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Abstract: In this paper, the space-time variable order fractional wave equation with a nonlinear source term is considered. The
derivative is defined in the Caputo sense. The non-standard finite difference method is proposed for solving the variableorder
fractional wave equation. Special attention is given to study the stability analysis and the truncation error of the method. Some
numerical test examples are presented, and the results demonstrate the effectiveness of the method. The obtained results are compared
with exact solutions and the standard finite difference solutions.
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1 Introduction

Fractional calculus has been considered as one of the best mathematical tools to characterize the memory property of
complex systems and certain materials [16], it can be considered as an extension of the usual calculus
([1],[2],[10],[13]-[19],[28],[31]). The variable order calculus is the generalization of classical calculus and fractional
calculus, which were invented by Newton and Leibnitz hundreds of years ago. Now the study on it becomes a hotpot in
recent years ([12],[20],[29],[30]). The variable order fractional derivative is a good tool in depicting the memory
property which changes with time or spatial location. So, the physical models could be depicted more accurately by
employing the variable order fractional calculus [16]. Samko and Ross [30], proposed the concept of variable order
operator and investigated the properties of variable orderintegration and differentiation of Riemann-Liouville type. Most
of the definitions of the variable order differential operators are extensions to the fractional calculus definitions such as
Riemann-Liouville, Grünwald, Caputo, Riesz and some not as Coimbra definition ([3]-[6],[9],[29]). Some systems in
fluid dynamics and electromagnetics are introduced using the variable order derivatives (for more details see [5]-[7] and
the references sited therein).

The wave equation is an important second-order partial differential equation for the description of waves as they occur
in physics such as sound waves, light waves and water waves. Variable order wave equation arises in fields like acoustics,
electromagnetics, and fluid dynamics([4],[20]).

Difference methods and, in particular, explicit finite difference methods, are simple an important class of numerical
methods for solving fractional differential equations. The usefulness of the explicit method and popularity is based on
their particularly attractive features. The most attractive feature is that no need to solve resultant system of equations,
especially for large scale problems. The main disadvantageof these methods is that the stability condition which can be
in general proved in a small interval of space and time.

The genesis of nonstandard finite difference (NSFD) modeling procedures began with the 1989 publication of Mickens
[23]. Extensions and a summary of the known results up to 1994 aregiven in Mickens [26], either for ordinary differential
equations (ODEs) or partial differential equations (PDEs)([23]- [27]). Their use have been investigated in several fields
including control, mechanical systems, chaos synchronization and others ([8], [32] and the references cited therein). NSFD
scheme is used with arbitrarily large time step sizes, saving computational cost when integrating over long time periods.
Also, it is important due to the fact that variables representing subpopulations must never take negative values.
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In this work, we shall see that the non-standard discretization is another numerical way to solve the fractional
differential equations while preserving their crucial non-local property.

In the following, we present the basic definition for the variable order fractional derivatives and the main rules of the
nonstandard discretization methods, which we will use in this paper.

Definition 1.1. [11] The variable order Caputo derivative is defined as follows:

Dα(x,t)
x u(x, t) =

1
Γ (n−α (x, t))

∫ x

0

1

(x− ξ )α(x,t)−n+1

∂ nu(ξ , t)
∂ξ n dξ , (1)

where n−1< α(x, t)< n, n ∈ Z+.

NSFD Rules

In this part, we would like to introduce several comments related to NSFD schemes were firstly proposed by Mickens
[23]. This class of schemes and their formulations center on twoissues. First, how should discrete representations for
derivatives be determined, and second, what are the proper forms to be used for nonlinear terms.

In the forward Euler method the derivative termdy
dt is replaced byy(t+h)−y(t)

h , whereh is the step size. However, in the

NSFD schemes this term is replaced byy(t+h)−y(t)
φ(h) ,whereφ(h) is a continuous function of step sizeh, and the function

φ(h) satisfies the following conditions:

φ(h) = h+O(h2), 0< φ(h)< 1, h → 0.

Examples of functionsφ(h) that satisfy these conditions are [25]:

φ(h) = h, sinhh, eh −1, 1−e−λh

λ , etc., . . .
Note that in taking the limh → 0 to obtain the derivative, the use of any of theseφ(h) will lead to the usual result for the
first derivative

dy
dt

= lim
h→0

y[t +φ1(h)]− y(t)
φ2(h)

= lim
h→0

y(t + h)− y(t)
h

.

A scheme is called nonstandard if at least one of the following conditions is satisfied:
1- Nonlocal approximation is used.
2- Discretization of derivative is not traditional and use anonnegative function.
One can say that there is no appropriate general method to choose the functionφ(h) or to choose which nonlinear terms
are to be replaced ([21], [25], [26]).
The main aim of this work is to use the nonstandard finite difference method (NSFD) to study numerically the following
nonlinear space-time variable order wave equation (see forexample [20], and the references sited therein):

Dβ (x,t)
t u(x, t) = B(x, t)Dα(x,t)

x u(x, t)+ f (u,x, t) , 1< α (x, t) ,β (x, t)≤ 2, (2)

with the initial conditions
u(x,0) = ϕ1 (x) ,ut (x,0) = ϕ2 (x) , 0≤ x ≤ a, (3)

and the boundary conditions

u(0, t) =Ψ1(t) ,u(a, t) =Ψ2 (t) , 0≤ t ≤ T, (4)

whereB(x, t) > 0 is a constant,ϕ1(x), ϕ2(x), Ψ1(t), and Ψ2(t) are smooth functions andf (u,x, t) is a nonlinear scour
term satisfies the Lipschitz condition, i.e.,

| f (u1,x, t)− f (u2,x, t)| ≤ L |u1− u2| , (5)

whereL > 0 is called a Lipschitz constant forf .
This paper is organization as follows. In Section 2, we applythe Mickens non-standard discretization scheme to the
fractional order wave equation described in Caputo. In Section 3, we study the stability and the truncation error of the
method. Numerical test examples are presented to show the efficiency of the method in Section 4. Finally, in Section 5 we
give some conclusions.
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2 Discretization for NSFD Method

Let us consider the discrete form of the Caputo derivative:

Dα(x,t)
x u(x, t) =

1
Γ (2−α (x, t))

∫ x

0

1

(x− ξ )α(x,t)−2+1

∂ 2u(ξ , t)
∂ξ 2 dξ

=
1

Γ (2−α (x, t))

i−1

∑
k=0

∫ (k+1)h

kh
z1−α(x,t) ∂ 2u(x− z, t)

∂ z2 dz.

Let z = x− ξ , then

Dα(x,t)
x u(x, t)≃

1
Γ (2−α (x, t))

i−1

∑
k=0

u(x− (k−1)h, t)−2u(x−kh, t)+u(x− (k+1)h, t)

h2 × (

∫ (k+1)h

kh
z1−α(x,t)dz), (6)

then,

Dα(x,t)
x u(x, t)≃

h2−α(x,t)

Γ (3−α (x, t))

i−1

∑
k=0

u(x− (k−1)h, t)−2u(x− kh, t)+ u(x− (k+1)h, t)
h2

×
(

(k+1)2−α(x,t)− k2−α(x,t)
)

. (7)

In the following, the NSFD notions is introduced. LetN andM be two positive integers,h = a
M andτ = T

N , whereh
andτ are the step size of space and time respectively. Also we introduce the following notations:

xi = ih, f or i = 1,2, . . . ,N, t j = jτ, f or j = 1, . . . ,M, (8)

α j
i = α (xi, t j) , β j

i = β (xi, t j) , u j
i = u(xi, t j) , B j

i = B(xi, t j) and f j
i = f

(

u j
i ,xi, t j

)

.

Then

D
α(xi ,t j)
x u(xi, t j) =

h−α j
i

Γ
(

3−α j
i

)

i−1

∑
k=0

(u j
i−k+1−2u j

i−k + u j
i−k−1 )((k+1)2 −α j

i − k2 −α j
i ). (9)

By the same way, we have:

D
β(xi ,t j)
t u(xi, t j) =

τ−β j
i

Γ
(

3−β j
i

)

j−1

∑
k=0

(u j−k+1
i −2u j−k

i + u j−k−1
i )((k+1)2 −β j

i − k2 −β j
i ). (10)

Now, using the NSFD discretization scheme to (9) and (10) by replacing the step sizeh by a function ofh, φ(h) and
the step sizeτ by a function ofτ, ψ(τ).

D
α(xi ,t j)
x u(xi, t j) =

(φ(h))−α j
i

Γ
(

3−α j
i

)

i−1

∑
k=0

(u j
i−k+1−2u j

i−k + u j
i−k−1 )((k+1)2 −α j

i − k2 −α j
i ).

By the same way, we have:

D
β(xi ,t j)
t u(xi, t j) =

(ψ(τ))−β j
i

Γ
(

3−β j
i

)

j−1

∑
k=0

(u j−k+1
i −2u j−k

i + u j−k−1
i )((k+1)2 −β j

i − k2 −β j
i ),

where φ(h) and ψ(τ) have the properties:

ψ(τ) = τ +O(τ2) and φ(h) = h+O(h2).

For simplicity let us define:

R j
i =

B j
i (φ(h))

−α j
i

Γ
(

3−α j
i

) , Q j
i =

Γ
(

3−β j
i

)

(ψ(τ))−β j
i

, (11)
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G j
k =

(

(k+1)2−α j
i − k2−α j

i

)

and Hk
i =

(

(k+1)2−β j
i − k2−β j

i

)

,

then, we can rewrite equation (2) in the following form

j−1

∑
k=0

(u j−k+1
i −2u j−k

i + u j−k−1
i )Hk

i ≈ Q j
i R j

i

i−1

∑
k=0

(u j
i−k+1−2u j

i−k + u j
i−k−1 )G

j
k +Q j

i f
j

i , (12)

that is,

u j+1
i = 2u j

i − u j−1
i −

j−1

∑
k=1

(u j−k+1
i −2u j−k

i + u j−k−1
i )Hk

i +

Q j
i R

j

i

i−1

∑
k=0

(u j
i−k+1−2u j

i−k + u j
i−k−1 )G

j
k +Q j

i f j
i , (13)

u j+1
i =

(

2−H1
i

)

u j
i −

M−2

∑
k=2

(

Hk−2
i −2Hk−1

i +Hk
i

)

u j−k+1
i −

(

H j−2
i −2H j−1

i

)

u1
i −H j−1

i u0
i +

Q j
i R

j

i

i−1

∑
k=0

(u j
i−k+1−2u j

i−k + u j
i−k−1)G

j
k +Q

j

i f j
i .

The previous equation can be expressed in the following matrix form:

U0
i = /01, U1

i =U0
i +ψ(τ) /02, (14)

and for j ≥ 2

U j+1
i = A jU j

i −
M−2

∑
k=2

(

Hk−2
i −2Hk−1

i +Hk
i

)

U j−k+1
i −

(

H j−2
i −2H j−1

i

)

U1
i −H j−1

i U0
i +F j, (15)

whereF j =
(

Q j
i f
(

u j
m−1,xm−1, t j

)

, . . . ,Q j
i f
(

u j
1,x1, t j

))T
, U j =

(

u j
M−1, u j

M−2, . . . ,u
j
1

)T
,

/01 = (ϕ1 (x1) ,ϕ1 (x2) , . . . ,ϕ1 (xN))
T , /02 = (ϕ2 (x1) ,ϕ2 (x2) , . . . ,ϕ2 (xN))

T , (16)

andA j = (a j
nm), where

a j
nm =































Q j
nR j

nG j
n−1, m = 1,

Q j
nR j

n

(

G j
n−m −2G j

n−m+1+θG j
n−m+2

)

, m ≤ n,

2−H j
n +Q j

nR j
n(θG j

1−2G
j

0),

Q j
nR j

nG j
0,

0 ,

m = n+1,
m = n+2,
m > n+2,

and

θ =

{

0 , when m = 2,
1 , otherwise, (17)

for n = 1,2, . . . ,K −1, andm = 1,2, . . . ,K −1. Also, we note that

‖A‖∞ = max
1≤n≤K

K

∑
m=1

|anm| = max
1≤n≤K

{2−Hn
i }= 2−H0

i , (18)

then‖A‖∞ = 1.
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Lemma 1. The coefficientsG j
k andHk

i satisfy the following conditions

1. G j
0 = 1,and H0

i = 1.

2. G j
k > G j

k+1 , and Hk
i > Hk+1

i , for k = 0,1, . . .

3 Stability Analysis and Truncation Error

Let us considerW j+1 andU j+1 be two different numerical solutions of (15) with initial values given byW 0 andU0,
respectively.

Theorem 3.1.NSFD method defined by (15) to equation (2) is unconditionally stable, i.e.,
∣

∣W j+1−U j+1
∣

∣≤C
∣

∣W 0−U0
∣

∣ , f or any j. (19)

Proof. DefinedW j+1−U j+1 = ε j+1.
From (15) we have

ε j+1
i = A jε j

i −
M−2

∑
k=2

(

Hk−2
i −2Hk−1

i +Hk
i

)

ε j−k+1
i −

(

H j−2
i −2H j−1

i

)

ε1
i −H j−1

i ε0
i +F j

ε , (20)

where

F j
ε =

(

Q j
m−1 f

(

u j
m−1,xm−1, t j

)

−Q j
m−1 f

(

w j
m−1,xm−1, t j

)

, . . . ,Q j
1 f
(

u j
1,x1, t j

)

−Q j
1 f
(

w j
1,x1, t j

))T

≤
(

Q j
m−1L j

m−1ε j
m−1, . . . ,Q

j
1L j

1ε j
1

)T
=△F jε j, (21)

and△F j = diag
(

Q j
m−1L j

m−1 , . . . ,Q
j
1L j

1

)T
.

Noting that
∣

∣

∣
L j

i

∣

∣

∣
≤ L , for anyi, j. Let Q = max

{

Q j
m−1, . . . ,Q

j
1

}

.

From (20), we have
∥

∥A j +△F j
∥

∥

m ≤
(

2+QL
)

, when

ψ(τ)β j
i >

−2

Γ (3−β j
i )L

, where L > 0,

then

∥

∥

∥
ε j+1

i

∥

∥

∥

∞
≤
∥

∥A j +△F j
∥

∥

∞

∥

∥

∥
ε j

i

∥

∥

∥

∞
+

M−2

∑
k=2

(

Hk−2
i −2Hk−1

i +Hk
i

) ∥

∥

∥
ε j−k+1

i

∥

∥

∥

∞
+

(

H j−2
i −2H j−1

i

)

∥

∥ε1
i

∥

∥

∞ +H j−1
i

∥

∥ε0
i

∥

∥

∞. (22)

Now, we analyze the stability via mathematical induction ([11], [22], [31]), from (14) we have
∥

∥ε1
i

∥

∥

∞ ≤C
∥

∥ε0
i

∥

∥

∞ , where C is a constant.

Now, assume that
∥

∥

∥
ε j

i

∥

∥

∥

∞
≤C

∥

∥ε0
i

∥

∥

∞ , then from (22) , we have

∥

∥

∥
ε j+1

i

∥

∥

∥

∞
≤C1

(

2+QL
)∥

∥ε0
i

∥

∥

∞ +
M−2

∑
k=2

(

Hk−2
i −2Hk−1

i +Hk
i

)

C2
∥

∥ε0
i

∥

∥

∞+

C3

(

H j−2
i −2H j−1

i

)

∥

∥ε0
i

∥

∥

∞ +H j−1
i

∥

∥ε0
i

∥

∥

∞ ≤C
∥

∥ε0
i

∥

∥

∞ . (23)

Then the theorem holds.

Lemma 2: Let

D
α(xi,t j)
x u(xi, t j) =

(φ(h))−α(xi,t j)

Γ (3−α(xi, t j))

j−1

∑
k=0

G j
i (u

j
i−k+1 −2u j

i−k + u j
i−k−1), (24)
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be a smooth function, then
∣

∣

∣

∣

D
α(xi,t j)
x u(xi, t j)−D

α(xi,t j)
x u(xi, t j)

∣

∣

∣

∣

= O(φ(h)) . (25)

Proof. In term of standard centered difference formula, we have

D
α(xi,t j )
x u(xi, t j) =

(φ(h))2−α(xi,t j)

Γ (3−α(xi,t j))
∑k−1

j=0 G j
i [

∂ 2u(x− jh,t)
∂ z2 +O(φ(h)2)]

= (φ(h))2−α(xi,t j)

Γ (3−α(xi,t j))
∑k−1

j=0 G j
i

∂ 2u(x− jh,t)
∂ z2 + (φ(h))2−α(xi,t j)k2−α(xi ,t j)

Γ (3−α(xi,t j ))
O(φ(h)2)

= (φ(h))2−α(xi,t j)

Γ (3−α(xi,t j))
∑k−1

j=0 G j
i

∂ 2u(x− jh,t)
∂ z2 + x2−α(xi ,t j)

Γ (3−α(xi,t j))
O(φ(h)2)

= (φ(h))2−α(xi,t j)

Γ (3−α(xi,t j))
∑k−1

j=0 G j
i

∂ 2u(x− jh,t)
∂ z2 + O(φ(h)2) .

(26)

By the integral mean value theorem, we have

D
α(xi,t j)
x u(xi, t j) =

1
Γ (2−α(xi, t j))

k−1

∑
j=0

∫ ( j+1)h

jh
z1−α(xi,t j)

∂ 2u(x− z, t)
∂ z2 dz =

(φ(h))2−α(xi,t j)

Γ (3−α(xi, t j))
, (27)

whereζ j ∈ [ jh,( j+1)h]. Combining the above two formulae, we have
∣

∣

∣

∣

D
α(xi,t j)
x u(xi, t j)−D

α(xi ,t j)
x u(xi, t j)

∣

∣

∣

∣

=

∣

∣

∣

∣

(φ(h))2−α(xi ,t j)

Γ (3−α(xi,t j))
∑k−1

j=0 G j
i [

∂ 2u(x− jh,t)
∂ z2 −

∂ 2u(x−ζ j ,t)
∂ z2 ]+O(φ(h)2)

∣

∣

∣

∣

=

∣

∣

∣

∣

φ(h)2−α(xi ,t j)

Γ (3−α(xi,t j ))
∑k−1

j=0 G j
i .O(φ(h))+O(φ(h)2)

∣

∣

∣

∣

=
∣

∣

∣

h2−α(xi ,t j)k2−α(xi ,t j)

Γ (3−α(xi,t j))
.O(φ(h))+O(φ(h)2)

∣

∣

∣

= O(φ(h))+O(φ(h)2)
= O(φ(h)).

(28)

Using lemma 2, the truncation error of NSFD scheme (14) can be derive. It has a local truncation error of
O(ψ(τ))(from the left side) andO(φ(h)) (from the right side).

Remark
NSFD method was shown to be stable and with a local truncationerror, which isO(ψ(τ))+O(φ(h)). Therefore, according
to the Lax’s Equivalence Theorem [28], it converges at this rate.

4 Numerical Examples

Example 4.1.Consider the nonlinear variable order fractional wave equation [20]:

Dβ (x,t)
t u(x, t) =−0.5cos(α (x, t)π/2) Dα(x,t)

x u(x, t)+ f (u,x, t) , (29)

with α(x, t) = 1.5+0.5e−(xt)2−1, β (x, t) = 1.5+0.25cos(x)sin(2t), and

f (u,x, t) =
2u

t2+1
− (t2+1)

(

16x2−α(x,t)

Γ (3−α (x, t))
+

6x3−α(x,t)

Γ (4−α (x, t))

)

, (30)

the initial and boundary conditions are:

u(x,0) = x2 (8− x), ut (x,0) = 0, and u(0, t) = u(8, t) = 0, (31)

where 0≤ x ≤ 8 and T = 1. Let
ψ(τ) = tanh(τ) and φ(h) = sinh(h).

The exact solution is:u(x, t) = x2 (8− x)(t2+1), whenα = β = 2.
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A comparison between the numerical and the exact solutions whenN = 1000 andM = 125 is presented in figure1. In
figures 2, 3 and 4, respectively we report the approximate solutions in threedimensions, where the axis’s are
(t,x,u), (α,x,u) and (β ,x,u), respectively. Figure2, shows the numerical solution at all values of the time and figures3
and4, show the numerical solutions change with respect toα andβ , at T = 1. In Table1, we calculate the absolute
errors between the exact solutionuex and the approximate solutionuapprox whenN = 1000 andM = 125. In Table2, a
comparison between the NSFD and the standard finite difference (SFD) solutions, where the accuracy of the NSFD is
better than the SFD. From the results displayed in the table2 and in all the figures, it is obvious that the proposed method
is an efficient and able to give numerical solutions coincideclosely with the exact solutions.

Fig. 1: Comparison between the analytical and the numerical
solutions.

Fig. 2: The numerical solutions where the axis is(t,x,u).

Fig. 3: The numerical solutions where the axis is(α,x,u). Fig. 4: The numerical solutions where the axis is(β ,x,u).
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Table 1: The absolute error between the exact solution and the approximate solution whenN = 1000 andM = 125.

x |uex −uapprox|
0.0000 0.00000000
0.8000 0.00270905
1.6000 0.00247795
2.4000 0.00212119
3.2000 0.00162219
4.0000 0.00091329
4.8000 0.00009988
5.6000 0.00152948
6.4000 0.00350169
7.2000 0.00615396
8.0000 0.00000000

Table 2: The maximum error of the NSFD and the SFD methods

T maximum error of NSFD maximum error of SFD
T=1 6.1539e−3 0.0102
T=4 3.4818e−3 0.6469
T=8 9.0641e−5 1.0926

Example 4.2.Consider the following variable-order nonlinear fractional wave equation:

Dβ (x,t)
t u(x, t) = 2cos(t) Dα(x,t)

x u(x, t)+ f (u,x, t), (32)

with α(x, t) = 2− cos2(x) sin2(t), β (x, t) = 1.8+0.5e−(xt)2−1,

andu(x,0) = 1+ sin(x) , ut (x,0) = 0, and u(0, t) = cos(t), u(10, t) = 0.174+ cos(t),

where 0≤ x ≤ 10 , T = 1, andf (u,x, t) = u− sin(x)− cos(t)+2sin(x)cos(t)− cos(t).
Let

ψ(τ) = eτ2
−1 and φ(h) = sinh(h).

The exact solution is:

u(x, t) = sinx+ cost, when α = β = 2. (33)

Figure5, shows the behavior of the exact solutions and the numericalsolutions of the proposed method withN = 500
andM = 125. In figure6, a comparison between the SFD and the exact solutions whenN = 500 andM = 125. Figures5
and6, show that the accuracy of the NSFD is better than the SFD. Figure7, shows the approximate solution change with
respect toβ atT = 1, where the axis’s are(β ,x,u).
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Fig. 5: Comparison between the exact and the NSFD. Fig. 6: Comparison between the exact and the SFD.

Fig. 7: The numerical solutions where the axis is(β ,x,u).

Example 4.3.Consider the following variable-order nonlinear fractional wave equation:

Dβ (x,t)
t u(x, t) = Dα(x,t)

x u(x, t)+ f (u,x, t), 0< x < 2 and 0< t < 1, (34)

with α(x, t) = 2− cos2(x) sin2(t), β (x, t) = 1.8+0.5e−(xt)2−1,

where f (u,x, t) =−u−2sin(t),

the initial and boundary conditions are:

u(x,0) = 0,
∂u
∂ t

(x,0) = x2, u(0, t) = 0, and u(2, t) = 4sin(t).
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Let
ψ(τ) = sinh(τ2) and φ(h) = 1− e−h2

.

Whenα = 2, the exact solution is:
u(x, t) = x2sin(t).

In Table3, the absolute error between the exact solutionuex and the NSFD solutionuapprox are given where the maximum
error is 4.1179e−4, with N = 200 andM = 100. In order to test the numerical scheme, we describe in figure 8 the
analytical and the approximate solutions atN = 200 andM = 100. To study the behaviour of the solutions figure9, shows
the 3D solutions. Table4, shows the absolute error between the exact solutionuex and the SFD solutionuapprox where
the maximum error is 1.7304e−2, with N = 200 andM = 100. From the results displayed in Tables3 and4, it is obvious
that the accuracy of the NSFD is better than the SFD. So, the proposed method is an efficient and able to give numerical
solutions coincide closely with the exact solutions.

Table 3: The absolute error between the exact solutionuex and the NSFD solutionuapprox.

xi uex uapprox |uex −uapprox|
0.0000 0.00000000 0.00000000 0.00000000
0.4000 0.01578229 0.01580835 0.00002605
0.8000 0.06312918 0.06323240 0.00010322
1.2000 0.14204065 0.14227245 0.00023180
1.6000 0.25251671 0.25292850 0.00041179
2.0000 0.39455736 0.39455736 0.00000000

Table 4: The absolute error between the exact solutionuex and the SFD solutionuapprox.

xi uex uapprox |uex −uapprox|
0.0000 0.00000000 0.00000000 0.00000000
0.4000 0.01578229 0.02754002 0.01175772
0.8000 0.06312918 0.07684702 0.01371785
1.2000 0.14204065 0.15763362 0.01559297
1.6000 0.25251671 0.26982165 0.01730494
2.0000 0.39455736 0.39455736 0.00000000
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Fig. 8: Comparison between the analytical and the NSFD solutions
with τ = 0.005.

Fig. 9: 3D- solutions withτ = 0.005.

Conclusions

In this paper, the NSFD method is applied for solving the space-time variable order fractional wave equation, where the
variable order derivative is defined in the sense of Caputo. Special attentions are given to study the stability analysisand
the truncation error of the method. Numerical experiments are done to test the method. The obtained results are compared
with the SFD results. Moreover, NSFD gives good results thanSFD. From these results, we observed that the NSFD
method is more efficient for solving the variable order fractional wave equation than the SFD method. All results are
obtained by using MATLAB (R2013b).
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