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Abstract: Flower pollination algorithm (FPA) is a novel metaheuristic optimization algorithm with quick convergence, but 

its population diversity and convergence precision can be limited in some problems. In order to enhance its exploitation 

and exploration abilities, in this paper a novel hybrid flower pollination algorithm with Tabu Search (TS-FPA) has been 

applied to unconstrained optimization problems. TS-FPA is validated by ten benchmark functions. The results show that 

the proposed algorithm is able to obtained accurate solution, and it also has a fast convergence speed and a high degree of 

stability. 
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1 Introduction 

Optimization is a field of applied mathematics that deals 

with finding the extremal values of a function in a domain 

of definition, subject to various constraints on the variable 

values [1].Global optimization refers to finding the extreme 

value of a given nonconvex function in a certain feasible 

region and such problems are classified in two classes; 

unconstrained and constrained problems. Solving global 

optimization problems has made great gain from the 

interest in the interface between computer science and 

operations research [1-5]. 

The increasing complexities of life leads to the complex 

optimization problems; therefore continuous development 

and improvement to optimization algorithms is demanded 

in order to confront and resolve these problems. There are 

two general approaches to solve optimization problems, 

namely, mathematical programming and metaheuristic 

methods [1]. Mathematical programming as deterministic 

methods use gradient information to search the solution 

space near an initial starting point. This is a gradient-based 

methods where higher accuracy investigation fulfill local 

search task. However, the variables and cost function of the 

generators need to be continuous. Moreover, a good starting 

point is vital for these methods to be executed successfully. 

High computational effort is another drawback of 

deterministic gradient methods especially at high-

dimensional search space. In many optimization problems, 

prohibited zones, side limits, and non-smooth or non-

convex cost functions need to be considered. As a result, 

these non-convex optimization problems cannot be solved 

using traditional  mathematical programming methods.  

On the other hand, heuristic and metaheuristic methods 

relies on stochastic algorithms to generate different trade of 

solutions instead of gradients. However the obtained 

solution value almost converge to same optimal solution 

with slight differences [2]. Difference between heuristic 

and metaheuristic is small loosely speaking [3] heuristic 

means ‘to find’ or ‘to discover by trial and error’. In 

metaheuristic algorithms, meta- means ‘beyond’ or ‘higher 

level’, and they generally perform better than simple 

heuristics. All metaheuristic algorithms use certain tradeoff 

of local search and global exploration.  

Two important characteristics of metaheuristic are 

intensification and diversification [4]. Intensification 

intends to search around the current best solutions and 

select the best candidates or solutions. Diversification 

makes sure that the algorithm can explore the search space 

more efficiently, often by randomization. [5] Presents brief 

review of nature-inspired metaheuristic algorithms, where 

all existing algorithms are divided into four major 

categories: swarm intelligence (SI) based, bio-inspired (but 

not SI-based), physics/chemistry-based, and other 

algorithms. The swarm intelligence (SI) drawing inspiration 
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from swarm-intelligence systems in nature. Depends on the 

collective behavior of decentralized, self-organized 

systems, natural or artificial. For example, Particle Swarm 

Algorithm (PSO) [6] Ant colony optimization (ACO) [7] , 

Bat algorithm (BA) [8], Cuckoo Search (CS) [8], Firefly 

Algorithm (FA) [8], Krill Herd (KH) [9] etc. Bio-inspired, 

but not SI do not use directly the swarming behavior. For 

example, Genetic Algorithms (GA), Flower Algorithm 

(FA) [8], Differential Evolution (DE) [10], Human-Inspired 

Algorithm [11].  

Where the third category Physics and Chemistry inspiration 

often come from physics and chemistry sciences. For 

example, harmony search [12], intelligent water drop [13], 

simulated annealing [14], stochastic diffusion search [15]. 

And the last category is other algorithms inspiration away 

from nature. Consequently, some algorithms are not bio-

inspired or physics/chemistry-based, for example 

Differential search algorithm [16], grammatical evolution 

[17], social emotional optimization [18]. In [19] developed 

optimization algorithm based on bacterial chemo taxis, 

where the way in which bacteria react to chemo attractants 

in concentration gradients plays an important role in 

reaching the global optimal solution. Recently a modified 

metaheuristic optimization techniques are introduced by 

[20-28] in ordered to improve the convergence speed and 

accuracy. 

In this paper we propose a novel hybrid algorithm named 

TS-FPA for solving unconstrained optimization problems. 

The motivation for a new hybrid algorithm is to overcome 

the drawback of classical Tabu search which is not suitable 

for continuous optimizations. In this hybrid algorithm 

achieves a balance between the diversification and the 

intensification by incorporating the ideas of FPA into a TS 

algorithm. TS-FPA is validated by ten benchmark 

functions. The results show that the proposed algorithm is 

able to obtained accurate solution, and it also has a fast 

convergence speed and a high calculation precision. 

The rest of this paper is organized as follows. In Section 2, 

a standard flower pollination algorithm is introduced. In 

Section 3, we present the standard Tabu Search. In Section 

4, a description of the proposed algorithm is given. The 

numerical results of proposed algorithm are reported in 

Section 5. Finally, conclusion and future works are 

presented in Section 6. 

2 The Flower pollination Algorithm  

Flower Pollination Algorithm (FP) was founded by Yang in 

the year 2012. Inspired by the flow pollination process of 

flowering plants are the following rules [25]: 

Rule 1: Biotic and cross-pollination can be considered as a 

process of global pollination process, and pollen-carrying 

pollinators move in a way that obeys Le'vy flights.  

Rule 2: For local pollination, a biotic and self-pollination 

are used. 

Rule 3: Pollinators such as insects can develop flower 

constancy, which is equivalent to a reproduction probability 

that is proportional to the similarity of two flowers 

involved. 

Rule 4: The interaction or switching of local pollination 

and global pollination can be controlled by a switch 

probability p[0,1], with a slight bias toward local 

pollination . 

In order to formulate updating formulas, we have to convert 

the aforementioned rules into updating equations. For 

example, in the global pollination step, flower pollen 

gametes are carried by pollinators such as insects, and 

pollen can travel over a long distance because insects can 

often fly and move in a much longer range [39].Therefore, 

Rule 1 and flower constancy can be represented 

mathematically as: 

1 ( )( )t t t

i i ix x L x B                          (1) 

Where 
t

ix is the pollen i or solution vector xi at iteration t, 

and B is the current best solution found among all solutions 

at the current generation/iteration. Here γ is a scaling factor 

to control the step size. In addition, L(λ) is the parameter 

that corresponds to the strength of the pollination, which 

essentially is also the step size. Since insects may move 

over a long distance with various distance steps, we can use 

a Le'vy flight to imitate this characteristic efficiently. That 

is, we draw L > 0 from a Levy distribution: 

01

( )sin( / 2) 1
~ ,( 0)L S S

S 

  

 


          (2) 

Here, Γ(λ) is the standard gamma function, and this 

distribution is valid for large steps s > 0. 

Then, to model the local pollination, both Rule 2 and Rule 

3 can be represented as 
1 ( )t t t t

i i j kx x U x x                                  (3) 

Where 
t

jx and 
t

kx are pollen from different flowers of the 

same plant species. This essentially imitates the flower 

constancy in a limited neighborhood. Mathematically, if 
t

jx and 
t

kx comes from the same species or selected from 

the same population, this equivalently becomes a local 

random walk if we draw U from a uniform distribution in 

[0, 1].Though Flower pollination activities can occur at all 

scales, both local and global, adjacent flower patches or 

flowers in the not-so-far-away neighborhood are more 

likely to be pollinated by local flower pollen than those 

faraway. In order to imitate this, we can effectively use the 

switch probability like in Rule 4 or the proximity 

probability p to switch between common global pollination 

to intensive local pollination. To begin with, we can use a 

naive value of p = 0.5 as an initially value. A preliminary 

parametric showed that p = 0.8 might work better for most 
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applications [25]. The basic steps of FPA can be 

summarized as the pseudo-code shown in Figure 1. 

Algorithm 1:  Flower pollination algorithm 

Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution B in the initial population 

Define a switch probability p ∈ [0, 1] 

Define a stopping criterion (either a fixed number of 

generations/iterations or accuracy) 

while (t <MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand <p, 

Draw a (d-dimensional) step vector L which obeys a L´evy 

distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx 
 

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via )(1 t

k

t

j

t

i

t

i xxUxx 
 

end if 

Evaluate new solutions 

If new solutions are better, update them in the population 

end for 

Find the current best solution B 

end while 

Output the best solution found 

Fig. 1 Pseudo code of Flower pollination algorithm 

3 Tabu Search  

Tabu Search (TS) was formalized in 1986 by Glover [29]. 

TS was designed to manage an embedded local search 

algorithm. It explicitly uses the history of the search, both 

to escape from local minima and to implement an 

explorative strategy. Its main characteristic is indeed based 

on the use of mechanisms inspired by the human memory. 

The basic steps of TS can be summarized as the pseudo-

code shown in Figure 2. 

Algorithm 2:  Tabu Search 

0S 
an initial solution; 

0 0;

0;

bestS S and S S

i

 

  
while (t <MaxPerturbation) Do 
S  the best solution found by local_s 

If S   is better than  bestS
then  

0;bestS S and i 
 

else 
1i i  ; 

end if  

 ;S perturb S 
 

End while  

Return bestS
 

Fig. 2 Pseudo code of Tabu search  

4 The Proposed Algorithm (TS-FPA)  

The proposed TS-FPA algorithm is collaborative 

combinations of the TS and FPA techniques. In this hybrid 

algorithm achieves a balance between the diversification 

and the intensification by incorporating the ideas of FPA 

into a TS algorithm. The steps of the proposed algorithm as 

follows: 

Algorithm 3:  Proposed Algorithm  

Step 1 Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution B in the initial population 

Define a switch probability p ∈ [0, 1] 

 Initialize the tabu lists and the values of parameters such 

Step 2 (Generation of an initial solution). Randomly 

Step 3 (Tabu search-based local search procedure). Search 

the neighborhood based TS, and store a set of local 

minimum solutions. If the current Tabu Solution is better 

than Sbest, go to Step 4. Otherwise, return to Step 2. 

Step 4 (Flower pollination algorithm -based diversification 

procedure). 

Expand the exploration area based on FPA to increase the 

diversity of the solutions. 

Step 5 (Terminal condition). If the current computational 

time is greater than Time limit, terminate the algorithm. 

Otherwise, return to Step 2. 

Fig. 3 Pseudo code of proposed algorithm (TS-FPA) 

5 Experimental Results and Analysis  

In this section, we will investigate the performance of the 

proposed algorithm. To evaluate the performance of our 

proposed algorithm, we applied it to 10 standard 

benchmark functions [30]. These functions have been 

widely used in the literature. The functions are unimodal 

and multimodal test functions. These functions have been 

widely used as benchmarks for research with different 

methods by many researchers. All programs are written in 

MATLAB code, and the experiments were performed on a 

Windows 7 Ultimate 64-bit operating system; processor 

Intel Core i7 760 running at 2.81 GHz; 6 GB of RAM. The 

proposed algorithm compared with TS and FPA [10], using 

the mean and standard deviation to compare their optimal 

performance. For all test functions, the algorithms carry out 

50 independent runs .the parameters in the proposed 

algorithm  are chosen as follows: n= 50 ; the number of 

iterations is set to t = 1000 ; the value of tabu life-span 

obtained by observing a number of experimental values and 

choosing the value for which the solution reaches faster). 

Definitions of benchmark problems are described as 

follows: 

1. The first is Sphere function, defined as: 

mn f1 = 
2

1

N

i

i

x


  
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Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -

100 ≤ xi ≤100. 

2. The second is Rosenbrock function, defined as: 

min f2 = 

1
2 2

1

1

(100( ) ( 1) )
N

i

i i i

i

x x x






    

Where global optimum x*= (1,1,…,1) and f(x*) = 0 for  -

100 ≤ xi ≤100. 

3. The third is generalized Rastrigrin function, defined as: 

min f3= 
2

1

( 10cos(2 ) 10)
N

i i

i

x x


   

Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -10 

≤ xi ≤10. 

4. The fourth function is as follows: 

min f4 = 
2

1

450
N

i

i

z


  

Where Z=x-o; o=[o1,o2,…,on] is the shifted global 

optimum; global optimum x*= o and f(x*) = -450 for  -100 

≤ xi ≤100. 

5. The fifth is generalized Griewank function, defined as: 

mn f5 = 
2

1 1

1
cos( ) 1

4000

NN
i

i

i i

x
x

i 

    

Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -

600 ≤ xi ≤600. 

6. The sixth is Schwefel’s function, defined as: 

min f6= 

1 1

| | | |
NN

i i

i i

x x
 

   

Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -

100 ≤ xi ≤100. 

7. The seventh is rotated hyper-ellipsoid function, defined 

as: 

min f7 = 
2

1 1

( )
N i

j

i j

x
 

   

Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -

100 ≤ xi ≤ 100. 

8. The eighth is Ackley’s function, defined as: 

min f8= 

2 2

1 1

cos(2 )

20 20exp( 0.2 ) exp( )

N N

i i i

i i

x x x

e
N N


    
 

 

Where global optimum x*= (0,0,…,0) and f(x*) = 0 for  -32 

≤ xi ≤ 32. 

9. The ninth is Schwefel’s function, defined as: 

min f9= 

1

418.9829 ( sin( ))
N

i i

i

N x x


  

Where global optimum x*= (420.9687, 420.9687,…, 

420.9687) and f(x*) = 0 for  -500 ≤ xi ≤ 500. 

10. The tenth function defined as: 

min f10 = 
2

1 1

( ) 450
N i

j

i j

Z
 

   

Where Z=x-o; o=[o1,o2,…,on] is the shifted global 

optimum; global optimum x*= o and f(x*) = -450 for  -100 

≤ xi ≤100. 

The comparison of test results is shown in Table 1. The 

Best, Mean, Worst and Std. represent the optimal fitness 

value, mean fitness value, worst fitness value and standard 

deviation, respectively. The results have demonstrated the 

superiority of the proposed approach to finding the global 

optimal solution. 

Fig. 4,5,6 and 7 show  the mean best fitness over the 

number of generations for TS, FPA and TS-FPA. These 

figures clearly show that the search efficiency of TS-FPA is 

superior to that of TS, and FPA on the first four benchmark 

functions.  

 
Fig. 4 Sphere function 

 
Fig. 5 Rosenbrock function 
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Table 1 the optimal solution results of proposed algorithm and other algorithms. 
Benchmark 

Functions 
Algorithm 

  Results   

Best Worst Mean Std. 

f1 
FPA 6.3643e-001 3.3831e-008 2.1536e-008 6.4556e-009 
TS 2.9129e-008 6.1045e-007 2.0999e-007 1.2421e-007 

TS-FPA 3.9296e-041 2.9471e-031 2.1333e-032 6.9650e-032 

f2 

FPA 6.5349e+000 9.4594e+003 1.5642e+003 2.8488e+003 

TS 1.6436e-002 4.9914e+003 2.3417e+002 9.0439e+002 
TS-FPA 5.3463e-004 5.4967e+003 4.9368e+002 1.3524e+003 

f3 

FPA 1.1661e-005 1.3006e-004 4.5934e_005 2.5863e-005 

TS 2.4508e-006 2.9849e+000 9.7833e-001 8.8010e-001 
TS-FPA 0 9.9496e-001 3.3165e-002 1.8165e-001 

f4 

FPA -4.5000e+002 -4.5000e+002 -4.5000e+002 5.7304e-009 

TS -4.5000e+002 -4.4993e+002 -4.4999e+002 1.6373e-002 

TS-FPA -450 -450 -450 0 

f5 

FPA 9.0619e-003 2.0167e-001 7.6168e-002 4.6718e-002 

TS 5.4412e-002 2.6813e-001 1.4351e-001 5.7705e-002 

TS-FPA 0 1.2046e-001 6.8529e-002 3.3204e-002 

f6 

FPA 5.9582e-004 2.1651e-003 1.1033e-003 3.4149e-004 

TS 2.6277e-004 4.9911e-004 3.7745e-004 6.3608e-005 

TS-FPA 5.4770e-021 2.6652e-017 2.5681e-018 6.4570e-018 

f7 
FPA 1.2325e+001 6.8309e+002 2.4584e+002 1.9314e+002 
TS 2.9975e+001 3.3575e+002 1.1424e+002 7.7109e+001 

TS-FPA 1.0224e-001 9.4449e+000 2.5160e+000 2.3538e+000 

f8 
FPA 2.6202e-004 1.0237e-003 5.4888e-004 1.7181e-004 
TS 9.7298e-005 1.8063e-001 6.1802e-003 3.2949e-002 

TS-FPA 7.9936e-015 5.0626e-014 2.6468e-014 9.4872e-015 

f9 

FPA 1.2728e_004 1.2728e_004 1.2728e_004 1.0104e_009 

TS 1.2731e_004 9.8712e_003 6.5087e_004 2.0524e_003 
TS-FPA 1.2728e_004 1.1844e+002 3.9481e+000 2.1624e+001 

f10 

FPA -4.4180e+002 -1.5849e+002 -3.3589e+002 7.3644e+001 

TS -4.4870e+002 5.3709e+002 -1.9303e+002 2.3832e+002 
TS-FPA -4.4983e+002 -4.1824e+002 -4.4334e+002 8.0172e+000 

 
Fig. 6 Rastrigin Function 

 
Fig.7 Griewark function 

 

 

6 Conclusions and Future Works 

In this paper, we propose a novel hybrid algorithm named 

TS-FPA, which integrate flower pollination algorithm 

(FPA) with Tabu search (TS) to solve unconstrained 

optimization problems. The proposed algorithm TS-FPA is 

tested on several benchmark problems from the usual 

literature and the numerical results have demonstrated the 

superiority of the proposed algorithm for finding the global 

optimal solution.  

The future work will be focused on:  

i. Using TS-FPA for solving constrained optimization 

problems;  

ii. The proposed algorithm should be used to solve multi-

objective optimization problems; 

iii. Applied TS-FPA for solving combinatorial optimization 

problem for example (Traveling salesman problem, Graph 

Coloring problem, Knapsack problem and Quadratic 

assignment); 

iv. Also we can use this algorithm for solving most popular 

engineering optimization problems. 
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