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Abstract: In this paper we introduce the digital singular homologyup®of the digital spaces topologized by the Khalimsky toggl
by constructing the digital standanesimplexes. Then we’ll compute the digital singular honggigroups of some basic digital spaces
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1 Introduction For each dimension, the singular homology counts

the n-dimensional holes of a space. The resulting
homology groups are the same for all homotopically
equivalent spaces. The construction of the singular
homology can be applied to all topological spaces and is
(preserved by the continuous functions. Thus, according to

Cech, Eilenberg, Vietoris, etc.). Eilenberg and SteenrodN€ category theory, homology group becomes a functor
(8] formally defined the features of homology theory by 1OM the category of topological spaces to the category of

giving a set of certain axioms which a homology theory 9raded abelian groups.

should satisfy. Simplicial homology was defined for the ) , -

simplicial complexes and the homology groups depend !N this paper we define the digital standard
only on the geometric realization of the simplicial N-Simplexes and introduce the digital singular homology
complex. groups in digital spaces topologized by the Khalimsky

topology. Then we’ll compute the digital singular
homology groups of some basic digital spaces up to the
dimension 2 and investigate that the digital singular
homology theory in digital spaces is a functor from the
category KDTC of KD-topological category to the
gategory Ab of abelian groups.

The theory of homology was given by Poincal&][and
many different homology _theories (e.g. simplicial
homology, singular homologZech homology, etc.) were
developped by many mathematicians (e.g. Alexande

Arslan et al. P] introduce the digital simplicial
homology groups of-dimensional digital images. In the
work of [6] the concept of the simplicial homology
groups of digital images and the earlier definiton of Euler
characteristics of digital images have been expanded an
some certain minimal simple closed surfaces have been
studied to compute their simplicial homology groups. In o
addition to those works, Karaca and EG investigate 2 Preliminaries
the Eilenberg-Steenrod axioms for the simplicial
homology groups of digital images. They state theLetZ be the set of integers andC Z™ for some positive
universal coefficient theorem for digital images and integerm. Let k indicates some adjacency relation for the
conclude that the Kinneth formula for the simplicial members ofX. The generalization of the adjacency is as
homology doesn’t hold and the Hurewicz theorem needfollows [5]. Let |, m be positive integers, £ | < mand
not be hold in digital images. two distinct pointsp = (p1,..., pm) andg = (d1,.-.,0m)

in Z™M, p and q are k-adjacentif there are at most
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distinct coordinateg for which |p; —q;| = 1, and for alll
other coordinateg, p; = g;. That is, two pointsp andq
in Z are 2-adjacent iff= p+ 1. Two pointsp andq in Z2

are 8-adjacent if they are distinct and differ by at most 1

the subspace topology is

B ={XN _|r_n|B(ni) : eachB(n) is a basis irZ}.

in each coordinate; they are 4-adjacent if they are

8-adjacent and differ in exactly one coordinate. Two

points p andq in Z® are 26-adjacent if they are distinct

and differ by at most 1 in each coordinate; they are
18-adjacent if they are 26-adjacent and differ in at mosty o
they are 6-adjacent if they are
18-adjacent and differ in exactly one coordinate. We call

two coordinates;
the pair(X, k) as adigital image

Let k be an adjacency relation defined 8f andp be
a pointinZ™. Then the point irZ™ which isk-adjacent to
p is called ak-neighborof p [11]. Let (X, k) be a digital
image inZ™M. ThenX is k-connected14] if and only if
for every pair of different pointp andq in X, there is a
sequence{po, p1,---,Ps} Of points of X such that
p = po, = ps and p; and p;;1 are k-adjacent where
i€{0,1,...,5—1} [11]. In this case, we call the sequence
as k-path between the pointp andq in X. Let /x(p,q)
denote the length of a shortesipath betweem andq. If
there is nok-path between the pointp and g, take
lk(p,q) = 0. Then, let

Nk (p,€) :={qeX : l(p,q) < e}U{p}

wheree € N [9].

For eachm € Z, define the sets

B(m) = {{m},

CUOOOTEY-

=T 6-5-4-3-2-10123 4756 T

if m is odd
if m is even

Fig. 1: The illustration ofB(m)

Then the collection

B={B(n) : neZ}

is a basis for a topology oA and the topology generated
by this basis is called Khalimsky digital line topology
[12]. Note that the product topology dA™ for m > 1 is
the topology generated by the basis

B = {El B(n;) :eachB(n;) is a basis irZ}.

Let (X,k) be a digital image inZ™. Then X has the
subspace topology inherited fro#" where the basis of

We will denote such spaces B¥m«, Tx).

If (Xmy.xy: Tx) iS @ space angis a point in(Xmx, Tx),
a neighbourhood of is a subsetOy of X that
includes an open sét containingx. Let (Xm, «,, Tx) and
(Yomp,k,, Ty) be spaces and let

f 1 Kngkys %) = (Ympiep T )

be a function. Then we say thétis continuous at 10|,
if for all open subset©y ) of Y containing f(x), the
preimage of the open s€, is an open subset ok
containingx.

Definition 2.1.[10] Let f : (Xmy k;, Tx) = (Ympko, Ty) b€
a function. If

1. f is continuous ax and
2. for anyNy, (f(x),€) C Y, there isN, (x,0) C X such
that f (N, (X,0)) C Nk, (f(x),€), whereg,d € N,

then we say thaf is KD-(k1, k2) continuous function at
x € X. Moreover if f is KD-(K1,K2) continuous at any
pointin X, the we callf as aKD-(k1, Kz) continuous

A KD-(K1,k2)-continuous bijective function is
KD-(k1, K2)-isomorphism[10], if the inverse of f is
KD- (K2, K1)-continuous.

Let Sbe a set of nonempty subsets of a digital image
(X,K). We call the members of S as thesimplicesof
(X, K) [18] if the following two statements hold:

1. if pandq are two distinct points 0§, then they are
k-adjacent,
2.ifse Sand 0#£t C s, thent € S.

If the number of elements o is n+ 1, thenS'is
called am-simplex

Let (K, k) be a finite collection of digitah-simplices
ranging over < n < d for some integed. Then(K, k) is
calleda finite digital simplicial complek?] if

i) Sbelongs tK, then every face o8 also belongs td,
i) SandP in K, thenSN P is either empty or a common
face ofSandP.

The dimension oK is the biggest integem such thatk
has am-simplex.
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3 Digital Singular Homology Groups
Forn>0leteg = (0,...,0) and for 1< i <n, let

Q = (il7i27"'7in)

be the point iZ" where components & are defined by

P 1, ifm<i
M=o, ifm>i.
For example irZ?,
802(0,0), 912(1,0), 622(1,1)
and inZ3,

& =(0,0,0), &=(1,0,0), &=(1,1,0), e=(1,1,1).
We denote the digital standanesimplex by
A" = [ep,ey,...,€n].

Example 3.1.
e Forn =0, the Khalimsky topology oa° = [ey] is

Th0 = {0,4°}.
e Forn = 1, the Khalimsky topology od* = [ey, &] is
1= {0.4% {er}}.
e Forn = 2, the Khalimksy topology od, = [ep, e1,€] is
T2 = {0,4% {es}. {er, €2} ).

e Forn= 3, the Khalimsky topology oA = [ey, &1, &>, €3]

IS
Tpz = {07A37 {83}, {eZa 83}, {e17e27e3}}-

! ;
e €
," E ‘/"\\

° s e ' ..A;'.’....i.,. P (:'I“’: = L >

€ € € €) i € ',,' P
i P
v »

Fig. 2: A%, A1, A2 andA3

where& means that it is deleted andey, ..., 8, ...,ey] is
the ith face with orientation opposite to the one with the
vertices ordered ag < €1 < ... < ey. Then the boundary
of A"is

Ul (€0, .., &, ..., En]
and the oriented boundary 4f' is

U4 (-1)'[eo, ..., &, ..., €n].

Definition 3.2. Let (Xm«, Tx) be a digital space. Migital
singular n-simplexin X is a KD-(3" — 1, k)-continuous
map

" A" — X.

Forn> 0, let$,(X) denote the free abelian group with
basis of all digital singulan-simplexes in a digital space
X and define

S 1(X)=0.

The elements 08§,(X) are calledthe digital singular
n-chainsin X.

Let & := &": A™1 — A" to be a map taking the
vertices{ep, €1, ...,en_1} to the vertices{ey,...,§,....,en}
and preserving the orderings.

Note that the superscriptindicates that the target of
g is A". We callg asith face map

For instance, there are 4 face maps

g:0% - A3,
such that
& : [eg,e1,60] — (€1, €, 63]
o &1 [eg,e1,6] — [€n, €0, €3]
€, €1, €| — [ep, €1, €3]
€p,€1,€| — [€p, €1,

05|
083:[

Definition 3.3. Let (Xm«, Tx) be a space. 16" : A" — X
is a singular digitah-simplex, then its boundary is

On(a") = JZO(—l)jonsjn €S 1(X)

and ifn= 0, define
do(O'n) =0.

By the linearity ofd,, note that for each > 0, there is

We give a linear ordering of its vertices, called @unique homomorphism

orientation In that case, let

e <e <..<e
be the orientation ofA" = [epy,€y,...,en). Under this

orientation, the induced orientation of its faces defined by

orienting the ith face in the sense

(-1)'[ev, ... 8, .., &)

Oh:S— Sa1X)
with .

On(ad") =Y (1) gl
&

for every singular digitah-simplexa™ in X.
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Definition 3.4. The homomorphisms
On: Si(X) = Si-1(X)

are calledboundary operatorsFor each digital space

(Xm7K7 T)(),
homomorphisms

g x) e (0 P L 2 5(x)
— ) —2—o0

called the digital singular complexf the digital space
(Xmk, Tx) and it is denoted b$, (X).

Lemma 3.5.If k < j, then face maps satisfy

£JD+1

_ ~n+1
Ek & EJ 1-

Theorem 3.6.For alln > 0, we haved,d,.1 = 0.

Proof. It suffices to show thavhd,.1(o) = 0 for the
generatore € S,11(X).
n+1

OnOni1(0) = an%( 1)) o)

n+1

(—1)kgo( 1ioe e

(_1)j+kagjn+lglr(1

=}

=~

I
=M

_ ( 1)J+kG£Jn+l£ +z J+ka£Jn+1€n
1= k<]

= zk( 1) oeM el + > (- 1)ikogd el
= k<]

a sequence of free abelian groups and

Note that asd,dn.1 = 0, for every digital space
(Xmk, Tx) andn > 0, we have

Bn(X) C Zn(X) C Su(X).

Definition 3.8. For eachn > 0, the nth digital singular
homology groupf a digital spacéXm, Tx) is

00 i -

Kernel o,
Imagedn, 1

The cosetz, + Bn(X) where z, € Z,(X) is called the
homology classf z, and it is denoted b¥,.

Theorem 3.9.Let X = {x} be a one point space A™.
Then for alln > 0,

Hn(X) = 0.

Proof. SinceX is a one point space, there will be only one
digital singulam-simplex

ag": A" — X
which is the constant map for all> 0. Therefore
Si(X)=Z

Computing the boundary operations

In the second sum of the right-hand side of the equation,l herefore ifnis odd, then

takep=kandg= j—1. Then
Onbns1(0) = zk(—l)l'+'<aaj”+lsk“
1<

+ 5 ()P logptiey.
p<a

We see that each termie™ el occurs twice. From
the opposite signs of these sums terms cancel in pgairs.

Definition 3.7. In a digital spacéXm, Tx), the group of
the digital singulam-cylesis the kernel of the boundary
operatord,

Zn(X) := Kerneld,

and the group of the digital singularboundariess the
image of the boundary operatéy, 1 in X is

Bn(X) := Imagedn1.

n .
U &= (_1)|Un—1
Vegiasy,
yields that
0 nis odd
n . 3
In(07) = {0”1, nis even and positive.
Sh(X) = Ker dn = Zy(X)

and sincen+ 1 is even,d,. 1 will be an isomorphism, so
that

Si(X) =
ThusHn(X) = 0.

Imagean_H]_ - Bn(x)
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If nis even therd, will be an isomorphism so that
Sh(X) = Kerneld, = 0. 02 ep—a 0% epa od:e—b
ThusHp(X) =0 as well.C G—a G—c b
e —C e—C € —C
Theorem 3.10LetX ={a=(0,0),b=(1,0),c=(1,1)}
be a subset dt? as shown in the Figure 3. Then the digital 02 enisb
singular homology groups of up to the dimension 2 are 10-%
as follows: € —C
€ C.
Ho(X) =Z, Hi(X)=0, Hz(X)=0.
Proof. We have already shown that the Khalimsky  S3(X) has for a
topology onX is basis o3 eprs b o3 e
2 3
TX:{mvxa{C}v{b7C}}' O—f:a)Ha e —b e —C
. . i —a
Now we will compute the singular digital homology e &b &—cC
groups of X. The digital singular chain maps are as €—a &b €—C
follows: €—a
3. 3.
4 . Os e a o5 :e—a
AN O0;-€&—a e—a e—b
A A ia__.b____> e—a e —a e—b
' e—a &+ C &b
1 e3—b
, Og:e—a od:e—b
S(X) has for a o7 €= b e1—C €1—C
basis . . e —b & C & = C
o O;:e—Db O3 : €+ C. e—b &3+ C &35 C
o; e a € C
Si(X) has for a , ol :e—a ohig—a
basis Ojp-€+—a er—b er—b
03:e—b Os:ey—cC va
oliema € &b & C
1- e—b e —c &b & C & C
G—a €3 C
O eprra ot ep—b 3 . 3 .
ol:e—a e b e ¢ 5 Oi4 €+ a Ois € b
' Oi3-€&—a e —a er—b
—b
- €1—a & C e C
S(X) has for a € b €= C € C
basis &b
, 02:e—b 02:e—C
Op-&—a er—b e —C It's easy to see that
é—a &b &+ C
&—a SX) =78, S(X) =78, S(X)=710 S(X)=z'o.
2. 2.
os: a o5 : a . .
02 ey a 50 6 Now we’'ll determine the cycles and the boundaries of each
4 &—a e —b digital singulam-chains:
e —b e —b &b
&+ C

012 $1(X) = S(X).
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For g € Si(X), we have a differential map
di(ot) =c'(e) —ol(er)  fori=1,..6.

Indeed we see that

° 01(0'11) =0
° 01(0'21) =0
e01(0})=0
e 0y(0}) =09 - of
* 0y(0g) = 03— 07
* 0i(0g) = 09— 07

Then we get Imagé;, = 72,
To determine the kernel @, let

5
31(2194 al)=0
i=
wheres € Z, i = 1,...,6. Sinced; is linear,

6
sdi(ol) =0.
2,304
Solving the equation

(09 — 07) +s5(09 — 07) + s6(0§ — 03) =0,

we obtain
S=—S5=S.

Thus we conclude that Kerng| = Z*.
Now consider

02 : S(X) = S1(X).
For g? € S(X) we have a differential map

02(0?) = o¢([er, &2]) — 07 ([eo, €2]) + 07([ev, €1])

fori=1,...,10. The following are observed:

e 0,(0%) = 0} — 0} + o} =}
¢ 0,(0%) =0} — 03+ 03 =0}
¢ 0,(0%) =0} —0}+0i=0}
e 0;(02) =0} — 0t + 0}

¢ 0,(02) =0} -0} + 0} =0}
0 0,(08) =0}~ 04+ 0; =03
¢ 0,(0%) =0t — 0t + 0l =0}
¢ 0,(08) =0}~ 0t +0i=03
0 0,(0%) =0t~ 0} +0i=0}
e 0,(0%y) = 0} — 0} + 0} = 0}

Then we get Imagé, = Z4.
To determine the kernel @b we have

10

52(;94 a?)=0

wheres € Z, i = 1,...,10. Sinced, is linear, we have
10

;saz(aiz) =0.

|
Solving the equation

0}(s1+ S5+ 57) + 02 (S + S5+ S0) + 02 (Ss + S8 + S10)
+ 0484+ 0(—s4) + 04 (1) =0,

we have
Si+s+s7=0
S+S%+S9=0
S+ +S0=0
=0

So, Kerneld, == 75.
Now consider
03: S(X) = S(X).
For g® € S3(X) we have a differential map

93(07) =0’ ([e1, €2, €3]) — 07 ([e0, €2, €3]) + 7 ([0, €1, €3])
— 07(leo,e1,€2))
fori=1,...,15. Itis seen that

)
)
) = 0%y — 0§ + 04 — 03 = 0% — 0F
) =0z —02+02—02=0
)=08—02+02—02=0
055) = 0fy— 05p+ 0§ — 05 = 0.

e 05(03) =02 -0} +0}—02=0
0 05(03)=02—-03+05—02=0
0 03(03) =05 —02+02—-02=0
e 05(03) = 02 — 02+ 02 — 0% = 0% — 0}
e 05(03) = 02 — 07+ 02 — 0 = 0% — 0F
e 05(03) = 0% — 0¢ + 0% — 0¢ = 0% — O¢
o 05(03) = 0% — 04 + 0% — 05 = 0% — 0%
e 05(03) = 0% — 05+ 04 — 0% = 0% — 0%
* 03(03) = 0% — 0%+ 0}y — 0fg = 03 — 0%
e 03(0%) = 02— 07+ 07— 02 =02—0F
e 05(03)) = 05 — 02+ 02 — 0¢ = 04 — 0%

(

(

(

(

Then one can get Imagé; = Z°. Hence the digital
singular homology groups of are

Ho(X)=Z  Hi(X)=0  HxX)=0. O
Theorem 3.10.Let
X={a=(0,0),b=(2,0),c=(1,1),d=(2,2)}

be a subset ifZ?. Then the digital homology groups &f
up to the dimension 2 are as follows:

Ho(X)=Z, Hi(X)xZ, HyX)=0.
Proof. The Khalimsky topology oiX is
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" o S$(X) has for a
! c basis
A , o3:e—b dl:eg—c
S S s A S i O;:€&—a e—b e —cC
1
i & —a e—b &—C
l &—a e b &+ C
e3—a
x ={0,X.{c},{a,c},{c.b} . {c,d},{ab,c} {ac,d} {bcd}}.
, OS:ep—~a Ogieg—b
S(X) has for a 0z € d &—a e —b
basis . . e —d e —a &b
o O;:e—Db O3:6+—C e—d e C e C
O[:€—a e3—d
0. q og:e—b 0d3:e—d
9 & = o7 e a e C e —C
e —c
Si(X) has for a e G2—¢C G2—¢C
basis € e+ C e+ C
) 0}:ep—b oi:eg—c e C
0p-&—a —b —C
o sa @ & ; ol:ep—a 0h:e—b
Ojp:€+—d e a er—b
. ot:eg—a ot:e—b e —d & C & C
0y e —d e1—cC e —C e —d &35 C €3+ C
e—d e3> C
07 e d 0% e—d
€ —C. e —d
e+ C
S(X) has for a €31 C.
basis 5 5
. o5& —b O3: €+ C It's clear that
Or-%ra ele e ~ 74 ~ 7l ~ 710 ~ 713
e a &b e C SX)=Z4, S(X) 27, S(X) =70 S(X) =7t
&—a Now we’ll determine the cycles and boundaries of each
i 052 ‘e a 062 cps b singular digital singulan-chains:
s e—d & a e —b 01: S (X) = S(X).
e —d
G e A For g € Si(X) we have a differential map
e —d
1y _ 41 o ~1 P
Zieb  0iepesd ai(ot) = al(e) - o(en)  fori=1,...7.
07 g a ;
7 e—C e —C The following are hold:
e €& C & C o dy(0}) =09~ 00=0
&—cC e di(0}) =09 —02=0
e 0i(0})=09-0)=0
1y _ A0 0 _
0% ep—d '01(0‘{)_0‘(‘)_0‘(‘)_0
e —d °01(05) =03 —0p
& C * 01(05) =09~ 03
: ¢ 01(0}) = 09— 0)
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Then we get Imagé; = Z3.
To determine the kernel @, let
Lo
01(;94@ )=0
wheres € Z, i = 1,...,7. Sinced; is linear, then
! 1
i;s 01(07) =0.

Solving the equation

0P (—ss5) + 09(s5+ S5+ S7) + 04 (—S7) =0,

we get
Ss=%=5=0,
and hence
Kerneld; =~ 72,
Consider

02 : S(X) = S1(X).
For g? € S(X) we have a differential map
92(07) = o7 ([er. €2]) — o ([eo. &2]) + 07 ([en, €1])

fork=1,...,10. The following are observed:

¢ 0,(0%) =0} — 0} + 0o} = a}
0 0,(05) =0} — 03+ 05 =03
¢ 0,(03) =0}~ 0}+0;=03
0 0,(0}) =0} — 04+ 0} =0}
0 0,(02) =0t -0t +0l=0}
e 0,(0%) =04 —0p+03 =03
¢ 0,(07) =0} — 02+ 0t =o03
e 0y(0%) =0} -0t +ot=0}
0 0,(0¢) =0}~ 0} + 0} =0}

e 0,(0%) = 07 — 07 + 0} = 0.
From this observation, we get

Imaged, = Z°.

To determine the kernel @b we have
52(294 07) =0
i
wheres € Z, i = 1,...,10. Sinced, is linear, we have
10 )
i;s d2(07) = 0.

Solving the equation

01(s1+S5) + 03 (S2 4 S6) + 02 (S3+ 57+ S8+ S0)
+ 04(sa+S10) = O,

we obtain
S1=-%
S=-%
S = —S10
SB+S7++S9=0
and hence
Kerneld, = Z°.
Consider

031 S(X) = S(X)
For g2 € S3(X) we have a differential map

5(07) =07 ([e1, €2, €3]) — 0°([en, €2, €3]) + G7([€0, €1, €3))
— °([en, 1, €2))

fore=1,...,15.

It's clear that
0 03(0d) =0} - 02+ 02-02=0

—g2_g2402_ 02—
=05—-05+05—05=0

(03)
(03)
(03)
e 05(02) = 02— 02+ 02 — 0% = 02 — 07
(03)=0¢ — 0+ 05— 05 =0 — 0}
e 03(03) = 02 — 0% + 02 — 02 = 05 — 0%
(03) = 05— 0§+ 05— 0f = 05— 0F
(03) = 0§ — 05 +05 — 0§ = 0§ — 0§
( = 0%~ Ofo+ 0fy— 07 = 0fy— 0%
(03)=02—-02+02—02=0
(03,) =02 —02+02—02=0
(

_ 2 2 2 2 _
= 04 — 05 + 01— 015, =0.

Thus we have
Imageds; = Z°.

Then the digital singular homology groupsXfare as
follows:

4 Functorial Property of Hp
Let (Xmy,k;, Tx) and(Ym, ., Ty) be two spaces. If
fr (Xmp kg ™) = (Ymp kq, T )
is a KD+(K1, K2)-continuous map and
" A" — X
is a singular digitah-simplex inX, then

foo":A" Y

(@© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett4, No. 2, 131-140 (2015)www.naturalspublishing.com/Journals.asp NS = 139

is also ann-simplex inY. If we extendf by linearity of e The objects aréX, «,7x); and
singular digital n-simplexes in X, we have a ethe morphisms are KDk, K>)-continuous functions.
homomorphism

fy 1 Si(X) = S(Y), ft(ZSgnon) = Zsan(f og") Theorem 4.3.For eachn > 0, H, : KDTC — Ab is a
functor.
wheresgn € Z.

Theorem 4.1. Let (X e, 7x) and (Yomxp Ty) be two Proof. Let (Xm, x;, Tx) and(Ym, «,, Ty) be two spaces and

let
spaces. If F 1 (Xemps %) — (Yiegokos T
Fr Xmp kg, ™) = (Yo Ty) be KD+(k1, k2)-continuous map, be a continuous function.
is KD-(K1, K2)-continuous map, then for eveny> 0, then ~ Define _
the following diagram commutes: Hn(f) : Hn(X) = Hn(Y)
0n by
$I(X) —2> S 1(X) 2= 2+ By(X) - ;(z0) + B(Y)
¢ ¢ wherez, € Z,(X). Note that,z, being ann-cycle implies
: : that f;(z,) is ann-cycle inY. Also this definition is well
S (Y) —= Sa(Y) defined, that is, independent of the choice of represestativ
n since

. - . ) 4 (Bn(X)) C Br(Y).
Proof. Sinced, is linear, it's enough to show the evaluation (Bn(X)) C B(Y)

of each composition on a generatot € $,(X). e Hn(f) is @ homomorphism:
\ For allzy, Z, in Hy(X), we have
fidn(") = f@( YioToe) () 7+ %) = T2 (20 + 2) + Br(Y)
it (o"08) = (1,(@) + (7)) + Ba(Y)
= ()
Z (0" 08) — £,(20) + Bn(Y) + f.(Z) + Bu(Y)
= Hn(Z0) + Hn(Z)).
= Zl ft ooMog
It's also clear thatH,, sends the identity function to
=0n(foa") identity homomorphism.
e H, preserves the composition: For the spaces
O (Xrnl!Kl’ TX)' (sz-,sz TY) and(Zma;st TZ)' let
Theorem 4.2.Let (Xmy .k, Tx) and (Ymy.x,, Ty) be two P s ) = (Yo 2 T)
digital spaces. If and
fr (Ximgkq ™) = (Ympkp, Ty) 91 (Ymp ko T) = (Zimg kg5 T2)

be two KD+ k1, k>) and KD K>, k3) continuous maps
respectively. Then

Hn(go )(z) = (go )4(zn) +Bn(X) = 94(f:(z0) + Bn(X))
Proof. Let z, € Zy(X), thendn(z,) = 0. By the previous = (Hn(g) o Hn(f))(2).
theorem, we have

Onty(zn) = T;0h(z0) = 1:(0) =

so that So this shows thdtl, is a functor.[d

Now let3 € Bn(X), then there exists € S,,1(X) such ~ Corollary 4.4, If  (Xm «;,7x) and (Ymyx,,Ty) are
that KD- (K1, K2)-isomorphic, then

= Oh1(0).
| P = nala) Hn(X) 2 Hin(Y)
Again, by Theorend, we have

Consider the KD-topological category KDTC, where

is KD-(K1, K2)-continuous map, then for eveny> 0

foralln>0.
Proof. It's a consequence &1, being a functor..]
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5 Conclusion [14] T.Y. Kong and A. Rosenfeld, Digital topology - a brief
introduction and bibliography, Topological algorithmsr fo

In this paper, we define the digital singular homology and Egggde;?ital image processing, Elsevier Science, Amsterdam

compute the homology groups of some certain digital - ) ) ) o

spaces. We have seen that the digital singular homology igLS]SEé.C'ZlSe“r\l/;IitElXtel(nhsgl)irrl’lssg Ct‘;m")rl‘gous fT‘é”(g;g”S Ir;n?jlglti?s

a functorial property so that it can be used to distinguish Appplication5153 phigpls (2005)'0 9y, Topology

and classify the digital spaces. The next work based o . . B wates

this paper is to investigate whether the homology axiom 16]1;|i '(Dfég‘;‘;‘re' Analysis Situs, Jour. Ecole Polyte@ifl), 1-

are valid or m_)t in _the digital singular homology theory, [17] A. Rosenfeld, Continuous functions on digital pictsire

define the digital singular cohomology and compute the™ p_.o, Recognition Letters 177-184 (1986).

COhom(?lOgy groups of some digital Spaces, to CO,mPafGEls] E.H. Spanier, Algebraic Topology, Springer-Verlagew

the digital singular homology groups with the digital = ‘york (1966).

simplicial groups. [19]J.J. Rotman, An Introduction to Algebraic topology,
Springer-Verlag, New York, (1998).
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