

 (47) 

whose input 1 , ( )r cx t  is square wave with period 200 

seconds, and amplitude 30 . 

We use total 9 IF-THEN rules to approximate 

the nonlinear system function f (x) in the ship 
steering control system. We select membership 

functions for ship course
1x  and rate-of-turn

2x  as 

follows 

 
 positive

1
( )

1 exp 4( 4)
i

i

x
x





  

 (48) 

 
zero 2

1
( )

exp( )
i

i

x
x

 


 (49) 

 
 positive

1
( )

1 exp 4( 4)
i

i

x
x





  

 (50) 

We choose the virtual control input 

 
1 1 10.1 cx x      (51) 

We use the following filter 
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 0

2 2

10
( ) ( )

10
c cx t x t

s
   

 (52) 

We choose the ship course’s adaptive fuzzy 
controller as follows 

 

2 2 1

2

ˆ4 20 ( ) ( )

ˆ ( )
ˆ    ( ) tanh

10

TT
u x x x x x

K

x x
x

  




   

 
  

 



 (53) 

equipped with adaptive laws 

 2

2
ˆ ˆ2 20 ( ) ( ) 0.05( 0.01)Tx x x       
  (54) 

 
2

ˆ ˆ2 ( ) 0.2( 0.1)x x      
  (55) 

 
Figure4.1 Comparison of the state

1x  and the desired 

trajectory 
1cx  

During simulation experiment, we use separate-

type model as platform, where hydrodynamic 

characteristics of hull, propeller and rudder are 

taken into consideration. Figures 1-4 illustrate the 

simulation results. Figure4.1 shows the time 

response of actual course and desired trajectory, 

where real line represents actual course
1x , and 

dotted line denotes desired trajectory
1cx . Figure4.2 is 

control input, or rudder angle. Figures 3 and 4 are 

adaptive parameters ̂  and ̂ , respectively. From 

Figures 1-4, the performance of the design 

controller is satisfactory, and all the signals in the 

closed-loop system is UUB. Furthermore, fine 

tuning of
1k , 

2k , 
1
, 

2
 can achieve more precise 

tracking error, but with larger control input. 

 
Figure4.2 Control input 

 
Figure4.3 Adaptive law: ̂  

5. Conclusions 

In this paper, adaptive tracking fuzzy control 
scheme for ship course-keeping is proposed in the 

framework of the nonlinear system in strict-

feedback form. T-S fuzzy system is employed to 

approximate the unknown dynamics. The proposed 
algorithm can guarantee the boundedness of all 

signals in the closed-loop system. Compensated 

tracking errors and no tracking errors are used to 
construct the controller. Based on compensated 

tracking error which is not the traditional tracking 

error, the proposed design avoids the repeated 

differential of virtual control law completely, which 
make the controller structure quite simple and easy 

to implement. Simulation experiment is 

implemented to demonstrate the effectiveness of the 
course-keeping control algorithm. 
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Figure4.4 Adaptive law: ̂  
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