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Abstract: In this paper, the space-time variable order fractionalevaguation with a nonlinear source term is considered. The
derivative is defined in the Caputo sense. The non-standaite fiifference method is proposed for solving the variatder
fractional wave equation. Special attention is given talgtthe stability analysis and the truncation error of the hndt Some
numerical test examples are presented, and the resultsdaate the effectiveness of the method. The obtainedtsestd compared
with exact solutions and the standard finite differencetsmis.
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1 Introduction

Fractional calculus has been considered as one of the bé&sematical tools to characterize the memory property of
complex systems and certain materials6][ it can be considered as an extension of the usual calculus
([11,[2],[101,[13-[19,[28],[31]). The variable order calculus is the generalization osieal calculus and fractional
calculus, which were invented by Newton and Leibnitz huddref years ago. Now the study on it becomes a hotpot in
recent years ([2],[20],[29],[30]). The variable order fractional derivative is a good tool depicting the memory
property which changes with time or spatial location. Se, piysical models could be depicted more accurately by
employing the variable order fractional calculus]] Samko and Ross3[], proposed the concept of variable order
operator and investigated the properties of variable drdegration and differentiation of Riemann-Liouville gypMost
of the definitions of the variable order differential operatare extensions to the fractional calculus definitiorth s
Riemann-Liouville, Griinwald, Caputo, Riesz and some o€Caimbra definition @]-[6],[9],[29]). Some systems in
fluid dynamics and electromagnetics are introduced usiegahiable order derivatives (for more details sgje[[f] and
the references sited therein).

The wave equation is an important second-order partiaddifitial equation for the description of waves as they occur
in physics such as sound waves, light waves and water waaegblé order wave equation arises in fields like acoustics,
electromagnetics, and fluid dynamicg([20)).

Difference methods and, in particular, explicit finite diftnce methods, are simple an important class of numerical
methods for solving fractional differential equations.eTiisefulness of the explicit method and popularity is based o
their particularly attractive features. The most attrgefieature is that no need to solve resultant system of ensti
especially for large scale problems. The main disadvaritfeese methods is that the stability condition which can be
in general proved in a small interval of space and time.

The genesis of nonstandard finite difference (NSFD) modgdinocedures began with the 1989 publication of Mickens
[23]. Extensions and a summary of the known results up to 199dieea in Mickens 6], either for ordinary differential
equations (ODEs) or partial differential equations (PDE®3F- [27]). Their use have been investigated in several fields
including control, mechanical systems, chaos synchrdinizand others ], [32] and the references cited therein). NSFD
scheme is used with arbitrarily large time step sizes, spgwdmputational cost when integrating over long time pesiod
Also, it is important due to the fact that variables repréisgrsubpopulations must never take negative values.
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In this work, we shall see that the non-standard discrétimas another numerical way to solve the fractional
differential equations while preserving their crucial Aooal property.
In the following, we present the basic definition for the ahte order fractional derivatives and the main rules of the
nonstandard discretization methods, which we will use i plaper.

Definition 1.1.[11] The variable order Caputo derivative is defined as follows:

a(xt) B 1 X 1 0"u(&,t)
Dx u(xt) = r(n—a(xt)) ./0 (x—&)akn-n+l  ggn d¢, (1)

where n—1<a(x,t)<n neZ".
NSFD Rules

In this part, we would like to introduce several commentatad to NSFD schemes were firstly proposed by Mickens
[23]. This class of schemes and their formulations center onisawes. First, how should discrete representations for
derivatives be determined, and second, what are the propasfto be used for nonlinear terms.

In the forward Euler method the derivative te%ﬁis replaced b “*h%’ym, whereh is the step size. However, in the
NSFD schemes this term is replaced (;‘()g)y(t) ,where@(h) is a continuous function of step sike and the function
¢(h) satisfies the following conditions:

@(h)=h+0(h?), 0<@h) <1, h—0.

Examples of functiong(h) that satisfy these conditions ar2q[:

o(h) =h, sinhh, & —1, =6 etc,, ...
Note that in taking the linm — O to obtain the derivative, the use of any of thegh) will lead to the usual result for the
first derivative

dy . yt+am]-yt) . ylt+h) —yt)
dt rlmlg]o @(h) N rlmlg]o h '

A scheme is called nonstandard if at least one of the follgwinditions is satisfied:

1- Nonlocal approximation is used.

2- Discretization of derivative is not traditional and usecmnegative function.

One can say that there is no appropriate general method tsetibe functiomp(h) or to choose which nonlinear terms
are to be replaced[], [25], [26]).

The main aim of this work is to use the nonstandard finite tiffiee method (NSFD) to study numerically the following
nonlinear space-time variable order wave equation (seex@ample 0], and the references sited therein):

DE*Vu(x,t) = Bx DY *u(x,t) + f (uxt), 1<a(xt),B(xt) <2, 2)
with the initial conditions
u(x,0) = ¢1(x) ,u(x,0)=¢2(x), 0<x<a, 3
and the boundary conditions
u(0,t) =i (t) ,u(at)=4(), 0<t<T, (4)

whereB(x,t) > 0 is a constantd4(X), ¢2(x), WAi(t), and Y4(t) are smooth functions anf(u, x,t) is a nonlinear scour
term satisfies the Lipschitz condition, i.e.,

[T (ug,x,t) — f (U, %, t)] < L|ug—uy|, (5)

whereL > 0 is called a Lipschitz constant fdr.

This paper is organization as follows. In Section 2, we appb/ Mickens non-standard discretization scheme to the
fractional order wave equation described in Caputo. IniBe@&, we study the stability and the truncation error of the
method. Numerical test examples are presented to showftbierty of the method in Section 4. Finally, in Section 5 we
give some conclusions.
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2 Discretization for NSFD Method

Let us consider the discrete form of the Caputo derivative:

a(xt) B 1 /X 1 92u(&.t)
Dy U(X’t)_r(z—a(x,t)) 0 (x— &)akxD-2r1 §g2 dé
:_____}____f1/““”“£.awnéfﬂﬁiszldz
r(2—a(xt)) & kn 072
Letz=x—¢&,then
axt) oy L U= (k=1)ht) —2u(x—kht) +u(x— (k+1)ht) o kDh g
o =y b - ><(/kh Z-a(x0 ), ()
then, .
h2-at) i y(x— (k—1)h,t) — 2u(x— kh,t) + u(x— (k+ 1) h,t)
h2

a(xt) -~
DUt = F = x) 2

% ((k+ 1)2—G(X7t) _ kZ—G(X,I)) ) (7)

In the following, the NSFD notions is introduced. LétandM be two positive integergy= § andt = %, whereh
andT are the step size of space and time respectively. Also wedntre the following notations

(8)

xi=ih, fori=12,...,N, tj=jt, for j=1,....M,

al = o (X, tj) Bij =B (%.tj), uij =u(x,tj), Bij =B(x,tj) and fJ =f (u,,x., J).
Then J_
h—a i—-1 . . ; -
2 7ail _ k2 7ail ) (9)

ot = o) &b 2y

By the same way, we have:
A i j—k+1 K, j—k-1 2-8 _2-p
Loyl W (k- 1)2 R k2R, (10)

Dtp(x| tJ) (Xi,tj) S Zo(ui
r(3-g)é&
Now, using the NSFD discretization scheme®p&nd (LO) by replacing the step sizeby a function ofh, ¢(h) and
the step size by a function oft, (7).

N’Ij)u(ﬁatj) ((p(

Da( —a) 1 oy j K 12—0’ij 2 —a
X ) U =20l Hul g )((k+2) - v

\l
W

By the same way, we have:

pf )y (xi,tj)=7(w(r))_ﬁ.i jz:(uij_k“—ZUij_kﬂLUij_k_l)((k+1)2_3ij—k2 B,
r(3_[3i1) &

where @(h) and (1) have the properties:
(1) =1+0(1?) and @(h) =h+O(h?).

For simplicity let us define: .
j . (3-8
Blot) !, (3A) a

j o

) — T ) —
i re-a) 7 ()P
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6= ((k+ 12l -l ) and HK = ( (k+ 2R _ o)

then, we can rewrite equatio)(in the following form

-1 . . S
—k+1 —k k-1 i
k;(uij " 2UJ +UJ H ~ Q) R1] Z)( 2l rul )G QM (12)
that is,
. . . -1 . )
yt=2u -t - (Ut 2 M Rk
=1

. J - . . . .
QR kz (uijfk+l_2uij—k+uij—kfl)GIJ(+QJfJ
=;

i i (13)
+1_ "o k2 k=1, k) j—k+1 j—2 -1\, 1 i-1,0
Wt = (2-HY) U z(Hi— —2Hi‘+Hi)ui’ —(HiJ —2H)] )ui—Hi‘ W+
K=2
QJR. z i—k+1 —2u 4l DG +Q T
The previous equation can be expressed in the followingixniaim:
=01, Ut =U2+y(1)0,, (14)
and forj > 2
. . M=2 -
UiJ+l :AJUiJ _ ZZ (Hikfz_ZHikfl_F Hik) Uil— +1 (H ZHJ 1) U HJ 1U _|_|:J (15)
K=
. T J. J. T
whereF! = (QI ( m_1s Xm—1,1 ), ,Q, (ul,xl,tj)) LUl = (qul, quz,...,ul) ,
01 = (¢1(x1) ,91(x2),....01 )", Bo=(d2(x2) ,$2(X2),.... 02 (%)), (16)
andAl = (aly), where
QanGn 1 m= 1,
_ QIR (GE1 m—2G) .1+ 6G) m+2) m<n,
i
8nm = 2 Hi+QIRN(8GL —2G)), m=n+1,
QJRnGJ, m= n+2,
0, m>n+2,
and
0, when m=2
0= { 1, otherwise, 17
for n=1,2,...,K—1,andm=1,2,...,K — 1. Also, we note that
K
n
1Al = max 3 lam| = mex {2-H}=2- HP, (18)
then||All, = 1.
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Lemma 1. The coeﬁicient@i andHik satisfy the following conditions

1.G) =land H? =
2. GJ>Gk+l,ande>Hk+1 fork=0,1,.

3 Stability Analysis and Truncation Error

Let us considelVi™! andUi*! be two different numerical solutions of%) with initial values given byw?® andU®,
respectively.

Theorem 3.1.NSFD method defined byl ) to equation 2) is unconditionally stable, i.e.,

Wity <cwP—UC|, for any j. (19)
Proof. Definedwi+1 —U i+l = gi+1,
From (15 we have
j+1 o2 j—k+1 j—2 1 1
g =Ag - Z (Hikiz—ZHikfl-l- Hik) g - (HiJ ZHJ ) HJ & +F, (20)

K=2
where

:(Qj —1f( gn—lﬂxf'ﬂ 1, ) QJ— ( Wiy 1, %m-1,t ), 7Q1 (u1’X1’ ) Q1 (wl,xl,tj))T

S (er-n,]_ —1 7Q]_ ]_8 ) :AFJ“:Ja (21)

N
andAFJ—dlag(Q L QL ) .
Noting that‘LJ‘<L for anyi, j. LetQ = max{Qm 1 ,Q{}
From (0), we have||Al + AFJ|| < (2+QL) , when

j 2
wn)f > HEET where L > 0,

then

[ee]

. _ _ _ M—2 _
0 0 &

(Hij_z—ZHij_l) e, + H 1] (22)
Now, we analyze the stability via mathematical inductidl][[22], [31]), from (14) we have
e, <C||€°]., , where Cis a constant.
Now, assume thz#eij H <C|\&||,, . then from @2) , we have

||OO

, B M-—2
& <o e+ el + S (M2 =24+ H)C, |6

Ca (M) 2= 2H) 1) 8]+ 20, <C[le?]... 23)
Then the theorem holds.
Lemma 2: Let i) -1
a(x; t]) ((P h)) aliti) 12 j i
D ulxty) = r(3—ax,tj)) kZOG (k1 = 2 ) 24
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be a smooth function, then
52055 u (1) — D9y (. 1) = O (g(h)). (25)

Proof. In term of standard centered difference formula, we have

t M2 2054 1 i 92u(x—ih
Dy ”LKN,U)=:%%£%ﬂZﬂﬁ'2T éGJV_ﬂ%f*Q'FO(wanzﬂ

_ (p(h)* 2% 1 j 9%u(x—jht) | (@(h)% @0t a0 ) )
(e 2(><4 tJ))) ~0Gi Z T . I_((37)a(xi,tj)) O(e(h)<) )
N0 e k 1 ~j 02u(x—jht) —a( 5
- TB-alx tJ))) G %z I'()(S—a(xi,tj)) O(ep(h))
h a XI 0 h
= P a2 1G17U(¢)3(22] t o+ O(@(h)?).
By the integral mean value theorem, we have
g 1 kD pG+nh ) 02U(x—z,t) (p(h))?-a0itp)
DY ) = o / ZA-atit) " dz= 27
X U(XH ]) I_(Z—a()q t)) in 022 z /_(S—a()(htj))’ ( )

where(j € [jh,(j + 1)h]. Combining the above two formulae, we have

52058 u (1) — Dy (. )| =

h 2—-a(x.tj) » i 92 —ih: 52 _git
) ey 3Gl 2 SMCh ) o(g(h)?)

072 072

2—a(xtj)
= | s 556 O(e(h) + O(g(h)?)

h2-a(.tj) 2—a(x.tj)

— | e -Olg() + O(@()?)
O(¢(h)) +O(¢(h)?)
O(e(h)).
Using lemma 2, the truncation error of NSFD schenid) (can be derive. It has a local truncation error of
O(y(1))(from the left side) an® (¢(h)) (from the right side).

(28)

Remark
NSFD method was shown to be stable and with a local truncati@m, which iSO(@(1)) + O(¢(h)). Therefore, according
to the Lax’s Equivalence Theorer@d], it converges at this rate.

4 Numerical Examples

Example 4.1.Consider the nonlinear variable order fractional wave &qod2Q]:
DFXYu(x,t) = —0.5c08a (x,t) 11/2) DI*Vu(x,t) +  (u,x.t), (29)

with a(x,t) = 1.5+ 056 00*-1  B(xt) = 1.5+ 0.25c0s(x)sin(2t), and

2—a(xt) 3—a(xt)
_(+1) ( 16¢ T ) , (30)

f(uxt)= r3—a(xt) T (4—a(xt))

t2+1
the initial and boundary conditions are:
u(x,0) =x*(8—x), u(x,0) =0, and u(0,t) =u(8,t) =0, (31)

where0<x<8 and T =1. Let
Y(1) =tanh(1) and @(h) = sinh(h).
The exact solution isi(x,t) = x? (8 — x) (t?+ 1), whena = B = 2.
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A comparison between the numerical and the exact solutidrenN = 1000 andV = 125 is presented in figurk In
figures 2, 3 and 4, respectively we report the approximate solutions in thdémensions, where the axis's are
(t,x,u), (a,x,u) and (B3,x,u), respectively. Figur@, shows the numerical solution at all values of the time andarég3
and4, show the numerical solutions change with respeattand 3, at T = 1. In Tablel, we calculate the absolute
errors between the exact solutiag and the approximate solutiaRpprox WhenN = 1000 andVl = 125. In Table2, a
comparison between the NSFD and the standard finite differéB8FD) solutions, where the accuracy of the NSFD is
better than the SFD. From the results displayed in the &bt in all the figures, it is obvious that the proposed method
is an efficient and able to give numerical solutions coincidsely with the exact solutions.

Exact solu.

O Approximate solu.

Fig. 1. Comparison between the analytical and the numerical

solutions. Fig. 2: The numerical solutions where the axigtisx, u).

Fig. 3: The numerical solutions where the axig és x, u). Fig. 4: The numerical solutions where the axigfs x, u).
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Table 1: The absolute error between the exact solution and the ajppat solution wheMN = 1000 andVl = 125.

X |Uex — Uapprox’
0.0000 0.00000000
0.8000 0.00270905
1.6000 0.00247795
2.4000 0.00212119
3.2000 0.00162219
4.0000 0.00091329
4.8000 0.00009988
5.6000 0.00152948
6.4000 0.00350169
7.2000 0.00615396
8.0000 0.00000000

Table 2: The maximum error of the NSFD and the SFD methods

maximum error of NSFD|| maximum error of SFD
T=1 6.153% 3 0.0102
T=4 3.481&° 0.6469
T=8 9.064E ° 1.0926

Example 4.2.Consider the following variable-order nonlinear fracibwave equation:
DP*Yy(x,t) = 2cos(t) DI *Vu(x,t) + f(u,xt), (32)

with a(x,t) = 2— cos?(X) sin?(t), B(x.t) = 1.8+0.5e (> -1
andu(x,0) = 1+sin(x) , u (x,0) =0, and u(0,t) = cos(t), u(10,t) = 0.174+ cos(t),

where 0< x <10, T =1, andf (u,x,t) = u—sin(x) — cos(t) + 2sin(x)cos(t) — cos(t).
Let

W(t) =€ —1 and @(h) =sinh(h).

The exact solution is:

u(x,t) = sinx+cost, when a =3 =2. (33)

Figure5, shows the behavior of the exact solutions and the numesatations of the proposed method with= 500
andM = 125. In figure6, a comparison between the SFD and the exact solutions WheB00 andV = 125. Figureb
and6, show that the accuracy of the NSFD is better than the SFur&Wy shows the approximate solution change with
respecttq@3 atT = 1, where the axis’s ar¢f3, x, u).
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25 T T T T T

Exact solu. W

o Exact solu. T o
*  Approximate solu
+  Approximate solu.
05 s s s s s s s s s 05 s . s s s s s s
1] 1 2 3 4 5 B 7 8 510 1] 1 2 3 4 5 7 8 910
X X
Fig. 5: Comparison between the exact and the NSFD. Fig. 6: Comparison between the exact and the SFD.

S
T
e
s
R

oy

uix by

Fig. 7: The numerical solutions where the axigfs x, u).

Example 4.3.Consider the following variable-order nonlinear fracabwave equation:
DFYu(x t) = DI*Yu(x t)+ f(uxt), 0<x<2and 0<t<1,

with a(x,t) = 2— cos?(x) Sin2(t), B(x.t)=1.8+0.5e (V*1

wheref (u,x,t) = —u—2sin(t),

the initial and boundary conditions are:

u(x,0) =0, %(x,O):xZ, u(0,t) =0, and u(2,t) = 4sin(t).

(34)
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Let

(1) =sinh(1?) and @(h) =1—e ™.
Whena = 2, the exact solution is:
u(x,t) = xsin(t).

In Table3, the absolute error between the exact solutigrand the NSFD solutionapprox are given where the maximum
error is 4117% 4, with N = 200 andM = 100. In order to test the numerical scheme, we describe imefiguhe
analytical and the approximate solutiond\at 200 andVl = 100. To study the behaviour of the solutions figdrshows

the 3D solutions. Tabld, shows the absolute error between the exact solutipiand the SFD solutiotiapprox Where

the maximum error is 23042, with N = 200 andM = 100. From the results displayed in TabRand4, it is obvious
that the accuracy of the NSFD is better than the SFD. So, thgoged method is an efficient and able to give numerical
solutions coincide closely with the exact solutions.

Table 3: The absolute error between the exact solutigrand the NSFD solutiobapprox-

Xi Uex Uapprox |Uex — Uapprox’
0.0000 || 0.00000000(| 0.00000000| 0.00000000
0.4000 || 0.01578229| 0.01580835| 0.00002605
0.8000 || 0.06312918|| 0.06323240| 0.00010322
1.2000 || 0.14204065|| 0.14227245| 0.00023180
1.6000 || 0.25251671|| 0.25292850| 0.00041179
2.0000 || 0.39455736|| 0.39455736| 0.00000000

Table 4: The absolute error between the exact solutignrand the SFD solutiongpprox.

Xi Uex Uapprox |Uex — Uapprox|
0.0000 [| 0.00000000(| 0.00000000| 0.00000000
0.4000 || 0.01578229|| 0.02754002| 0.01175772
0.8000 || 0.06312918(| 0.07684702| 0.01371785
1.2000 || 0.14204065| 0.15763362| 0.01559297
1.6000 || 0.25251671| 0.26982165| 0.01730494
2.0000 || 0.39455736|| 0.39455736| 0.00000000
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0.4 T T T T T T 9
Esxact solu

*  Approximate solu

03f &

0251 B

ulx )
fo]
ulx,t)

018+ &

o1p B

Fig. 8: Comparison between the analytical and the NSFD solutions
with T = 0.005

Fig. 9: 3D- solutions withr = 0.005

Conclusions

In this paper, the NSFD method is applied for solving the sgaoe variable order fractional wave equation, where the
variable order derivative is defined in the sense of Capyiecial attentions are given to study the stability analgsid

the truncation error of the method. Numerical experimergglane to test the method. The obtained results are compared
with the SFD results. Moreover, NSFD gives good results tBBBD. From these results, we observed that the NSFD
method is more efficient for solving the variable order fi@eal wave equation than the SFD method. All results are
obtained by using MATLAB (R2013b).
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