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1 Introduction Mikhailov and Gushin ], A.L.Skubachevski, G.M.
Steblov P], Peneiah 24].

Over the last few vears. manv phvsical phenomena WerIn this paper we prove the existence and uniqueness of the
y ' y phy P Sveak solution of a class of mixed quasilinear non local

{/f/)i;?miar‘lttizd rg?/ rgginza?f nggf&%grrgath.??igalinTeOerllsproblem in which we combine periodic and integral
9 i y : 9ral conditions for a second order quasilinear parabolic
boundary conditions appear when the data on the bod

: : uation. We start by solving the associated linear
can not be measured directly, but their average values ar d . .
known. For instance, in syome cases de%cribing th roblem. The existence and uniqueness of a strong

. AT olution is proved by means of an energy estimate and a
solution u (pressure, temperature,-) pointwise is not

. ._density argument, which requires appropriate multipliers
possible, because only the average value of the SOIUt'o'é\nd functional spaces. On the basis of the obtained results

of the linear problem, we apply an iterative process to

cngineering Mmodsl such as st COnAUCDBELLY,  somns e ooy sty | "%
plasma  physics 28], thermoelasticity 30,

electrochemistry 11], chemical diffusion 12 and

undergound water flow1[7,23,31]. The importance of

this kind of problems have been also pointed out by2 Statement of the problem

Samarskii R8]. The first paper, devoted to second-order

partial differential equation with nonlocal integral In the rectangleQ=(0,1) x (0,T), with T < 4o, we
condition goes back to Canno8][This type of boundary consider the equation

value problems with combined Dirichlet or Newmann

and integral condition, or with purely integral conditions Jdu 0 Ju du
has been investigated i8,,5,6,7,9,10,11,21, 19, 20,22 o ox ( ( ’t)a_) =fxtu =), @
29,33] for parabolic equations, for hyperbolic equations
in [4,25,26,27,32], and in [1314,15,16,18] for mixed  with the initial condition
type equations. Problems for elliptic equations with
operator nonlocal conditions were considered by lu=u(x,0)=¢(x), ¥xe(0,1), 2
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the periodic boundary condition

u(0,t) =u(Lt), Vte(0,T), (3)
and the integral condition

1

/u(x,t)dx:O, Wt e (0,T). 4)

0

In addition, we assume that the functiafx,t) and its
derivatives satisfies the conditions

O<ap<a(xt)<a; Vx teQ,
da
C2 < E(X’;) <c, WXteqQ, )
a
—(x,t)| <h.

Here, we assume that the known functiprsatisfies the
compatibility conditions given by3) and @), and there
exists a positive constadtsuch that

E is the Banach space of functianc L?(Q), with the
finite norm

2
lullg =

02
02

aul?

aUZ 2

(12)
F is the Hilbert space of vector valued functions obtained

by completion of the spade?(Q) x H* (0, 1), with respect
to the norm

JoX® (1=x)? {

}ddesup I [xz (1—x)?

2
x2(1—x)? ﬂ‘

2
21 1ol
(13)

[ 712 = Jox® (1—x)?|f (x,t)|*dxdt+ fo

3.1 An energy inequality and its application

Theorem 1There exists a positive constant k, such that for
each function & D(L) we have

[f(X,t,u1,v1) — F(Xt,Up, V)| < d(Jus — Up| + [V1 — V2|) forall x,t € Q.
(6) [ulle < Kk|ILullg. (14)
ProofLet
3 Associated linear problem du
Mu =% (1~ )2
In this section we study the linear problem relatedip (
(4) and establish the existence and uniqueness of the strong 1dg x2(20-1)(C-¢C ) +/\ f d” aud
solution.Thus we consider +/X 3/0 flg 5
0 a
Ju 0 Jdu 4 dr]
a9 t)— ) = f(xt 7 xd{ 2(20-1)({—¢°)+A
ot dx(a(x’)dx> Got), % +/ / )& _ SRl KL
Jo % ;
with the initial condition . . . A
We consider the quadratic form obtained by multiplying
lu=u(x,0) = ¢ (x), €(0, 1), (8) equation ) by exp(—ct)Mu, wherec > 0 andA is a scalar
parameter satisfying
the periodic boundary condition
A > 2ay, (15)
u(0,t) =u(lt), vte (0,T), 9 )
0.0 =u(Ly) ©.T) ®) and integrating ove®° = [0,1] x [0,/ with0<s< T, and
and the integral condition taking the real part, formally
1 tD(u,u):/ exp(—ct) f(x,t)Mudxdt
/ uxt)dx=0,  te(0,T). (10) o
0

The problem 7)-(10) can be considered as solving of the
operator equation
Lu= (Eulu)=(f,¢) =7
where the operatot has domain of definitiorD(L)
Jdu Jdu
at’ ox’
3 0ut (x,t) € L?(Q) and satisfying the condition®) and
(10).
The operatot is an operator defined da into F, where

(11)

consisting of functionsu € L?(Q) such that——
2

ou__ 17 u\
:‘/gsexp(fct)EMudxdtf‘/()Sexﬁfct)& (a(x,t)5> Mudxdt (16)

SubstitutingMu by its expression in the right hand-side of

(16), integrating by parts with respect 19 andt using
(8), (9) and the integral conditiorl(), we obtain

/ 21— x)2exp(— ct)‘d dxdt
Qs ot

7\ 2
dx— \/[ dx) dt

dxdt+ A2 fosexp(—ct) [u? dxdt

rfeney (\/f‘) 120c-38) -2+ 5 fOEdZ 5 ag

X2 (1—x)? da du

+ Jos 5 <ca— E) exp(—ct) Z
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1 x (1 x)? duf? Al 2
+ao f3 exp—cs) T | = dxtis+§j0 exp(—cs) |u] dx’(:sg
ou> |a2ul? aul?
2 2 2 i 201 _ 2|
stexr(—Ct)dexdt+a1f1X (1 x)? 2 dx+%fol\¢\2dx JosX®(1—x)? { +15e }dxdt—s—fgsx (1-x) X dxdt

17)
SubstitutingMu by its expression in the first term in the
right-hand side of17) and using the Holder inequality, we
deduce

2
SE

+% /I;Sexp(—ct)xz(l—x)z

/ exp—ct) fMudxdt<
os

16 2al

>+1) /Q X (1—x)2exp(—ct) |f|2dxdt

2
dxdt

(18)
The combination of18) and (L7) yields

ou
2/ (1—x)%exp— ct)‘a

X (1—x)? da

+ Jos 3 (ca— ﬁ) exp(—ct) 3

dxdt

dxdt+“ Jasexp(—ct) |u?dxdt

oul?

ox

X2 (1—x)?
2

Al 2
% [ exp—cs)|u dx’ <
5 I3 exi—cs)ufdy <

+ag [y exp—c9) dx  +
t=s

2 2,2
(@ 32)\4a1+1)/ 2 (1—x)%exp(—ct) | f|? dxdt
a9 & Qs
121 —y)2 2 1
+a1/ X=X |99 dx+£/ |p|>dx.
0 2 2 Jo
By choosingc such that
cag— ¢y > 0, (19)
we obtain
/ 2(1— dxdt+/ " dat
QS

<

+/01 (xz(l—

m <fo2(1x)2 | F[2dxdt+ 332 (1—x)?

aul?
20U 2
0x‘ + U] )dx

%2
ox

t=s

dx+fol|¢2dx> ,

<

1 2
+/ <x2(1—x)2 ou +|u|2> dx
0 7]

k2 {fo2 (1—x)?|f2dxdt+ [Fx2 (1—x)?

t=s

ox

2
dx+ Jal¢|2d><] :

(21)
If we drop the second term in the last inequality and by
taking the least upper bound of the left side with respect
to s from 0 to T, we get the desired estimat®4] with
K2 = m 4 ZxAmiar’m
%

It can be proved in a standard way that the operator
E — F is closable. LeL be the closure of this operator,
with the domain of definitio (L).

Definition 1.A solution of the operator equatidu = .#
is called a strong solution of probler)¢(10).

The a priori estimateld) can be extended to strong
solutions, that is we have the inequality

lulle < c|[Cufl, VueD(D).
This last inequality implies the following corollaries.

Corollary 1.1f a strong solution of 7)-(10) exists, it is
unique and depends continuously.éh= (f, ¢).

Corollary 2.The range RL) of L is closed in F and
R(L) =R(T).

Corollary2 shows that, to prove that problem){(10)
has a strong solution for arbitrary, it suffices to prove
that the seR(L) is dense irF.

3.2 Solvability of Problem7)-(10).

To prove the solvability of problemr}-(10), it sufficient
to show thaR(L) is dense irF-. The proof is based on the
following lemma.

(20)
where Lemma 1Suppose that &,t) and its derivatives are
) bounded.
12822 32/\2a1 Let Dp(L) = {ue D(L), u(x,0) =0}. If, for u € Do(L)
e max(( % N g )+1 2) exp(cT) and for some function w L2 (Q), we have
- (1 cRg_1 30)
min , 201 _ 2
(2 2 / X=X ¢ mdxdt=o, 22)
Q alxt)
From equation?) and inequality 20), we deduce
then w= 0.
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ProofFrom 22) we have
) wdxdt

o U omdxdlt= fo X" 2 (axt) 32
(23)

Now, for a givenw(xt) € L?>(Q), we introduce the
function

X 2
v(x,t):x(l—x)w+/0 a(Z.t) %(Z(Zi))w(z,t)dz,

then

i (525 vt = S Beieo g (i) weoer

which implies

19 5_52 B
/o o (a«,w)v“’”dz“" @9
Then, @3) can be transformed as follows
/—Nvdxdt_/A(t)uv (25)
where
Atyu=Z ( (x—x2) gi ,
X=X -3 X2 (1—x)?
V=Vt oz (a(z )) (@Vd=—xn ™
(26)
We introduce the smoothing operators
a\*! B o
= <I+EE) and (3;1)" = <I —&5 ) with

respect ta, then these operators provide the solution of

the problems:

Jug
Ug (t )+8007 =u(t) Ug (0) = )
Vi) —eZE=v(t)  V(T)=0

We also have the following properties: for
g€ L2(0,T), the functionsl; g, (J;71)" g e W (0, T). If
ge D(L), thenJ;1g € D(L) and we have

{ lim ||9; g — 9HL20T =0, fore—D0,

lim || (3¢ ) 9- 9HL20T =0, fore = 0. (28)

Substituting the functioru in (25 by the smoothing
functionu,g and using the relation

A(t)ue = I TA(t)u,
we obtain

ovi

I

dxdt= — / A()uidxdt  (29)
Q

any

The left hand side 0f29) is a continuous linear functional

of u, hence the functionv; has the derivatives
ovi 7] ovi
2 2 2 2
(x— x)ﬁ €L?(Q), —0x<(x X)aX)EL (Q), and

the following conditions are satisfied:

XVi o= (1=X)Vg[,_1 =0,
oV oV

_ (30)
X = =05 X

x=0 x=1

Substituting the function

u:/:exp(Qr)[;(&ﬁVé(x,r) /O(Zﬁ(iéj%i&jﬁ)v;(z,r)dz

,‘/Xl (%41 Z)az<z ZZ))@(ZJ)dZ]dT. (1)

a(,1)
in (25), where the constartt satisfies

c1—6ap <0, (32)

and using the properties of the smoothing operators, we
have

/—Nvdxdt_/A t) uvidxdt— e/A £dxdt
(33)

Integrating by parts each term in the right-hand side&8¥ (
with respect toc andt, using 80), we obtain

' oV aul?
[ AWt a/ At u2 dxdt= — / a(x T)exp(—0T) | 2Y| dx
o at 2 ox

2/ (——Qa>exp )‘Zi

We replaceu by its representatior3Q) in the right-hand
side of 83), we obtain

a2u |?

S5r| dxdt (34)

dxdtfe/ aexp(fet)’
Q

/a—thdxdt/ 0 X exp(6t)v:Nvelxdt
2

- freon [ (e57 (525 Zz)

—/Qexp(et)‘/x ((;ZZ:) -5 <Z<ZZ:)))VZ(Z,T)dZ>v;dzmdxdt

(35)

Nv
) vidZNvdxdt

SubstitutingN v by its expression in each term in the right-
hand side of 85), integrating with respect tg and using
the condition 24), we obtain :

2\ 2

2
X ) [v|? dxdt

/é%exp( t) viNvdxdt= /éexp(et) (x_
e [ 5 (55 o

+/ XX ex
Qa(xt)

/Qexp(et)

Nv(v* V) dxdt (36)

a(xt)

(@© 2015 NSP
Natural Sciences Publishing Cor.



Sohag J. Math2, No. 2, 67-74 (2015) www.naturalspublishing.com/Journals.asp

71

then

)v*dZ Nvdxdt=

o 2 (55) &
,%/(;Texp(et) /1Z szdzz ;/ exp(6t)
+/ / exp(6t)x ;(Z ZZ)vdZ
/exp(Gt) ( XZ) / 7 dZ <Z<Zzt)>vddedt
+/ exp( Gt O = ( )
e [ (e <Z<zztj>+ (Z,Z;)(

and
,/éexp(et)/l (Z(}th

-2
a(d,y

+/’T/ exp(6t) (1-x) /O 3 (i}%)vd{ :
+/exp (1) (X:) /1<1fz) 52 (Z“Zt))vddedt
+/exp(6t / F7e (Z(ZZ:) Z/1Z ¢

~fewten [ (- Z)az((zf) ;zij)(%*

from (32), (34)-(38), for sufficiently smalls we have

x7-2
dx @, t)vdZ

dxdt

Vddedt

v)d{Nvdxdt  (37)

0 (555

1 /T 1 2 1 x 772 2
75/0 exp(0)| [ ax [ S vac di- 2/ exp@n)| [ ax [ 275 vad | ot

dxdt

Vddedt

v)dZ Nvdxdt (38)

T 1 2
Og/exp(et)|Nv|2dxdt—/ exp(et)dt’/ Nvd{ <0,
Q 0 0

then
) T 1 2
/Qexp(et)|Nv| dxdt—/O exp(et)dt‘/o Nvd# =
1 (T 141 )
s || exp(8010Nv) (x1) - (N 3. )P dxdlydt=0
o Jo Jo

We conclude that

Nv(x,t) =

thenNv= 0 a.e.; hence from26), we deduce that = 0
a.e., which ends the proof of the lemma.

Nv(y,t) vxy€[0,1], te[0,T],

Theorem 2The range RL) of the operatorL coincides
with F.

ProofSinceF is a Hilbert space, we ha®(L) = F if and

only if the relation

2d udgy

Jox®(1- x)? fgdxdt+ [ %2 (1—X) i

—2dx+ [3 lugrdx=0,
(39)

for arbitraryu € D (L) and(g, ¢1) € F, implies thatg =0

and¢; =0

Puttingu € Do (L) in (39), we conclude from the Lemma

lthatg= — =0, theng=0. a.e.
Takingu e D (L) in (39) yields

1
/x2(1_ )2%|Ud¢1dx+/ lugrdx = O,
0

since the range of the trace operdta everywhere dense
in Hilbert space with the norm

/lez(l—x)

henceg, =0.

oS

dlu?
ax

dx+/ lu>dx,

4 Study of the nonlinear problem

In this section, we prove the existence, uniqueness and
t continuous dependance of the weak solution on the data

of the problem 1)-(4).

It is clear that if the solution of probleni)-(4) exists, it
can be expressed in the form= w+ U, whereU is a
solution of the homogeneous problem

0U 7} ou
U =Ug=U (x,0)= ¢ (x), (41)
U(Ot)=U(Lt), (42)
1
/ U (xt)dx=0. (43)
0
andw is a solution of the problem
ow 0 ow ow
EW:E_O_X<aW> :F <X,t,V\/7 W)’ (44)
Iw =w(x,0) =0, (45)
w(0,t) =w(Lt), (46)
1
/ w(x,t)dx= 0. (47)
0
whereF [ x,t,w, d—W =f x,t,W+U,M and
ox ox
satisfied the condition
[F(xt,ug,v1) — F(x,t,uz,v2)| < d(Jup—up|+ vi—vo|) forallx,t € Q.
(48)

According to Theoreml and Lemma2, the problem

(40)-(43) has a unique solution that depend continuously

on Up € V10(0,1) whereV19(0,1) is a Hilbert space
with the scalar product

1 du dv
(U’V)Vlo(o,l) :A Xz(l X)Za

and with associated norm

dx+/ uvdx,

2 1
— dx+/ |ul?dx.
0

1
lulysoon = [ (1=

(@© 2015 NSP
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We shall prove that the problen#4)-(47) has a weak

Definition 2.By a weak solution of problend4)-(47) we

solution by using an iterative process and passing to thenean a function

limit.
Assume thatv and w € C(Q), and the following
conditions are satisfies

0, folv(x,t) dx=0,

V(x,T)=
{W(X, 0) =0,w(0,t) =w(1,t).

Taking the scalar product ib? (Q) of equation ¢4) with
the integrodifferential operator

Mvz/)(l% X7 — ZZ vz /xdz/lzldzzz

1 dZ
and by taking the real part, we obtain

H(w,v):/F(xtwa )Mvdxdt
Q ox

_/ ﬁMVdth / ( )Mvdxdt (50)

Substituting the expression bfvin the first integral of the
right hind-side of §0), integrating with respect t using
the condition 49), we get
| 1 23y P
,/ Z/ Zldzz M )dxdt
1 d{

owe ol [rel ra-o
EMv_f/QW</x alo ra ot
1 0da dx 1 ﬁa
Ko 58o 5 —fo 2 g9k 5 p
+ [ wreot 0@ ot / (¢ — 22) vdZdxdt
‘e (R

lﬁa 1 dx 11<9a
[ S b o ar g%
/Q

(%)
Substituting the expression bfv in the second integral of

the right hind-side of§0), integrating with respect tm,
using the condition49), we get

o [ dw o OW_
/0)(( Ix )Mvdxdt—/Q(x—x)a&vdxdt

(49)

vdd,

/1 (- 2?)vdzdxdt  (51)

(52)
Inserting expression&(), (52) into (50) yields
H(w,v) =
dn Cdn
/ é [// (ztw—>dz //0 <th—>d(]dxdt
(53)
where
H(W.,v):/é (x—x2) al;—wvdxdt
g 1dg g szv xdZ [t{-q%9v
7/QW</>< o atl / / S Edz>dth
1 oda dx 1 ﬁa d¢
g fxl 22 Zfoli fOl foli X
a2 ot az ot _ 72
+/Q ( m) / (¢ — 22) vddxdt
0 a
19a , 4dx 11z7a x d{
Zd - Az =
7/w‘ Zaltha b Fo ra /1(5*52)\7d(dxdt (54)
° (5% :

we L2(0,T:Vv10(0,1)) satisfying the identity53) and
the integral condition47).

We will construct an iteration sequence in the
following way.
Starting withwg = 0, the sequencen,),cy is defined as
follows: givenw,_1, then forn > 1, we solve the problem

o aWn 0 aWn o 0Wn_1
£Wn— W - 0_)( (a ax > =F <X7t7Wn17 0X ) 9
(55)
IWn = wh (X,0) =0, (56)
Wn (Oat) ( at)a (57)
1
/ Wn (x,t)dx = 0. (58)
0

From Theoreni and Theoren®, we deduce that for fixed
n, each problem55) -(58) has a unique solutiow, (X, t).

If we setVi(X,t) = Wni1 (X,t) — W (X t), we obtain the
new problem
_O0Vn 0 [ OVn\
EVh = at ax <aﬁ> = On-1, (59)
IVh = Vi (x,0) =0, (60)
Vn(oat) :Vn(lvt)v (61)
1
/ Vi (x,t) dx = 0. (62)
0
where
ow, OWp—
On-1= F <X7t7Wn7 a—xn> -F <X7t7Wn17 ar;( 1) .
(63)

Lemma 2 Assume that the conditiomt®) holds, for the
linearized problem %9)-(62), there exists a positive
constant k, such that

HV”HLz(O,T:VlO(Ql)) < k|‘Vn—1||L2(O7T:V1~°(O,1))' (64)
ProofWe denote by
avn Ldg x2(28-1)( +Aff 9 av,
Mo = 0" / / ) X

*d§ 2(28-1)(8-¢ ] ? oVy
/ /( 1d_x) 0 >Wdé.

Using the same arguments as in the proof of Theotem
we get

HVn||EZ(O,T:V1aO(O,1)) < k2 ||Vn—1HEZ(O!T:VLO(O’Q) ) (65)

where

1282 | 320%2
1) 1
( a2 a4

K2 = 2d?
min ( $2—% Ac
2 2

exp(cT).

(@© 2015 NSP
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SinceVh (X,t) = Wni1 (X,t) — Wn (X,t), then the sequence ProofSuppose tha, w, € L?(0,T : V19(0,1)) are two
Wn (X,t) can be written as follows solution of @4)-(47), then the functiorv = w; —w; is in
L2(0, T :V19(0,1)) and satisfies

k=n-1
Wh (th) = z Vk+WO (Xat)a ov 17} ov
k=1 E — 0_)( (aa—x) = G(X,t), (69)
the 2sequenC(lann (x,t) converge to an element v(x,0) =0, (70)
weLl (O,T Vo (0,1)) if V(O,t)ZV(l,t), (71)
B 1
min (cao Cl, )‘—C> / vdx= 0. (72)
d? < 2 2 exp(—cT.) °
2 (12&‘2 + ﬁ—wzaz) +1 ' ow ow:
T ag WhereG(x,t) =F (x,t,wl, 6—x1) —F (x,t Wo, dx2>'

Now to prove that this limit functiow is a solution of the  Taking the inner product ih?2 (Q) of equation 69) with
problem under consideratio9-(62), we should show  the integro-differential operator
thatw satisfies 47) and 63).

For problem §5)-(58), we have P 1 X _ g2 &dn
_ 2 20V dé x2 (286 -1)(E—¢&%)+A Jg T av
H (Wq Wv)+H V) = Mv =x*(1—x) ot / / .Oldix = —df
/Qj;(f\—,[/ dz/ldn ( (ntwn 1 ) (ntw—> n)dxdt +/=x§ -1 . 2(28 -1) (5_5 )+/\f§%’7 a_vdg
0 0 ax T dx at

+ / dZ/ dn ( (n,t,wn,l,d\gz’l> F (n t, Wd—\g> dn) dxdt]
whereA > 2a; and following the same procedure done in
the proof of Lemmad., we get

+/ 1dz (/ dZ/ldn (ntw—)dn+/d5/ (ntwﬁ>dn>dxdt 5 ) 5
(66) HVHLz(O,T:Vlo(Ql)) <k ||V||L2(07T:V1~°(O,1))'

Integrating with respect tb andx, using the conditions where
(49) ande—inequalities, we obtain

1282 16A%a2
N 2( 2 1y 2t 1) +1
[H (Wn —w,v)| < Cljwn — WHLZ(OTvmol)(/Q (XZ( % 2) dxdt)z, k2 = - r— )\_C quCT).
(67) 5
where
432 Sincek? < 1, thenv = 0, which implies thaw; = w, €
C= max(l, %1 max(|cy|,|c2|) ,a1> L2(0,T:Vv9(0,1)).

Integrating with respect tg, the first two terms in§6),
using @9), (67) and by passing to the limit as— o, we ~ References
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