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Abstract: Recently, Kanas and Ronning introduced the classes ofifurgcstarlike and convex, which are normalized wiilw) =
f'(w) —1=0,wis a fixed point in the open disé = {z€ C: |z] < 1}. The aim of this paper is to continue this investigation and
introduce a new clasg’ 7"(a, B, w), of functions which are analytic id. We obtain various results including coefficients estirsate
distortion and covering theorems, radii of close-to-cautye starlikeness and convexity for functions belonginghis class.
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1 Introduction and Motivations corresponding classy(0) is defined by the property that
the image of any circular arc centeredaats convex. We

Let w(lw| = d) be a fixed point in the unit disc observe that the definitions are somewhat similar to the
A :={ze C:|Z < 1}. Denote by.s#(A) the class of ones introduced by Goodman i8] [and [9] for uniformly
functions which are regular and starlike and convex functions, except that in this case the
g(w) = {f € H(A) : f(w) = f'(w)—1=0}. Also point w is fixed. In particular, 7" = #,(0) and
denote by, = {f € &/ (w) : f is univalent in A}, the .5 = .*(0) respectively, are the well-known standard
subclass of7 (w) consisting of the functions of the form  classes of convex and starlike functions (sEg15]).

For complex parametersy,...,a and bq,....by
(bj # 0,—1,...;] = 1,2,...,m) the g-hypergeometric
function; %n(2) is defined by

0

f(2) = (z=w) + Zzan(Z—W)“, 1)

which are analytic imd. Denote by.%, the subclass of4y
consisting of the functions of the form 1#n(ag,...&;ba,....bm;0,2)

. n 1+m—I|
— (7—w) — WP =  (a,9n-.-(&,9n n o \2
f(2) = (z—w) nzzan(z w)" (@ >0). (2) = n;(q,q)n(bl,q>n...(bm,q)n (—1) q< ) z'

Note that .y = .%¥ and 9% = .7 be subclasses of (3)
o/ = 4/(0) consisting of univalent functions idl. By
Zw(B) and 7 (B), respectively, we mean the classes of . n (n-1)

_n
analytic functions that satisfy the analytic conditions with (2) =~z whereq# 0 whenl >m+1(I,me

(z—w)f'(2) Wt No=NU{0},z€ A.
H ( f(2) ) > B U (1+ @ ) > B and The g— shifted factorial is defined foa,q € C as a
(z—w) € A for 0 < B < 1 introduced and studied by product ofn factors by
Kanas and RonnindlD]. The class¥,;(0) is defined by
geometric property that the image of any circular arc , 1 n=0
centered aw is starlike with respect tof (w) and the (&@n= { (1-a)(1-aq)...(1—aq"?) neN }
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and in terms of basic analogue of the gamma function  satisfying the condition

[q(a+n)(1-q)"

,n>0.
Iq(a)

) = 4
(2
(2= W)(Fh T (@)

Inf(2)

Now for ze€ A,0 < |g] < 1 andl = m+ 1, the basic

hypergeometric function defined iB)(takes the form

>a —1|,(z—w) € A.

9)

(Yn(ag;...a;b1,...,bm; 0, 2)
< (a1,n. .. (a,q)n
pr— zn7
nZo (9,9)n(b1,q)n- .. (bm,q)n

which converges absolutely in the open unit disklt is
(qa’q)n _ (a)n

In this present paper, we obtain a characterization,
coefficients estimates, distortion theorem and covering
theorem, extreme points and radii of close-to-convexity,
starlikeness and convexity for functions belonging to the

of interest to note that lim

a1 (1—q)" m
=a(a+1)...(a+n—1), the familiar Pochhammer symbol classs 7o, B,w).
and
& (a]_)n(a.l)n Zn
Yna,...a;b1,....bm2) = Y ~—————"—"— —. (6
| m( 1 a;01 m ) n; (bl)n---(bm)n nl ()
For a = q%b = ¢fi,a,B € C and 2 Characterization and Coefficient estimates

B #0,—-1,-2,....(i=1,..,1,j =1,..,m)andg — 1, we
obtain the well-known Dziok-Srivastava linear operator
[6,7] (for | = m+1). Forl =1,m=0,a; = g, many (well
known and new) integral and differential operators can be
obtained by specializing the parameters, for example thdheorem 1. Let f € %,. Then fe .7 "(a,B,w), 0=
operators introduced im[5,11,12,14]. B <landa = 0, if and only if
Motivated by the recent work of Mohammed and

Darus [L3], we define a linear operator
e, qf(2): o (W) — o (W)

given by

Inlar,dlf(2) = 7 (&, b g, z—w) = £(2)
=(z—w) Wn(ag;...a;bg,....bm; g, (z—wW)) % f(z),(G)

0

Inf(2) = Tla.qf(2)
(z-

W)+ Y ¥aM(as, lan(z—w)"

n=2

()

where

(a;@)n-1--- (&;Dn-1
(G @)n-1(by;A)n-1... (bm,q)n-l('S)

Making use of the operata?;, f(z) and motivated by
the results discussed irl,p,3,16] we introduce a new
subclass . 7"(a,B,w) of analytic functions with
negative coefficients.

For0< B <1, a =0, and for a fixed pointy, let the
class ¥ 7"(a,B,w), consists of functionsf € %,

Y(n) =¥, "(ay,q) =

00

22 [n(a+1) — (a+B)) (r +d)™ Y(n)|an| = 1—B.

n=
(10)
where0 < [z—w| S |z +w] <r+d < 1,

Proof. We employ the technique adopted b 16]. We
havef € ..7"(a,B,w), if and only if the condition(9)
is satisfied, which is equivalent to

. (1—a€®)(z—w) (71 (2)) +a€®.7) f(2)
( o )
> B,

—-nso<m (11)

Now, letting _
G(z) = (1— a€®)(z—w)(Af(2) + a€® .7 f(2) and
F(z) = .#1f(2), equation L1) is equivalent to

G(2)+(1-B)F(2) > [G(2 - (1+PB)F(7), 0=B <L

By simple computation we have
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|G(2)+ (1—B)F(2)] Corollary 1. If f € 7 "(a,B,w), then
> (2— —W)|— - —w)" < =2, (12
2 |(2=B)(z=w)]=| 3 (n+1-B)Vmanz-w S T e Ty "2 42
where0 < 8 < 1anda = 0. Equality in (12) holds for the
> functi
—-adGE;h—lﬁ%maMz—wﬁ Hneton 1B
n= (W) — _w\n
f(2) = (z—w) a0 @B dr v (z—w)".
w 13)
2 (2— —W|— 1-B)YT —w|"
= @=P)fz—w nzz(n+ B)Y(Man[z—w In the following section we state Distortion and
Growth theorems without proof.
—a ;(n —1)Y(n)an|z—w|"
n= 3 Distortion and Covering Theorems
= (2-B)z—w]| Theorem 2.Let Y(n) be defined as iri8). Then, for fe
LT MNa,B,w), with |z—w| < |7 +|w] <r+d<1inA,
o we have
- 22 [n(a +1)—(a+B)+ 1} Y(n)an|z—w|"
n= (r+d)—B(a, B, u)(r+d)* < [f(2)]
and similarly, < (r+d)+B(a, B, w)(r+d)? (14)
G(2) - (1+B)F(2)| where,
ng-M+zJMa+Q—m+B%J}ﬂMaﬁ—MW B(a. B 1) — 1-B
n=

Therefore,
IG(29)+(1-PB)F(D)|—[G(2) -

> 2(1-B)lz—w
“23 [n(@+1)—(@+p)] Yiaqz—ui"
(1-B)-

[ n(a+1)—(a+ B)} Y(n)an|z—w|"" 1 > 0.

(1+B)F(2)|

v

8

2

>
||

By putting|z—w| < |z + |w| <r+dwithO<r <1and
|w| = d in above inequality, we obtaif10).
On the other hand, for all 1< 6 < T, we must have

(- WF'(2
- ( Fg

Now, choosing the values ¢z —w) on the positive real
axis, where @€ |z—w| = |z|+ |w| <r +d < 1, and using

(1+a€?) — aei9> > B.

0{-€%} > —|€9 = —1, the above inequality can be
written as
; n(a+1)— (a+B)] Y(n)an(r+d)"*
n:
1— ZZY
> 0.

hence we get the desired result.

(a+B)| (r+d)Y(2)

Theorem 3.1f f € . 71"(a,B,w), then for|z—w| < |z| +
w<r+d<1

1- B(av Bv U)(H'd) é |f/(Z)| é 1—|—B(G, Bv N)(H'd)a
(15)

2(a+1)—

where Ra, 3, 1) as in Theoren2.

Note that in Theorer? and Theoren3 equality holds
for the function

1-B

f(2) = (z—w)— (z—w)2.
[2a+1)~(a+B)] (r+d)¥(2)
Theorem 4. If f € 7" (a,B,w), then fe 7*(J),
where
S=1— 1-p
[2(@+1)—(a+B)] (r+d)Y(2) - (1-B)
This result is sharp with the extremal function being
i 1-8 a2
M@= @ plrrave =~ "

[ee]

Proof. It is sufficient to show that10) implies Zz(n—
n=
0)an < 1-0[15], thatis,
n—2o

< [n(a+1)—(a+B)] (r+d)"1y(n)

>
1-5 1-8 yN22

(16)
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Since, fom = 2, (16) is equivalent to
s<1_ (n—1)(1-B)
[n(a+1)—(a+B)] (r+d)"1y(n)—
= o(n)

and®(n) < @(2), (16) holds true forany & 3 < 1 and
a = 0. This completes the proof of the Theordm

(1-8)

4 Extreme points of the class” 7"(a, B, w)

Theorem 5.Let f1(z) = (z—w) and

1-B
[n(a+1)—(a+pB)] (r+d)"1Y(n)

n=2andY(n) be as defined if8). Then fe .77 "(a, B, w) if
and only if it can be represented in the form

fn(2) = (z=w) - (z=w)",

f Z) = % (I.hfn(z) An ; 07 z An = 1 (17)
n=1 n=1
Proof. Supposef (z) can be written as iG17). Then
f(z) = (z—w)—
[ 1_ B N
2 n [ Mm@+ —(a+B)] v | =W

Now,

a+1

22)\”1 B)

— (o + B)] (r+ d)”‘lY(n)(l— B)
n(a+1)—(a+p)] (r+d)"1y(n)

= i/\nzl—)\1<1.
A=

Thus f € 7" (a,B,w).
f € 7" (a,B,w). Then by using12), we may write

is in the class” .7 "(a, B,w). Since

[ee]

9(2) = (z—w) - zz[/\ an1+(1-A)an2)(z—w)",
an easy computation with the aid of Theorémives,
5 [na+ D)= (@+B)] -+ () hows +(1-A)an

+(1-4) i[ n(a+1) —(a+B))(r +d)"v(n)

SAA-B)+A-2)12-p)
él B,

which implies thag € .77 "(a, B, w). Hence.” 7"(a, B, w)
is convex.

5 Modified Hadamard products

For functions of the form

(f1xf2)(2) = (z—w) — ;anvlan’z(z—w)”. (18)
n=

we define the modified Hadamard product as

(fixf2)(2) = (z—w) — Zzamlan,Z(Z_W)n- (19)
n=

Theorem 7.1f f;(2) € . 7"(a,B,w), j =1, 2, then
(f1xf2)(2) € ST (a,&,w),

where
E:(Z—B)(2(0+1)—(G+B))( d)Y(2) —2(1-B)?
(2-B)(2(a+1)—(a+B)) (r+d)Y(2)—(1-B)?’

Conversely, let us have WithY(n)be defined as if8).

Proof.Sincefj(z) € .#.7{"(a,B,w), j = 1, 2, we have

. [n(a+1)—(a+B)] (r+d)"1Y(n) 1o )
1-p LT ;[n(au)_(aw)] (r+d)"Y(n)an ; <1-B.
andA; =1— ;)\n Thenf(z z Anfn(2), with f(2) is " (20)
as in the Theorem. The Cauchy-Schwartz inequality leads to
Theorem 6.The class.7"(a, B,w) is a convex set. 2 [n(a+1)—(a+B)] (r+d)"tY(n)an |
Proof. Let the function n; 1-B o 12
. <1 (21
- n;an’j(z—w)“, 220, =12, Note that we need to find the largéssuch that
be in the class”.Z7"(a, B, w). It sufficient to show that 2 [n(a+1)—(a+ ﬂ (r+d)" Y(n)ay ;
the functiong(z) defined by n; —¢ an,18n,2
92 =Af1(2)+ (1-A)fa(2), 0<A <1, =1 (22
© 2016 NSP
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Therefore, in view of21) and @2), whenever

g\/an,lan,z < %, nz2
holds, then22) is satisfied. We have, fron2{),
1-B
n(a+1)—(a+p)] (r+d)"1y(n)’
nz2 (23)

an,lan,2§ [

Thus, if

(i) w
1-&) | [n(a+1)—(a+B)] (r+d)"1¥(n)

A

or, if

(n—B)[n(a+1)—(a+B)] (r+d)"1Y(n)—n(1-p)?

(n=B)[n(a+1)—(a+pB)] (r+d)"1Y(n)—(1-p)2"
nz2,

¢

IIN

Theorem 9. Let the function {z) € %, be in the class
ST Ma,B,w). Then fz) is starlike of order p,
0<p<1lin|z—w|=Rywhere

(1-p) [n(a+1) — (@ +B)] (r +d)Ly(m] "
(n—p)(1-B) '

n = 2, with Y(n) be defined as ii8). This result is sharp
for the function fz) given by(13).

R = Il’r11f |:

Proof. It is sufficient to show that

(z=w)f'(2)
f(@)

or equivalently

- n_p> n-1
— Janlz-w" <1,
nzz<1_p

(26)

_1’ él_pa

then @1) is satisfied. Note that the right hand side of the for 0 < p < 1 and|z—w| = R,. Proceeding as in Theorem

above expression is an increasing functionroHence,

8, with the use of Theorer, we get the required result.

settingn = 2 in the above inequality gives the required Hence, by Theorerh, (26) will be true if

result. Finally, by taking the

_ (7_ _ 1-B8
f2 =(z-w 2-B)2a+D—(a+p) |r+d)V(2)
we see that the result is sharp.

(Z - W)Za

6 Radii of close-to-convexity, starlikeness and
convexity

Theorem 8. Let the function fe %, be in the class
< 7™ a,B,w). Then fz) is close-to-convex of ordeg,
0=p<lin|z—w|=<Ry, where

1
(1-p)[n(a+1)—(a+B)] (r+d)"ty(n)|™*
n(1-p)

n = 2, with Y(n) be defined as i(8). This result is sharp
for the function £z) given by(13).

Proof. It is sufficient to show thatf’(z) — 1| <1—p,0=
p <1, for|z—w| <ri(a, B,1,p), or equivalently

hd n
— Janz-wr i1
nzz<1_p>

By Theoreml, (24) will be true if
<L) 2wt < [n(a+1)—(a+pB) | (r+d)"1y(n)
1-p hS

1-8
or, if

Rl—lrp]f[

(24)

|z—w| =Ry

- [(1—p) [n(a+1)—(a+B)] (r+d)"1Y(n) w1

n(1-p) T

The theorem follows easily frorf25).

function

(o +1) — (a+B))(r+d)"*v(n)
1-B

=P\, _wni<
(12)omw

or, if

z—w| =R
1

in(@+1)—(a+pl(r+d) ()] ™
(n=p)1—P)

<

,n=2.

(27)
The theorem follows easily frorf27).

Theorem 10. Let the function {z) € %, be in the class
77! (a, B,w). Then z) is convex of ordep, 0< p < 1
in |z—w| = Rz, where

1
n-1

(1-p)[n(a+1)—(a+B)] (r+d)"1y(n)
n(n—p)(1-B)

n = 2, with Y(n) be defined as ii8). This result is sharp
for the function fz) given by(13).

Ry = inf [
n

Proof. It is sufficient to show that
equivalently

ad n(n_p)) n—-1
2 aglz-w" <1,
n;( 1_p

for 0< p<1and|z <r3(a, B,l,p). Proceeding as in
Theoren8, we get the required result.

(zw"(z)
f'(2)

<l-por
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7 Integral transform of the class Theorem 12. Let f € .¥ 7"(a, B,w). Then
LT (a, B,w) (i) Vu(f) is starlike of order0 < y < 1in |z—w| < Ry
mi= where

For f € . 7"(a,B,w) we define the integral transform R
=
(C+n)5 (L-yn(a+1) —(a+B)lr+d)"* Y(n)
c+1 (1-B)(n—y)

(i) Vy(f) is convex of ordeD <y < 1in |[z—w| < Ry
normalized so thajJ p(t)dt = 1. Since special cases of where

K(t) are particularly interesting such ast) = (1+ c)tC,
¢ > —1, for which 'V, is known as the Bernardi operator

1
n-1

1
(@ = [ uoat

where u is real valued, non-negative weight function
1

inf
n

Ry =

1
and inf (CM)“ (A-y)n(a+1) (@ + B+ vim |7
5 5-1 n[\c+1 (1-B)n(n—vy)
u(t):wtC <Iog}) ,c>-1,0>0 , , ,
u(o) t This result is sharp for the function
which gives the Komatu operator. 1-B N
First we show that the clasg’.7"(a, B, w) is closed f(2)=(z-w) - na+1) —(a+B)r+rdmiv(n (Z=w)",
underVy(f).

n>2 (29

Theorem11. = let f € S Ta,B,w). Then  concluding Remarks: For suitable choicesr, 8,1 and

Vu(f) € 777 (a, B,w). mthe family. 7"(a, B, w), eventually lead us further to

Proof. By definition, we have new class of functions defined either by extension or by
generalization.

00

/Ol(—l>5*1t°<logt>5*1 ((z—w) - n;an(z—m“t“*l

(-1)°c+1)°
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