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Abstract: A subgroupH of a groupG is calledS-quasinormal inG if it permutes with every Sylow subgroup &f.The structure of
the groupG has been studied earlier by many authors under the assumtpéibthe maximal or the minimal subgroups of the Sylow
subgroups are well situated . In the present paper we are cincerned with the study of tlietate of a finite group under the
assumption that some subgroupsséreS-quasinormal irG, and we discuss some methods and applications.
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1 Introduction were obtained in g,10] where the following two nice
theorems were proved:
Throughout this paper, all groups are finite. Recall that

two subgroup#\ andB of a groupG are said to permute if Theorem A. Let . be a saturated formation
AB = BA. A subgroupA of the groupG is called  containingZz andG be a group with a normal subgroup
S-quasinormal if it permutes with all Sylow subgroups of N such thaiG/N € .%. If all minimal subgroups and all

G. Recall that a formation is a hypomorph of groups  cyclic subgroups with order 4 ofF*(N) are

such that each group has the smallest normal subgroup S-quasinormal ir, thenG ¢ . (see [10, Theorem 3.1).)
(denoted by G”) whose quotient is still in#. A

formation .# is said to be saturated if it contains each

P .
groupG with G/®(G) € .. In this paper we us@” to Theorem B Let % be a saturated formation

containingZ andG be a group with a normal subgroup
denote the class of the supersoluble groups. E such thaiG/E € .Z. If all maximal subgroups of the

The structure of the group has been investigateq by Sylow subgroups of*(E) areS-quasinormal irG, then
several authors under the assumption that the maximal of € .7 (see [9, Theorem 3.1]). '

the minimal subgroups of the Sylow subgroupsGnare
well situated inG. Buckly [1] proved that a group of odd
order is supersoluble if all its minimal subgroups are
normal. Later on, Srinivasar2] showed that the grou®

is supersoluble if it has a normal subgrodp with
supersoluble quotientG/N such that all maximal followina conditions holds:
subgroups of the Sylow subgroupsifare normal inG. 9 ) ' . .
Ramadan 9] proved: If G is a soluble group and all _ (1) The maximal subgroups & areS-quasinormal in
maximal subgroups of any Sylow subgroupF(fG) are ’

In the connection with Theorems A, B the following
natural question arises: Le¥ be a saturated formation
containingZ and G be a group with a normal soluble
subgroupE such thatG/E € #. Is the groupG in .7 if
for every Sylow subgrou® of F(G) at least one of the

normal inG, thenG is supersolubleSome later several (2) The minimal subgroups oP and all its cyclic
authors were stadying groups in which the maximal or  Subgroups with order 4 a®quasinormal irG?
the minimal subgroups of the Sylow subgroup<Ginare We prove the following theorem which gives the

S-quasinormal inG (see, for example,1[2,3,4,5,6,7,8,  positive answer to this question.
9,10,11,12,13] The most general results in this trend
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Theorem 1. Let.% be a saturated formation containing

% andG be a group with a soluble normal subgroEp

such thaG/E € .%. Suppose that every Sylow subgroup

P of F(E) there is a subgroup such thatl < |D| < |P|
and all subgroupsl of P with order|H| = |D| and order
2|D| (if P is a non-abelian 2-group) aBquasinormal in
G. ThenGe .

One of the main steps in the proof of Theorem 1 is the

following result.

Theorem 2. Let % be a saturated formation
containing7Zz andG be a group with a normal subgroup
E such thatG/E € .%#. Suppose that every Sylow
subgroupP of E there is a subgrou@ such that
1 < |D| < |P| and all subgroupdH of P with order
[H| = |D| and with order2|D| (if P is a non-abelian
2-group) not having a supersoluble supplemenGiare
S-quasinormal irs. ThenG € %

Remark that some results of the paper][3,4,5,6,

(3) If H S-quasinormal is i3, thenH is subnormal in
G.

(4) If H andT areS-quasinormal irG, then< H, T >
does.

The following observation is well known (see, for
example, [16, Lemma A)).

Lemma 2.4. If H is aS-quasinormal subgroup of the
group G andH is a p-group for some primep, then
OP(G) <Ng(H).

Lemma 2.5. Let N be an elementary abelian normal
p-subgroup of a grouf®. Assume thalN has a subgroup
D such thatl < |D| < |N| and every subgroupl of N
satisfying|H| = |D| is S-quasinormal inG. Then some
maximal subgroup dXl is normal inG.

Proof. Assume that this lemma is false a@lis a
counterexample of minimal order. L& be a maximal
subgroup ofN. ThenN < Ng(M) # G and by Lemma
2.3,M is S-quasinormal ir5, asM is the product of some
Squasinormal in G subgroups. By Lemma 2.4,

7,8,11] may be obtained as special cases of these twdP(G) < Ng(M) and so|G : Ng(M)| = p" for some

theorems (see Section 5).
Finally, note that study ofS-quasinormal and

natural n > 0. Thus for the setX of all maximal
subgroups oN we havep||Z|, which contradicts [17; III,

supersoluble subgroups can use some related results frobemma 8.5(d)].

the theory of integral representations of finite groups, see

[23,24].

2 Preliminaries

The reader is referred tolf7,18] for the necessary

Lemma 2.6. Let % be a saturated formation
containing all nilpotent groups and Iét be a group with
the soluble.Z -residualP = G”. Suppose that every
maximal subgroup o6 not containingP belongs to%.
ThenP = G” is ap-group for some prime and if every
cyclic subgroup oP with prime order and order 4 (in the
case whenp = 2 and P is non-abelian) not having a

background. For convenience we summarize in thissupersoluble supplement@is S-quasinormal i, then

section some basic statements.

Lemma 2.1 [12, Lemma 2.2]Let G be a group and
P =P x... xR be ap-subgroup ofc wheret > 1 and
Pi,...,R are minimal normal subgroups@f Assume that
P has a subgroup such thall < |D| < |P| and a product
or an intersection of subgroups of ord®f is normal in
G. Then the order d® is prime.

The following known results about subnormal
subgroups will be used in the paper several times.

Lemma2.2. LetGbeagroupandA <K <G,B<G.
Then:

(1) If A is a subnormal Hall subgroup &, thenA is
normal inG [14].

(2) If Ais subnormal inG andA is am-subgroup ofG,
thenA < On(G) [14)].

(3) If A is a subnormal soluble (nilpotent) subgroup

[P/®(P)| = p.

Proof. By [18; VI, Theorem 24.2]P = G” is a p-
group for some prim@ and the following hold:

(1) P/ ®(P) is aG-chief factor ofP;

(2) Pis a group of exponerg or exponent 4 (ifp = 2
andP is non-abelian).

Assume that every cyclic subgroup Bfwith prime
order and order 4 (ifp = 2 and P is non-abelian) not
having a supersoluble supplementGnis S-quasinormal
in G. Let ® = ®(P), X/® is a subgroup of/® with
prime order,x € X\ @ andL = (x). Then|L| = p or
IL| = 4 and so eithet has a supersoluble supplemdnt
in G or it is Squasinormal inG. In the former case we
may assume thafl # G and so T® # G, since
® < @(G). On the other handLT = G and so

of G, thenA is contained in some soluble (respectively in |(T®/ ?)(Le/P) = (TO/P)(X/P) = G/P. Hence

some nilpotent) normal subgroup@f14).

G/® : T®/d| = p and so |P/P(P)| = p, since

We shall need also in our proofs the following facts G/® = (P/®)(T®/®). Now suppose thatL is

aboutS-quasinormal subgroups.

Lemma 23 [15. Let G be a group and
H<K<G, T <G. Then

(1) IfH isS-quasinormal ir, thenH is S-quasinormal
inK.

(2) Suppose thatl is normal inG. ThenK/H is S
quasinormal ir if and only ifK is S-quasinormal irG.

Squasinormal in G. Then by Lemma 2.3,
L®(P)/®(P) = X/®(P) is Squasinormal inG/®(P).
Now by Lemma 2.5 we have to conclude that
[P/®(P)|=p.

Lemma 2.7 [17; Il, Lemma 7.9].Let P be a nilpotent
normal subgroup of a group. If PN ®(G) = 1, thenP is
the direct product of some minimal normal subgrouf@of
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Lemma 2.8[17; lll, Theorem 3.5]LetA,B be normal
subgroups of a group andA < ®(G). Suppose that < B
andB/A is nilpotent. TherB is nilpotent.

Let p be a prime. A grous is said to bep-closed if a
Sylow p-subgroup ofG is normal.

Lemma 2.9 [18, |, p.34].Let p be a prime. Then the
class of allp-closed groups is a saturated formation.

Lemma2.10[12,Lemma 2.1D Let.# be a saturated
formation containingz andG be a group with a normal
subgroufk suchthaG/E € #. IfE is cyclic, therG € .

Lemma 2.11[19, Theorem 1]Let A be ap'-group of
automorphisms of thp-groupP of odd order. Assume that
every subgroup dP of a prime order i\-invariant. Then
Ais cyclic.

Lemma 2.12[20, Lemma 2.24Let G be a groupp,q
be different prime divisors df5|, P be a non-cyclic Sylow
p-subgroup ofG andQ be a Sylowg-subgroup ofG. If
all maximal subgroups d? (except one) has g-closed
supplement i, thenQ is normal inG.

3 The proof of Theorem 2

Indeed, ifE = G, then by (2) G is not p-nilpotent and
so it has ap-closed Schmidt groupl = [Hp|Hq [17, IV,
Theorem 5.4]. If |ID| = p, then by Lemma 2.6
[Hp/®(Hp)| = p, a contradiction, since is the smallest
prime divisor of|G|. So in this case we hayB| > p.

Now letE = P. Consider a maximal subgroiy of G
not containinge. ThenG/E ~ M/MNE € .%. Assume
that|D| = p. LetL = G” and® = ®(L). ThenL < E
and so the hypothesis is still true f@ (respectivelyl).
HencelL = E and|L/®| = p, by Lemma 2.6. S&/® ¢
%, by Lemma 2.10. But theR < @ and hencd® = @, a
contradiction. Thu$D| > p.

(5) IL| < |D| for any minimal normal subgroup of G
contained irP.

Assume thatD| < |L|. If some subgroupd of L with
order |H| = |D| has a supersoluble suppleméntin G,
thenTL = GandT # G, by the choice oG. HenceLN'T
is a proper non-identity subgroup of, because
L=LNHT =H(LNT). ButevidentlyLNT is normal in
G, which contradicts the minimality of. Hence every
subgroupH of L with order|H| = |D| is S-quasinormal in
G and so by Lemma 2.5 some maximal subgroujh @
normal inG. Then|L| = p and sgD| = 1, a contradiction.

Proof. Suppose that this theorem is false and consider a huS we have (5).

counterexample for whiclG| + |E| is minimal. Letp be
the smallest prime dividing andP a Sylow p-subgroup
of E. We now prove the theorem via the following steps.

(1) LetX be a Hall subgroup d&. Then the hypothesis
is still true forX and forG/X if X is normal inG.

The first statement is evident. Now assume s
normal inG. Then(G/X)/(E/X) ~ G/X € #. LetP*/X
be a non-cyclic Sylow p-subgroup of E/X where
p | |G/X|, P be a Sylowp-subgroup ofE such that
P* = PX. ThenP is a non-cyclic Sylow subgroup d
and so by hypothesi® has a subgrou® such that
1 < |D| < |P| and every subgroupi of P with order
[H| = |D| and with order | (if P is a non-abelian
2-group) either has a supersoluble suppleniemt G or
is S-quasinormal inG. Let H* /X be a subgroup oP* /X
with order|H*/X| = |D|. ThenH* = [X]H whereH is a
Sylow p-subgroup oH*. Clearly,|H| = |D| and so either
H*/X =
TX/X~T/TNnXinG/X oritis Squasinormal inG/X,
by Lemma 2.3. Thus the hypothesis is still true @®fX
(respectivelyE /X).

(2) If X is a non-identity normal Hall subgroup Bf
thenX = E.

SinceX is a characteristic subgroup Bf it is normal
in G and so by (1) the hypothesis is still true fGyX.
HenceG/X € .#, by the choice of5. Thus the hypothesis
is still true for G respectivelyX and soX = E, by the
choice of(G,E).

(3) P is not cyclic.

Indeed, ifP is cyclic, then by [17, IV, Theorem 2.8,
is p-nilpotent and so by (2P = E. But thenG € .7, by
Lemma 2.10, a contradiction.

(4) If eitherE = G orE = P, then|D| > p.

(6) If eitherE = G or E =P andN is an abelian
minimal normal subgroup d& contained inE, then the
hypothesis is still true fo/N.

Let E = P. Since(G/N)/(E/N) ~ G/E , it is clear
that the hypothesis is still true f@/N respectivelyE /N
if either p> 2 or |P: D| = p or [N| < |D|. From (5) we
have [IN| < |D|. So we need only to consider the case
whenP is a 2-group|P : N| > 2 and|N| = |D|. By (5)
every subgroupd of P with order|H| = |D| not having a
supersoluble supplement @ is S-quasinormal inG. By
(4), N is non-cyclic and hence every subgroup Gf
containing N is not cyclic. LetN < K < P where
K : N| = 2. SinceK is non-cyclic, it has a maximal
subgroupL # N. If at least one the subgroups L has a
supersoluble supplement @, thenK has a supersoluble
supplementirG. If L is S-quasinormal irG, thenK = LN
is Squasinormal inG. Thus if P/N is abelian, the

HX/X has a supersoluble supplement hypothesis is true folG/N. Next suppose thaP/N is

non-abelian. TheR is non-abelian and every subgroup of
P with order 2D| not having a supersoluble supplement
in G is S-quasinormal inG. In this case one can show as
above that every subgroup of P containingN and such
that|X : N| = 4 either has a supersoluble supplemer&in
or is normal inG. Thus again the hypothesis is still true
for G/N respectivelyE /N. Analogously one can prove
this statement in the case whén= E.

(7) If E = G, then at least one of the maximal
subgroups oP, Py say, has no a supersoluble supplement
in G (this directly follows from (2) and Lemma 2.12).

(8) E is soluble

By (1) and the choice d& we have only to consider the
case whert = G. Besides, by (6) we need only to show
thatOp(G) # 1.
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LetH <P, where|H| = |D|. ThenH is S-quasinormal
in G and so it is subnormal iG by Lemma 2.3. From
Lemma 2.2 it follows thaH < Op(G) and soOp(E) # 1.
So we have (8).

(9) E is g-closed where) is the largest prime divisor
of |E|.

By (1) we have only to consider the cage= G.
Moreover, since by (8)E is soluble and by (1) the
hypothesis is still true for any Hall subgroXpof G , we
may suppose thaG| = p*qP for somea,b € N. Assume
that G is not g-closed. By (6) and the choice @ for
every minimal normal subgroul of G contained inP
the quotieniG/N is supersoluble. Thud ¢ ®(G) andN
is the only minimal normal subgroup &f contained irP.
We show thatN = Op(G). Indeed, letM be a maximal
subgroup of G such that G = [N]JM. Then
Op(G) = Op(G) N NM = N(Op(G) N M). Since
Op(G) < F(G) < Cg(N), it follows that Op(G) "M is
normal inG and soOp(G) "M = 1. HenceN = Oy(G).
Assume thatP : D| = p. For every maximal subgroufy
of P containingN we haveAM = G, soM ~ G/N is a
supersoluble supplement é&fin G. Hence by (7) some
maximal subgroupy of P neither containdN nor has a
supersoluble supplement (. Hence by hypothesig is
S-quasinormal inG. By Lemma 2.3V is subnormal inG
and sov < Op(G) = N. But thenN = P and soE = P, by
().

Therefore we may assume th&: D| > p. Then by
hypothesis every subgroug of P satisfying|H| = |D|
and not having a supersoluble supplement Gnis
S-quasinormal. Since eve§rquasinormal subgroup &
is contained irDp(G) = N, it follows that every different
from N subgroupH of P satisfying |[H| = |D| has a
supersoluble supplement ®&. Therefore every maximal
subgroup of° has a supersoluble supplementnwhich
contradicts (7). Thus we have (9).

(10)E =P.

Indeed, letg be the largest prime divisor ¢E| andQ
be a Sylowg-subgroup ofe. Then by (9),Q is normal in
E and soQ = E =P, by (2).

Final contradiction.

Let N be a minimal normal subgroup & contained
in P. Then by (6) and (10 is the only minimal normal
subgroup of contained irP and soN = O,(G) = P. But
by Lemma 2.5 it is impossible, becauBeis a minimal
normal subgroup oG. This contradiction completes the
proof of this theorem.

4 The proof of Theorem 1

Proof. Assume that this theorem is false and &be a
counterexample with minimaG| + |E|.

Let F = F(E) andp the smallest prime divisor df|.
Let P be the Sylowp-subgroup of andFy/P = F(E/P).
We divide the proof into the following steps:

((1)F £E.

Indeed, ifF = E, thenG € .%#, by Theorem 2, which
contradicts the choice ¢f5,E). HenceF #E.

(2) LetQ be a Sylowg-subgroup oFg whereq divides
|Fo/P|. Thenq# p and eitheQ <F orp > qandCq(P) =
1

Consider the grou = PQ. Let C = Cp(P). The
hypothesis of Theorem 2 is true fd@ and soD is
supersoluble. Suppose that- p. ThenQ charD. But D,
clearly, is normal inE and soQ < F. Now, let p > q.
Theng does not dividgF|. It follows thatOq(D) = 1 and
soF (D) = P. But thenC < P and henc€q(P) = 1.

B)p>2.

Assume thap = 2. In this case by (2) we hawe/P =
F(E/P). Thus by Lemma 2.3 the hypothesis is still true for
G/P respectivelyE /P, sinceG/E ~ (G/P)/(E/P) € #.
ThereforeG/P € .# and soG € .#, by Theorem 2. This
contradiction shows that we have (3).

(4) Some minimal subgroup & is notS-quasinormal
in G.

Suppose that every minimal subgroup &f is
S-quasinormal inG. Let Fy/P = F(E/P) and Q be a
Sylow g-subgroup oV whereq divides|Fy/P|. Then by
(4), eitherQ < F or Co(P) = 1. In the second cas®) is
cyclic, by (3) and Lemma 2.11. Thus by Lemma 2.3 the
hypothesis is still true fo6/P (respectivelyE /P) and so
G/P € .Z, by the choice of G,E). But thenG € .Z, by
Theorem 2. This contradiction completes the proof of (4).

(5) P is not cyclic(this directly follows from (4)).

By (4), P is not cyclic and so by hypothesishas a
subgrouD such that k< |D| < |P| and every subgroud
of P with |H| = |D| is S-quasinormal irG.

(6) |D| > p (this follows from hypothesis and from
(4).
(7) If L is a minimal normal subgroup & andL < P,
then|L| > p.

Assume that|L| = p. Let Co = Cg(L). Then the
hypothesis is true foG/L (respectivelyCy/L). Indeed,
clearly, G/Cy = G/E N Cg(L) € #. Besides, since
L < Z(Cp) and evidentlyF < Cy andL < Z(F), we have
F(Co/L) = F/L. On the other hand, i /L is a subgroup
of G/L such thatH| = |D|, we have 1< |H/L| < |[P/L],
by (6). BesidesH /L is S-quasinormal irG/L, by Lemma
2.3. Hence the hypothesis is still true f@/L. Hence
G/L € . and soG € #, by Lemma 2.10, a contradiction.

8) @(G)NP#1.

Suppose that®(G) NP = 1. ThenP is the direct
product of some minimal normal subgroups @f by
Lemma 2.7. Hence by Lemma 2.P, has a maximal
subgroupM such which is normal ifs. Now by [13, A,
Theorem (9.13)] for some minimal normal subgrdupf
G contained inP we havelL| = p, which contradicts (7).
Thus®(G)NP # 1.

Final contradiction.

Let L < @(G) NP whereL is some minimal normal
subgroup ofG. We show that the hypothesis is still true
for G/L (respectivelyE/L). By Lemma 2.8 we have
F(E/L) = F/L. By Lemma 2.5,|L|] < |D| and so the
hypothesis is true foiG/L in the case|P: D| = p.
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Besides, by (3) the hypothesis is true &fL in the case

IL| <|D|. So let|P:D| > pand|L| = |D|. By (7),L is
non-cyclic and so every subgroup &f containingL is
non-cyclic. LetL < K, M < K whereM # L andL,M are
maximal subgroups df < P. ThenK = LM and soK is
S-quasinormal inG. Thus the hypothesis is true f@&/L
andG/L € .#, by the choice of G,E). But thenG € .7,
sinceL < @(G) and the formationZ is saturated, by
hypothesis. This contradiction completes the proof of this
theorem.

that all maximal subgroups of any Sylow subgroup of
F(E) areS-quasinormal irs. ThenG is supersoluble.

Corollary 5.9 (Asaad M., Csorgo P.[7]). Let.% be a
saturated formation containirigy andG be a group with
a soluble normal subgroup such thatG/E € %. If all
minimal subgroups and all cyclic subgroups with order 4
of F(E) areS-quasinormal ir5, thenG € 7.
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5 Some applications

Finally, consider some applications of Theorems 1, 2.

Corollary 5.1 (Buckley [1]). Let G be a group of odd
order. If all subgroups o& of prime order are normal in
G, thenG is supersoluble.

Corollary 5.2 ( Guo W., Shum K.P. and Skiba A.N.

[21]). If the maximal subgroups of the Sylow subgroups of 2]

G not having supersoluble supplemen@Grare normal in
G, thenG is supersoluble.

Corollary 5.3 (Srinivasan [2]). If the maximal
subgroups of the Sylow subgroups o6 are
S-quasinormal ir5, thenG is supersoluble.

Corollary 5.4 (Shaalan A. [4]). LetG be a group and
E a normal subgroup ofs with supersoluble quotient.
Suppose that all minimal subgroupstofind all its cyclic
subgroups with orde¥ are S-quasinormal ir. ThenG is
supersoluble.

Corollary 55 (Ballester-Bolinches A,
Pedraza-Aguilera M.C. [11]). Let .# be a saturated
formation containingZzz and G a group with normal
subgroupE such thatG/E € #. Assume that a Sylow
2-subgroup of is abelian. If all minimal subgroups &
are permutable i, thenG € .%.

Corollary 5.6 (  Ballester-Bolinches A.,
Pedraza-Aguilera M.C. [11]). Let ¥ be a saturated
formation containingZ and G a group with a soluble
normal subgroufe such thatG/E € . If all minimal
subgroups and all cyclic subgroups with order 4&oére
permutable iz, thenG € .%.

Corollary 5.7 (Ramadan M. [3]). LetG be a soluble
group. If all maximal subgroups of the Sylow subgroups
of F(E) are normal irG, thenG is supersoluble.

Corollary 5.8 ( Asaad M., Ramadan M. and
Shaalan A. [5]). LetG be a group an& a soluble normal
subgroup ofG with supersoluble quotiel®/E. Suppose

University, Al-Madinah Al-Munawwarah, Saudi Arabia
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