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Abstract: In the present study, a development of the paper [JNET, 2011, 36 (1), 75-98] is introduced. The non-stationary BGK 

(Bhatnager- Gross- Krook) model of the kinetic equations for a rarefied gas affected by nonlinear thermal radiation field is solved instead 

of the stationary equations. The travelling wave solution method is used to get the exact solution of the nonlinear partial differential 

equations. These equations were produced from applying the moment method to the unsteady Boltzmann equation. Now, a system of 

nonlinear partial differential equations should be solved in place of nonlinear ordinary differential equations, which represent an arduous 

task. The unsteady solution gives the problem a great generality and more applications. The new problem is investigated to follow the 

behavior of the macroscopic properties of the rarefied gas such as the temperature and concentration. The non-equilibrium 

thermodynamic properties of the system (gas + the heated plate) are investigated. The entropy, entropy flux, entropy production, 

thermodynamic forces, kinetic coefficients are obtained for the mixture. The verification of the Boltzmann H-theorem, Le Chatelier 

principle and the second law of thermodynamic for the system, are presented. The ratios between the different contributions of the 

internal energy changes based upon the total derivatives of the extensive parameters are estimated via the Gibbs formula. 3D-graphics 

illustrating the calculated variables are drawn to predict their behavior and the results are discussed. 

Keywords:Rarefied gases; Thermal Radiation field; B.G.K.  model; Exact solutions; Nonlinear partial differential equations; 

Unsteady Boltzmann kinetic equation; Moment Method; Irreversible thermodynamics; Gibbs formula. 

 

 
 

1.Introduction 

 
All matter emits thermal radiation (TR) continuously, and 

consequently TR is an inherent part of our environment. 

Radiative heat transfer is important in system analysis 

particularly when high temperatures are involved, 

cryogenic systems are also considered, when radiation is 

being utilized as a source flux, or when radiative transfer is 

the primary mode of heat rejection. Some application 

examples where TR transfer is of primary importance 

include solar collectors, boilers and furnaces, spacecraft 

cooling systems, and cryogenic fuel storage systems [1].  

The radiative processes play a major role in the 

thermodynamics of the Earth system. For this purpose, 

researchers have used simple blackbody (BB) types of 

planetary models to, theoretically, estimate planetary 

entropy production rates. The analysis of simple radiative 

models of the Earth system provides insight into its 

thermodynamic behavior even though it is complex [2]. 

From a thermodynamic perspective, thermal radiation (TR) 

exchange, i.e., incoming sunlight and outgoing TR, is the 

only significant form of energy transfer between the Earth 

and the universe. Further, processes such as absorption and 

emission dominate planetary entropy production, and the 

non-uniform absorption of solar radiation (SR) on the Earth 

causes circulation of the atmosphere and oceans [2]. They 

have analyzed simple blackbody type radiative models to 

investigate the thermodynamic behavior of the Earth's 

system and to estimate planetary temperature and entropy 

production rates [2]. It is more accurate to model the Earth 

system as a gray-body because absorption of sunlight and 

emission of TR are substantially less than that of a 

blackbody [2]. 

Some authors in both linearized and non-linearized 

radiation heat flux formulas [3-8] investigated the gas, 

influenced by a thermal radiation field. Usually, they 

consider that the gas is dense, so that it obeys Navier-

Stokes equations. However, to the best of my knowledge, 

the situation when a nonlinear thermal radiation force 
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acting on a rarefied neutral gas has not yet been 

investigated within the framework of the molecular gas 

dynamics with the unsteady kinetic Boltzmann equation. 

Harmonious with this great importance of studying the 

effect of thermal radiation field on gases, the enhancement 

and the development of the previous paper [8] are 

introduced in this paper. I solve the non-stationary Krook 

kinetic equation model for a rarefied gas affected by 

nonlinear thermal radiation field, instead of the stationary 

equation.  

Our aim in this paper is as follows: in section (2) to 

introduce a new unsteady approach for studying the 

influence of thermal radiation field on a rarefied neutral 

gas. For this purpose, I use the unsteady kinetic Boltzmann 

equation instead of the Navier–Stokes equations, which are 

satisfied only for the dense gases [9-10]. We insert the 

radiation field effect into the term force of the Boltzmann 

equation as a radiation force [8]. This idea was applied on 

an unsteady problem of the half space filled by a neutral 

gas specified by a flat rested heated plate in a frame co-

moving with the gas. I use Liu-Lees model for two-stream 

Maxiwallian distribution functions and the moment method 

to predict the behavior of the macroscopic properties of the 

gas in an unsteady state. Specifically, the temperature and 

concentration that in turn are substitute into the 

corresponding distribution functions. Tackling this, in 

section (3), permits us to study the important non-

equilibrium thermodynamic properties of the system (gas + 

heated plate). Namely, we obtain the entropy, entropy flux, 

entropy production, thermodynamic forces, and kinetic 

coefficients. We search out the verification of the 

Boltzmann H-theorem, Le Chatelier principle, the second 

law of thermodynamic and the celebrated Onsager’s 

reciprocity relation for the system. The ratios between the 

different contributions of the internal energies changes 

based upon the total derivatives of the extensive parameters 

are predicted via the Gibbs's formula. Sections (4 and 5) 

show the discussion and conclusions of the results applied 

to the Helium gas for various plate temperatures. 

2.The Physical Problem and Mathematical Formulation 

Let us assume that the upper half of the space (
y  0

), 

which is bounded by an infinite immobile flat plate (y=0), 

is filled with a monatomic neutral dilute gas with a uniform 

pressure Ps [11-15] and the plate is heated suddenly to 

produce thermal radiation field. The flow is considered 

unsteady, one-dimensional, and compressible. In a frame, 

co-moving with the fluid the behavior of the gas is studied 

under the assumptions that [12]:  

(i) At the rest plate boundary, the velocities of the incident 

and reflected particles are equal; but of opposite sign. This 

is happened according to Maxwell formula of momentum 

defuse reflection. On the other hand, the exchange will be 

due to only the temperature difference between the particles 

and the heated plate, taking the form of full energy 

accommodation [12]. 

(ii)    The gas is considered gray absorbing-emitting but not 

a scattering medium. 

(iii)  A thermal radiation force is acting from the plate on 

the gas in vector notation [16-18] as follows: 

 3
44 16 ( , )
( , )

3 3

s s
y

s s

T T y t
F T y t F

n c n c y

   
   


 (1) 

For unsteady motion, the process in the system under study 

subject to a thermal radiation force Fy can be expressed in 

terms of the Boltzmann kinetic equation in the BGK model 

written in the form: 
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(3) 

Lee’s moment method [19-27] for the solution of the 

Boltzmann’s equation is employed here. One of the most 

important advantages of this method is that the surface 

boundary conditions are easily satisfied. Maxwell 

converted the Maxwell-Boltzmann equation into an integral 

equation of transfer, or moment equation, for any quantity 

Q that is a function only of the molecular velocity 

components. The distribution function used there should be 

considered as a suitable weighting function that is not the 

exact solution of the Maxwell-Boltzmann equation in 

general. Lees found that the distribution function employed 

in Maxwell's moment equation must satisfy the following 

basic requirements [20,27]: (i) It must have the "two- sided" 

character that is an essential feature of highly rarefied gas 

flows.(ii) It must be capable of providing a smooth 

transition from free molecule flows to the continuum 

regime.(iii) It should lead to the simplest possible set of 

differential equations and boundary conditions consistent 

with conditions (i) and (ii). When the application of heat to 

a gas causes it to expand, it is thereby rendered rarer than 

the neighboring parts of the gas; and it tends to form an 

upward current of the heated gas, which is of course 

accompanied with a current of the more remote parts of the 

gas in the opposite direction. The fresh portions of gas are 

brought into the neighborhood of the source of heat, 

carrying their heat with them into other regions [28]. We 

assume the temperature of the upward going gas particles is 

T1 while the temperature of the downward going gas 

particles is T2. The corresponding concentrations are n1 and 

n2. 
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Making use of the Liu-Lees model of the two–stream 

Maxwellian distribution function near the plate suggested 

by Kashmarov [29] in the form: 

 

   
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(4) 

The velocity distribution function f is not directly of 

interest to us, in this stage, but the moments of the 

distribution function are of interest [9,10]. Therefore, we 

derive the Maxwell’s Moment equations by multiplying the 

Boltzmann equation by a function of velocity ( )iQ C  and 

integrating over the velocity space. How many and what 

forms of iQ  will be used is dependent on how many 

unknown variables need to be determined and how many 

equations need to be solved [27]. Multiplying equation (2) 

by some functions of velocity ( )i iQ Q C , and integrating 

with respect to C taking into consideration the discontinuity 

of the distribution function caused by the cone of influence 

[29]. Jeans [30], and Chapman and cowling [31] showed 

that the resulting equation can then be written as: 
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(2) 

Where
yF is the external force defined by Eq. (1). The 

previous equation is called the general equation of transfer 

or the transfer equation. 

We can obtain the dimensionless forms of the variables by 

taking: 
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(6) 

It is assumed that the temperature differences within the gas 

are sufficiently small such that the non-dimensional 

temperature may be expressed as a linear function of the 

temperature. This is accomplished by expanding 
yF  in a 

Taylor series about T  and neglecting higher-order terms [ 

9-10,32-33], thus 
4 3 4( , ) 4 ( , ) 4T y t T T y t T    This  

implies  that: 
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Once the expressions for 0 1 2,  and f f f  are introduced, 

macroscopic quantities such as density, velocity, 

temperature, etc… can be computed from the appropriate 

weighted integral of the distribution functions as follows ; 

Number density [29]:       
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Hydrodynamic (bulk) velocity: 
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Temperature: 
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(9) 
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The static pressure normal to the plate: 

 2
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(10) 

The heat flux component: 
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(11) 

In Eq. (4) there are four unknown functions  

1 2 1 2( , ) , ( , ) , ( , ) and ( , )T y t T y t n y t n y t   needed to be 

determined. Thus, we need four equations to solve our 

problem. We make two moment equations by taking

2 21
and 

2
i yQ C C C , and substitute by Eq. (4) into 

Eq. (5).  

After dropping the bars, we get the following two 

equations, the conservation of energy:                                                                                                            
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(12) 

And the heat flux in the y-direction                                 
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The above two equations are complemented by the 

equation of state [11-15],  

 .P n T const 
 

(14) 

And with the condition that, we shall study the problem in a 

coordinate system of the phase space in which the bulk 

velocity u is located at the origin. Thus, using Eq. (8), we 

get the fourth equation: 

  1 1 2 2 0n T n T 
 

(15) 

Where
5

4

s
n

s s

K
n T


   [32], where nK  is the 

hydrodynamic Knudsen number defined by: 

Mean free path

Hydrodynamic length 
n

s
T

s s

l
K

V
n T


 

 
 
 

And

316

3

s

s

T
N

n cmR

   is a non-dimensional constant. 

We will use the traveling wave solution method [10,33-36] 

considering  

 ly mt  
 

(16) 

Such that to make all the dependent variables as functions 

of . Here l and m are transformation constants, which do 

not depend on the properties of the fluid but as parameters 

to be determined by the boundary and initial conditions 

[33]. From Eq. (37) we get the derivatives:     
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Where a is a positive integer. 

Substituting from Eqs. (16-17) into Eqs. (12, 13) we get: 
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We intend to solve Eqs. (14, 15, 18 and 19) to estimate the 
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four unknowns 1 2, ,T T 1 2and n n . 

From Eq. (15), we have 

 
2 2 1 1 .n T n T

 
(20) 

Substitution from Eqs. (14 and 15), with the help of Eq. 

(20), into Eq. (18), we obtain: 

 

  
3 3

2 2
1 1 2 2 2 2 1 2 0l nT n T l n T T T

 

  
    

    

(21) 

Integrating Eq. (21), with respect to , we obtain after 

factorization   
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Where, we put   
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AndC2 is the integration constant. It's easy to show that 

1 2,   are constants, this comes from the assumption of the 

pressure uniformity since 
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n
P T T T


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(22), this implies that  2  is a constant as well [11,37] .                                       

 For sampling the calculation, and making the better usage 

of Eq. (20), we assume a function ( )G   in the form [8, 

12]:  
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From Eqs. (23) And (24) we can obtain by simple algebra 

that  
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After performing some algebraic manipulations, we can 

integrate Eq. (19) with respect to , with the help of Eqs. 

(14 and 22), to obtain: 
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Where  3  is the integration constant. 

Substituting from Eqs. (25) into Eq. (26), gives: 
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    
    
    

         
    

    
    

    
               

2

1 232 0G  




 
 

(27) 

Solving it by the aid of   symbolic software, we obtain the 

roots for ( )G  . We keep into consideration the root that 

preserves the positive signs of both temperature and 

concentration [8, 12]. 

The values of the constants 1 2 3,   and       can be 

estimated under the initial and boundary conditions (as

( , ) (0,0) 0y t    ): 

  1 2( 0) ( 0)
1

2

n n   


 

(28) 

 
1 1 2 2

1 2

( 0) ( 0) ( 0) ( 0)
1

( 0) ( 0)

n T n T

n n

   

 

     
 

     

(29) 

 1 1

2 2
1 1 2 2( 0) ( 0) ( 0) ( 0) 0n T n T   

 
      

   

(30) 

The temperature of the incident particles is assumed to be 

T2 while the temperature of the reflected particles from the 

plate is the temperature T1, they are related such that [27, 

29]: 

 
2 1( 0)  ( 0) :  0 1,T T       

 
(31) 
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where  
  is the ratio between the plate and gas 

temperatures. 

The parameter   can take arbitrary positive value less than 

unity to guaranty that the plate is hotter than the gas [12]. 

We can obtain by solving the algebraic system of Eqs. (28-

31) that  

 

 

1 2

1 2

2 2
( 0) 2 , ( 0) ,

1 1

1
( 0)  and ( 0) .

n n

T T

 
 

  


   
              

 
     

   

(32) 

The above four quantities represent the boundary 

conditions. 

By substituting from (28) into (19), to obtain 

 1 1

4 4
1 22   , -     ,   



 
 

(33) 

Then from (32) and (33) into (26), we get 

 1

4

3

4 ( 1) (5 (3 5) 5 )

2

m l N   




    


 

(34) 

By the way of introducing the obtained quantities 

1 2 1 2, , and T T n n  into the two stream Maxwellian 

distribution function;  

 2

1
1 3

12
1

2

2
2 3

22
2

[ ] ,For   >0 

[ ] ,For   <0 

y

y

n C
f exp C

T
T

n C
f exp C

T
T

 





 

  

(35) 

We can get the sought distribution functions. These 

estimated distribution functions of the gas particles enable 

one to study their behavior in the investigated system, 

which is not possible by taking the way of the solution of 

Navier–Stokes equations. This will be the starting point to 

predict the irreversible thermodynamic behavior of the 

system in the next section [12]. 

3. The Non-Equilibrium Thermodynamic Properties of 

the System 

The problems of the thermodynamics of irreversible 

processes continue to arouse great interest [38-43]. This is 

associated both with the general theoretical importance of 

this theory and its numerous applications in various 

branches of science.  

 Starting from the evaluation of the entropy per unit mass

S , which is written as: 

 

1
1 3

3
2

2
1

2
2 3

2
2

( , )   

3 4 ln

,
8

3 4ln

S y t f Logf dC

n
n

T

n
n

T





   
      

     
 
   

       
   
   



 

(36) 

The y-component of the entropy flux vector has the form 

 

1
1 1 3

2
1

2
2 2 3

2
2

( , )   

1 ln

,
2

1 ln

y yJ y t C f Logf dC

n
n T

T

n
n T

T



  

   
       

     
 
   

      
   
   



 

(37) 

While the Boltzmann's entropy production [40-43] in the 

unsteady state is expressed as:  

 
    S

S
J

t



  
  

(38) 

Following the general theory of irreversible 

thermodynamics [44-49], we could estimate the 

thermodynamic force corresponding to the change in 

concentration: 

 

1 ,
y n

X
n y

 



 

(39) 

The thermodynamic force corresponding to the change in 

temperature  

 

2 ,
y T

X
T y

 



 

(40) 

The thermodynamic force corresponding to the change in 

the radiation field energy    

 

3 ,R

R

Uy
X

U y

 



 

(41) 
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Where 

316

3

s
R

s B s

T T
U T

cn K T

 
 

  
 

is the dimensionless 

radiation field energyinfluences the gas particles and y
is the thickness of the layer adjacent to the flat plate in units 

of the mean free path (the distance between two collisions 

of the gas particles) in the dimensionless form. 

After calculating the thermodynamic forces and the entropy 

production we can get the kinetic coefficients Lij from the 

relationship between the entropy production and the 

thermodynamic forces which has the form [42]: 

 

 
11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

S ij i j

i j

L X X

L L L X

X X X L L L X

L L L X

  

  
  
  
  
  



 

(42) 

The restrictions on the signs of phenomenological 

coefficients 
ijL  which arise as a consequence of the second 

law of the thermodynamics that yields the quadratic form 

[42]: 

 0S ij i j

i j

L X X  
 

(43) 

Can be deduced from the standard results in algebra. The 

necessary and sufficient conditions for 0s   are fulfilled 

by the determinant 

 0ij jiL L 
 

(44) 

And all its principal minors are non-negative too.  

Another restriction on 
ijL  was established by Onsager 

(1931) [42], is that, besides the restrictions on the signs, the 

phenomenological coefficients verify important symmetry 

properties. Invoking the principle of microscopic 

reversibility and using the theory of fluctuations, Onsager 

was able to demonstrate the symmetry property  

 
ij jiL L

 
(45) 

Which is called the Onsager's reciprocal relations [42, 47-

50].                                                                                                                               

The Gibbs's formula for the variation of the internal energy 

applied to the system (gas + heated plate) is  

 
S V RdU dU dU dU  

 
(46) 

Where the internal energy change due to the variation of 

the extensive variables entropy, and volume in addition to 

the temperature gradient produced by the thermal radiation 

field are respectively 

 4

3

, , ,

16
 where .

3

S V R

s

s B s

T
dU TdS dU PdV dU y

y

T T

cn K T




 


    





 

(47) 

The pressure and change in volume are

2
 , ,

dn
P n T dV

n
   ,

n n
dn t y

t y
 

 
 
 

S S
dS t y

t y
 

 
 
  and 1, 1y t  

. 

4. Discussion  

In a frame co-moving with the gas, we have investigated 

the behavior of the gas under the influence of a thermal 

radiation field in the unsteady state of a plane heat transfer 

problem in the system (gas + heated plate). The thermal 

radiation is introduced in the force term in the Boltzmann 

equation for the case of a neutral gas. In all calculations and 

figures, we take the following parameters values for the 

Helium gas: 

8 -2 -4

-1 -1 -11 3

8 16 -3

5.6705 10  ; 1;

8.3145 ; 7.344 10 / ;

  2.9979 10 / sec; 10 ;

s

s s

s

Wm K Kn

R JK mol mn kg m

c m n m





  

   

  

 

Using the idea of the shooting numerical calculation 

method [35, 36], we evaluate the transformation constants 

to obtain 2,   1m l  . The dimensionless N has the 

values. 

(300 ) 0.0446049, (600 )

0.356839, (1000 ) 1.65203.  

N K N K

N K

 


 

Although we calculate all the sought variables in three 

various radiation field intensities due to different plate 

temperatures (T = 300K, 600K, 1000K), we particularize 

our graphics in one case corresponding to (T =1000K), to 

economize the illustrations. All figures indicate that the 

boundary and initial conditions are hold. 
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We will discuss the behavior of the gas particles in the non-

equilibrium state. The number density  ,n y t increases 

with increasing the distance from the plate, while it 

decreases with time. On the contrary, the temperature 

 ,T y t  decreases with increasing the distance from the 

plate, while it increases with time. This is due to that when 

the application of heat to a gas causes it to expand; it is 

thereby rendered rarer than the neighboring parts of the gas. 

It tends to form an upward current of the heated gas, which 

is of course accompanied with a current of the more remote 

parts of the gas in the opposite direction. The fresh portions 

of gas are brought into the neighborhood of the source of 

heat, carrying their heat with them into other regions. In 

other words, heat will transfer from the hot surface into the 

gas, and the layer adjacent to the solid surface will be 

heated up. The next layer will also heat up, but to a lesser 

extent. In this manner, a temperature gradient will be set up 

across the gas. But the temperature gradient will create a 

density gradient in the reverse direction, that is, with the 

slightest gas density near the plate, see figures (1,2). 

Accordingly, the thermodynamic force due to the gradient 

of temperature TX will have the opposite direction to the 

thermodynamic force due to the gradient of the density nX

, see figures (8,9). 

 

The entropy S increases with time, which gives a good 

agreement with the second law of thermodynamics, see 

figure (3). The entropy production behavior is fulfilled the 

famous Boltzmann H-Theorem, where ( 0)  for all 

values of y and t, see Fig. (4). 
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The behavior of the different contributions of the change in 

internal energies can be illustrated as follows; the internal 

energies changes caused by the variations in the 

temperature SdU and radiation energy  RdU have a 

negative sign. This is due to the fact that they have the 

same direction as the thermodynamic forces XT and XR 

formed by the gradient of temperature and thermal 

radiation, see figures (5,7,9,10).The internal energy change 

VdU caused by the variation in density has a positive sign . 

This is because it takes the same direction as the 

thermodynamic force nX due to the gradient of density, 

see figures (6,8).  

 

 

The  change in internal energy SdU , VdU and  RdU are 

all decrease in magnitude, with time, they go  towards the 

equilibrium state, which gives an agreement with the Le 

Chatelier principle, see figures (5,6,7).. The same behavior 

and the same agreement with the Le Chatelier principle 

holds for the thermodynamic forces TX , nX and RX , see 

figures (8,9,10). 
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The numerical ratios between the different contributions of 

the internal energy changes based upon the total derivatives 

of the extensive parameters are predicted via the Gibbs’s 

formula illustrated in figures (8, 9, 10). Taking into 

consideration their different tendencies, the maximum 

numerical values of the three contributions at various 

radiation field intensity corresponding to various plate 

temperatures are ordered in magnitude as follows: 

-1 -1

(300 ) : (300 ) : (300 )

 1 :   0.85 10  : 0.33 10

s V RdU K dU K dU K 

 

-1 -1

(600 ) : (600 ) : (600 )

 1 :   0.91 10  :  2.5 10

s V RdU K dU K dU K 

 

-1

(1000 ) : (1000 ) : (1000 )

 1  : 0.96 10    : 1.22.

s V RdU K dU K dU K 

 

According to our calculations, the restrictions imposed on 

the kinetic coefficients 
ijL  are satisfied for all values of y 

and t, where  11 0L   ,  22 0L   and 33 0L  , see figures 

(11,12,13). The celebrated Onsager's reciprocal relations 

are also satisfied for all values of y and t, where

 12 21 13 31 32 23,  and L L L L L L   , see figures 

(14,15,16). 

5. Conclusions 

In a frame co-moving with the fluid, we have investigated 

the behavior of the neutral monatomic gas under the 

influence of a nonlinear thermal radiation field in the 

unsteady state of a plane heat transfer problem in the 

system (gas + heated plate). By analyzing the results, we 

concluded that: 

a) At high relativity temperature ( 1000KT  ), the 

radiation energy contribution in the total internal energy 

change in the considered system become the dominated one 

and cannot be ignored at all.   

b) At small relativity temperature ( 600KT  ) , the 

radiation energy contribution in the total internal energy 

change in the considered system  become less by orders of 

degree than other contributions and  may be ignored in 

calculations as a very acceptable approximate.   

g)  The second law of thermodynamics, the Boltzmann H-

theorem, the Le-Chatelier principle, and the Onsager's 

reciprocal relations, all are satisfied for the system under 

consideration.  

f) The negative sign at some of the kinetic coefficients, 

corresponding to cross effects, imply that in these cases 

there is a mass flow or a heat flux opposite to the main flow 

or flux due to the imposed thermodynamic force (gradient). 

For example, the negative sign in front of 12TnL L and 

13RnL L , imply that there is flow caused by the 

temperature gradient, from a lower to a higher temperature, 

known as thermal creep and thermal diffusion (or Soret 

effect) flows, respectively, which gives a qualitative 

agreement with [50]. 
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