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Abstract: In the present article, we investigate a fractional boupdatue problem (FBVP) of complex ordér= m+ia, where
1< m<2anda € RY is studied. By applying two fixed point theorems Banach artta8der, we achieved some new existence and
uniqueness conclusions of complex solutions. We preseexample to express our results.
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1 Introduction

Study of fractional differential equations has been caogrsitlly progressed in recent years that implies importande a
place of the fractional calculus in the sciences and engimgeOn the other side, according to extensive application
of fractional calculus in natural phenomena like chemidajgics, electrical networks, viscoelasticity, porous ragd
electrical networks, it got many scholar’s attention, seielas like [1,2,3,4].

In the past few years, solvability of BVPs for nonlinear tianal differential equations were studied that in these
types of problems usually existence and multiplicity ofusimins is discussed with fixed point theorems, s&8,p,11].
Also the existence and uniqueness of positive solutiondBdHs by applying some fixed point theorems on cone were
acquired, asq,6,7,8,10].

Bai and Lu p] considered the following BVP of nonlinear fractional @ifential equation

Dg, u(t) +
u

whereDg, is the standard Riemann-Liouville fractional derivatifeoadera € (1,2] and f is a continuous function. By
applying fixed point theorems on cone existence and mudiiplof positive solutions to the problem achieved.
Agarwal and his co-author$] studied existence of positive solutions for the singulacfional boundary value
problem
{ Dg, u(t)+ f(t,u(t),DHu(t)) =0,0<t < 1;
u(0) =u(1) =0,

inwhich 1< a < 2,0 < u < o —1 and the positive functiofi satisfied the Caratheodory conditions[Ori] x [0, ] x R
andf has singularity ak = 0.

In all above mentioned papers, order of differentiation mea$ and in the knowledge of authors there isn’t any problem
containing fractional differential operator of complexier.

The novelty of the present work is to consider the fracti@\P for differential equation of complex-order, namely:

D§.q(t) = h(1,q(1)),T €[0,1],0 = m+ia, (1)

subject to boundary conditions
q(0) =q(1) =0, 2
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in which, 1< m<2,a € R" and Dg+ is the Riemann-Liouville fractional derivative of ordérc C andh € C([0,1] x
[0,00),[0,)). Our aim is to prove the existence of complex solution fordligerential equation of complex order which
has not been studied as mentioned above.

The remainder article is divided as follows: in section 2, giee some preliminaries of fractional derivatives and
integrals. Then the integral equation pertaining to théofam (1)-(2) and the corresponding Green’s function obtained.
By assuming conditions and using fixed point theorems exigt@nd uniqueness of complex solutions will be obtained
in the last section. Furthermore an example is given.

2 Preliminaries and Notations

This section contains definitions and lemmas of fractiomédudus that is needed to prove our results. The presentatio
here can be found irl[2,5].

Definition 2.1. ([5]) The Riemann-Liouville fractional integral of ordgre C, (O (u) > 0) of a functionh: (0,0) — R

is
1 p _
m/o (p—9s)H th(s)ds.

Definition 2.2.([5]) The Riemann-Liouville fractional derivative of ordgre C, (O(u) > 0) of a functionh: (0,00) — R

has the form L g e h(s)
u - an S
D0+h(p)_ r(n—pu) dpn/O (p—s)ufmrlds’

|g+h(P) =

wheren= [0 (u)] + 1.
Definition 2.3. ([2]) The Stirling asymptotic formula of the Gamma function ## C is following

I (z) = (2m)Y2Z Y22 [1+ o] (%ﬂ (larg(2)| < 1|2 — ), (3)
and its result fofl (a+ib)|, (a,b e R) is
[ (a+ib)| = (2m)*/2|bj2- /2 a-Tibl/2 [1+o(%>} (b— o). 4)

Lemma 2.1.([5]) Let g € C(0,1) NL(0,1) with a fractional derivative of ordep € C, (O(u) > 0) that belongs to
C(0,1)NL(0,1). Then

n .

16:D5.9(r) = (1) + 3 &7

1=

for somec; € R, i =1,...,n,wheren=[O(u)] + 1.

Proof. From [5] we can conclude fop € C, (O(u) > 0) that is true.
Lemma 2.2.Lety(s) € C[0,1]. Then, the following FBVP

{D8+Q(T) =y(1), T€[0,1];
q(0)=q(1) =0, 6 =m+ia.

forl<m<2,a €R",is equivalentto

a0 = [ a(rsyeas

where 0-1_ ,6-1 0-1
_ 1 [(1—9" =1 (1-9" 1 0<s<T,
Gr.s) = r(6) { —19-1(1-9)%1 T<s<1.
Proof. Lemma 2.1. leads to
1 T
q(T) =clr9‘1+czr9‘2+lg+y(r):Clr9‘1+czr9‘2+@/o (1—9)%ty(s)ds, (5)
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for somecy, ¢; € R. By using conditiory(0) = 0 suppose;, = 0. Also, the boundary conditiog(1) = O gives

1
1=~ g7 ) (-9 s

Substitutinge into (5) yield
1 T
q(t) = W/O (1—5)91y(s)ds+%9)/0 (1—9)%y(s)ds.

We obtain the Green’s function

T 1 T
o(1) = —% (/o +/ )re‘l(l—s)g‘ly(s)ds—k%/o (159 Ly(s)ds

— %e)/or[(r—s)el— 191(1—9) % Yy(s)ds— %/Tlral(l—s)ely(s)ds

/OlG(r,s)y(s)ds

3 Existence Results

Let B = C[0,1] be a Banach space of continuous functions endowed with the jigi| = max<r<1[9(7)]-
Define the operatogZ : B — B as follows:

-l-Gl

(@)1 = g [ (-9 (s as)ds— Lo [ (-9 hisa(s)ds

According to Lemma 2.2, the fixed points of the operatbare the same solutions of the BVB{(2). To obtain necessary
results, we assume:

(Hl) he C([07 1] X [Oa 00)7 [Oa Oo))

(H2) VT €[0,1], g,4 € R, there is a consta > 0 so that

Ih(t,q) —h(r,4)| <K|g—4.

(H3) = m\l‘( )i <1l
Theorem 3.1.Under assumptions$i;-H3), the FBVP ()-(2) has a unique solution.

Proof. Since h and G(t,s) are continuous, thens/ is continuous. Regarding the conditio(H1), put
M = maxc(oq [h(7,0)|. Define a ballDy = {q € B: ||q <r}, where 2. <r andy, = 72 First, we show

/Dy C Dy, forqe Dy e
/a(n)] < |'T91'| [ 1a-9 s a)ids+ o [Mr-9% s as)ios
i) o ) 10-9°H(ns a9) - h(s 0+ s o) s
s [ 0= H(h(s a(8) ~his 0] + (s 0)ds
< <K|q<s>|+M>{#| / 1|<1—s>9—1|ds+ﬁ [ -9t}
s ZT;:?? (22}
< % =nr+y<r
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Now, forg,§ € B, T € [0,1], we obtain
T0 1|

|/ (1-9)°*Ih(s,q(s)) — h(s.4(s))|ds
—/ |(T—9)°*|h(s.q(s) —h(s.4(s))|ds

< K||q q {/ (1—9)°- 1|ds+/ (T—9)°- 1|ds}
- K|”rq( )T' {/ (1-9™ 1ds+/ Shia 1ds}

< 2 _q-q
= mre)]
~ wllq—4l.

wherey; < 1. Therefore,e is a contraction. By the contraction mapping principle, waaude that FBVP)-(2) has a
unigue solution.

Theorem 3.2.Under assumption${;) and H3) the FBVP ()-(2) has a solution on [0,1].

Proof. Let us consider a convex, bounded and closed siiyset{q € B: ||q|| < r}, of the Banach spad® We showed
that.e” mapsD; into Dy.

Now, letM = max.(o,1),qep, [N(7,d(T))| + 1, forg € Dy, we give

|/q(1) - (1) <

/q(n)] < |/ (1-9 s a(s)lds - g [ (1-97 *n(s.(s)lds

< “_'z"—e)'{/o (1-g™ lo|s+/ Sk 1ds}

2M
- mre)

Thus,.« is uniformly bounded o, . Next, we show that7 (Dy) is equicontinuous. Foy € Dy and 1y, T2 € [0,1] such
thatt; < T2 we get,

joratre) v < | B [T 9 s rsas
n % /0 Tz(rz—s)elh(s,q(s))ds—% /0 (11— 9% Ih(s,q(s))ds
.[.0 1_.[.0 1 1 B
<P | @-9°*h(sq(s)ds

+\% Ml =97 - (-9 (s a(s)ds
+ %9) /Tz(rz —9)%th(s q(s))ds

n
1
/ (1-s)%ds
0

-1 - 6-1
Ml -1

- |’_( )|
2
’/ —(rl—s)efl]ds+/ (12—9)%ds
|I_ | 1
2M M
< - l_ -1 v _ 6 v 46 _ 406 )

It is easy to see that function§ and18~1 are uniformly continuous on [0,1]. Then?(D;) is equicontinuous. By the

Arzela-Ascoli theoreme/(D;) is compact and se7 : D; — Dy, is completely continuous. The Schauder fixed point
theorem now causes that the BVB-(2) has a solution.
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4 lllustrative Example

Example 4.1Let us consider fractional BVP of complex order:

3+ _ tanlg .
Dg. A1) =7, 1€(0,1]; (6)
q(0)=q(1) =0.
wherem= 3, a =1and
tan !
h(r,q) = =3 (1,q) € [0,1] x [0,).

T+2
Itis clear that is a continuous function. Now, fdrr,q), (7,4) € [0, 1] x [0, o) we get

h(r,0) ~h(r,6)| = —5Jtantq—tan g
< %|tan*lq—tan*l(j|
< 2la-d
2
Thus,K = 3, and in view of relation4), since|l (3 +i)| > 1, we have

2K 1 2

“mre) - Ireen ard+n

i

By applying Theorem 3.1, we deduced that B\@plfas a unique solution.
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