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Abstract: Here we show that spin-lattices can serve as a test object for quantum foundations and quantum information 

theory, revealing unsuspected properties. We propose a (thought) experiment on such lattices that mimics the Bell-

experiment and calculate the outcomes and the Bell inequality. It appears that for a wide range of geometries the Bell-

inequality is violated, even if these lattices are local according to the usual definitions. Some spin-1/2 lattices can even 

violate the Bell inequality more than the Tsirelson bound. We argue that there is no consensual explanation for this result. 

We make the link with problems in quantum foundations and quantum information theory. 
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1.  Introduction 

 
The standard or Copenhagen interpretation of 

quantum mechanics asserts that quantum theory is 

intrinsically indeterministic and cannot be causally 

completed. The question of completing quantum mechanics 

by a deeper-lying theory is posed in the sharpest manner by 

Bell’s theorem [1-2]. In a slogan, Bell’s theorem proves 

that any local hidden-variable model for a certain 

experiment will satisfy an inequality, while quantum 

mechanics predicts violation of the inequality. Since 

experiments have confirmed the quantum prediction, 

hidden-variable theories are nowadays considered to be a 

dead-end.  

Now the Bell-inequality is only rarely tested on real-

world physical systems that could, a priori, serve as a 

model for a sub-quantum hidden-variable reality. G. ‘t 

Hooft, a physics Nobel laureate, has recently argued that in 

the Cellular Automaton Theory for quantum mechanics, the 

Bell-inequality will be violated [17]. Here we will test the 

Bell-inequality in spin-lattices, by proposing a Bell-type 

(thought) experiment on such lattices. Note that a spin-

lattice can be seen as a simple version of a cellular 

automaton. It can serve as a ‘hidden-variable model’ in the 

sense that it allows one to calculate the experimental Bell-

probabilities P(1,2|a,b), P(1|a) etc. (definitions given 

below) by summing over probabilities as P(1|a, ) etc.; the 

hidden variables are the spins on intermediate nodes (cf. 

Fig 1). We will calculate that for certain geometries the 

Bell-inequality can be violated in such an experiment 

(Sections 2-3). Perhaps surprisingly, some Ising lattices 

violate the Bell-inequality more than the Tsirelson bound 

[3]. Yet spin-lattices are local according to the usual 

definitions, as will be shown in Section 4.  

Several explanations can be advanced for this result, 

but we will argue that any explanation contradicts a basic 

assumption in the general quantum foundations literature 

(Section 5). Therefore it seems that at least one of these 

basic wisdoms will have to be given up, or at least relaxed. 

We will also succinctly make a link with quantum 

information theory, where the Bell inequality plays e.g. an 

essential role as safeguard for secure communication. Note 

that terms as ‘locality’ (absence of superluminal 

interactions) will be used here following the physics jargon 

rather than the information-theoretic jargon, where it can 

have different be it meaningfully related meanings [4-9].  

In the following I will focus on the classical spin-1/2 

Ising Hamiltonian. In [10] some results on 2-D lattices 

were calculated numerically. Here I will present for the first 

time analytic results on 1-D and 2-D lattices and give a 

complete analysis of the results. 

As an introduction, let us recall that, in a stochastic 

system, the Bell-inequality is derived starting from three 

assumptions – which are believed to describe any stochastic 

and local hidden-variable model for the Bell experiment. 

These three assumptions are usually termed ‘outcome 

independence’ (OI), ‘parameter independence’ (PI) and 

‘measurement independence’ (MI) and are defined as 

follows [11, 8-9]: 

 P(1|2,a,b,) = P(1|a,b,) for all  

(,1,2)                                         (OI), 
(1a) 
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 P(1|a,b,) = P(1|a,) for all  and 

similarly for 2                                 (PI), 
(1b) 

 
(|a,b) = (|a’,b’) ≡ () for all 

(,a,b,a’,b’)                                     (MI). 
(1c) 

Here  is the probability distribution of the hidden-variable 

set ; a and a’ are values of the left analyzer angle, and b 

and b’ of the right analyzer angle; and 1 and 2 are the left 

and right measurement results, say spin values (‘P’ is a 

conditional probability). The set (or n-vector) of variables 

 may contain discrete or continuous variables; we might 

split them up in ‘left’ and ‘right’ variables; all such cases 

are subsumed in (1c). The conditions OI and PI are 

generally believed to express locality; in conjunction they 

form the factorability condition for local hidden-variable 

theories first proposed by Clauser and Horne [12], cf. Eq. 

(20) below. 

The third condition, MI, is also a condition of 

stochastic independence. It is usually deemed ‘obvious’ 

because violating it would mean that the hidden variables  

depend on (a,b), which means by standard rules of 

probability calculus that the analyzer angles (a,b) depend 

on the variables . But (a,b) can be freely or randomly 

chosen in experiments – so how could these angles depend 

on the  (variables which moreover determine the 

probabilities for the left and right outcomes) ? Ergo, MI 

must hold, unless one accepts a conspiratorial world. I will 

come back in detail to this subtle point, which will appear 

to be at the heart of our investigation. 

2. Spin-lattices and the Bell inequality 

Let us devise an experiment on a 2-D spin-lattice; 

such lattices are an approximate description of a variety of 

realistic systems, the best known case occurring in 

magnetic layers [13-14]. The experiment we consider is 

likely not yet feasible in the laboratory, so it is a thought 

experiment. Suppose, then, that Alice and Bob perform a 

Bell-type test on an ensemble of spin-lattices as 

schematized in Fig. 1.  
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Fig. 1. 10 spins on a lattice 

 

10 ions or electrons sit on a lattice, each having a spin i 

(=±1 for i =a, b, 1,…, 8). The Hamiltonian is the classical 

spin-1/2 Ising Hamiltionian (the i are numbers, not 

operators): 

                   H() = – i,j Jij.i.j – i hi.i.                  (4) 

Here  is a 10-spin configuration (a,b,1,…8), the hi are 

local magnetic fields, and the Jij are the interaction 

constants between spin-i and spin-j, as usual assumed to be 

zero beyond nearest neighbours. Note that the Ising model 

explicitly relies only on local interaction between nearest 

neighbours1, and that Hamiltonian (4) also describes a 

variety of purely classical phenomena: the i can represent 

atomic occupation in a ‘lattice gas’ or a crystal, deviation 

from equilibrium position in a network of springs, etc. [13]. 

The probability of a given spin configuration (at fixed 

temperature 1/) is the Boltzmann probability: 

 
P()  =  e-H() / Z, with Z =  e-H(), the 

partition function. 
(5) 

We assume that Alice and Bob share an ensemble of such 

lattices, each in thermal equilibrium at the fixed 

temperature 1/. Suppose Alice has the means to measure 

the spin (±1) on nodes 1 and a, and Bob on 2 and b. They 

can then empirically determine joint probabilities as 

P(1,2|a,b) ≡ P(1=1, 2=2 |a=a, b=b) (all i = ±1) 

simply by sitting together and counting relative frequencies 

over the ensemble. These 16 probabilities are the only ones 

needed to verify the Bell Inequality (BI), with (a,b) 

taking the role of (a,b) and  ≡  ≡ (3,4,…8) (or any 

subset of this set), as recalled below (cf. Eq. (6-7)).  

Let us pause a moment and note that Alice and 

Bob could, in principle, do two equivalent experiments 

(Ex1 and Ex2) to determine the needed probabilities, just as 

in real Bell experiments. Either (Ex1) they ‘postselect’ 4 

sub-ensembles out of one long run, each sub-ensemble 

corresponding to one of the 4 possible couples of (a,b)-

values. They then determine P(1,2|a,b) within each sub-

ensemble by counting relative frequencies. But if we push 

the thought experiment a little farther, and if Bob and Alice 

would have sufficiently sophisticated means to control a 

and b, i.e. set a and b to either +1 or -1 at their free 

choice and keep these spins fixed, they could do 4 

consecutive experiments each corresponding to a fixed 

value of a and b (Ex2). Then the probabilities 

P(1,2|a,b) determined in Ex2 should be identical (at T ≠ 

0) to those obtained in Ex1: the dynamics (Eq. (4-5)) is the 

same. (Actually Ex2 corresponds to how the first Bell 

experiments were done; most modern tests implement the 

scheme of Ex1.) But let us here first focus on Ex1, which 

does not require additional assumptions.   

All probabilities just mentioned can be calculated. 

The Bell Inequality reads: 

                                                           
1 The interaction Jij is of course not a direct spin-spin interaction. 

The interaction is mediated through a force, in the case of 

magnetic Ising lattices the Coulomb potential, as is well explained 

in [14].  
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XBI  =  M(a,b) + M(a’,b) + M(a,b’) –     

              – M(a’,b’)  ≤  2    (a,a’,b,b’). 
    (6) 

For our experiment:  

 

 

M(a,b)  =  < 1.2 >a,b  

 = 
 11


 12

1.2.P(1,2|a,b) 

 =   P(+,+|a,b) + P(–,–|a,b) –   

                     –P(+,|a,b) – P(–,+|a,b).                                  

(7) 

 

Thus we can calculate XBI in (6) if we choose a ≡ b ≡ +1 

and a’ ≡ b’ ≡ –1. In (7) we have: 

 

  ),,( 21 baP    =  
),(

),,,( 21

ba

ba

P

P



   

                              ≡   
)(

)(

2

1





P

P ,                                     
(8) 

where 1 is a 4-spin configuration and 2 a 2-spin 

configuration. Any probability P() with  an m-spin 

configuration (m≤10) is given by: 

                    )(P  =  
m

P

102

)(

)(


 ,                                              (9) 

where the sum runs over the 210-m 10-spin configurations 

 that contain . P() is the Boltzmann factor in (5). 

Thus we find: 

 
P(,│a,b)  =  









8

2

6

1

2

)(

)(

2

)(

)(









H

H

e

e
   

(10) 

Probabilities (10) are analytically tractable if one assumes 

that all Jij are equal (all Jij = J for nearest neighbours) and 

all hi = 0. Below the sums 
ji,

run over the 13 first-

neighbour pairs (i,j) = (1,a), (1,3), (a,6),…, (2,b) as one 

reads on Fig. 1. In the sum 
843 ..., 

all spin variables 

(,,…,) run over the values +1 and -1. The numerator 

of Eq. (8) or (10) becomes: 

Z.P(1) =  

6

1

2

)(

)(



He  = 


843

,

...


ji

jiJ

e =  
jiJ

ji

e




 
843 ... ,

 

= )](sinh)[cosh(
843 ... ,

ji

ji

ji JJ 


    

        = )](sinh)[cosh(
843 ... ,

JJ
ji

ji 


      

=     )](tanh1[))(cosh(
843 ... ,

13 JJ
ji

ji 


    

 

=    ].1[
843 ... ,

  



ji

jiK   = 

).1)(.1)...(.1().1().1)(.1( 8256

...

3121

843

baba KKKKKK 


 
 

 

 

=   ).1)(.1( 21 ba KK    x  

3 4 8

2 2

1 3 6 1 3 6 1 3 6

...

11 3 3 3 3 3 3

1 3 4 5 6 7 8 2

{ [1 ( ...) ( ...) ...

... ]}

a a

a b

K K

K

  

          

         

      





  

(11) 

Here  and K are defined as follows:  = (cosh(J))13 and 

K = tanh(J). Grouping the terms in powers of K, one sees 

that the only non-vanishing terms are those in which all i 

appearing as indices (3,4,…,8) are squared. The 

lowest-order terms in which this happens are K3
a 2

6

2

31
 

and K3
b 2

8

2

52
. These terms correspond to a path 

linking the nodes 1-3-6-a and 2-5-8-b respectively (cf. Fig. 

1); the power of K corresponds to the number of steps or 

segments in the path. To identify all non-vanishing terms, 

we thus have to count 1) all direct2 paths linking nodes 1 

and 2, 1 and a (and 2 and b), 1 and b (and 2 and a) and a 

and b; 2) all closed loops (such as 3-4-7-6-3); and all 

products of such paths that have no segments in common 

(such as 1-3-6-a and 4-5-8-7-4). This is a straightforward 

though somewhat tedious procedure leading to: 

Z.P(1)   =  6

21 2)..1)(.1( ba KK    x 

x  ))(3())(2(1 21

64

21

753

baba KKKKK                                                     

64

21

75

21

86 2))(3()3( KKKKKK abba   . 

                                                                                         (12) 

Following the same procedure we find for the denominator: 

Z.P(2)   =  


821

,

...


ji

jiJ

e = ].1[
821 ... ,

  



ji

jiK  

= ]3534)510(1.[2. 108648648 KKKKKKKba      (13) 

Thus we obtain the desired expression for P(,│a,b) 

via Eq. (8), and XBI via (6-7). For instance,  

P(+,+│+,+) = 
]3101351[2

]368842[)1(
108642

8765432

KKKK

KKKKKKK



 ,  

                                                                                       (14) 

implying that for a lattice with homogeneous interactions Jij 

= J = 1 and  = 1, P(+,+│+,+) = 0.95 (J=1= are common 

values used in simulations, cf. [13]). XBI is a combination 

of such terms (Eq. (6-7)); it is a complex expression that 

can numerically be determined for given parameters (,J). 

E.g., for J=1=, XBI = –0.667, a value that satisfies the BI. 

The expression for XBI can be simplified in the weak-

interaction limit K << 1. In that case one finds: XBI ≈ –2 K2, 

satisfying the BI. 

Formulas (12-14) were verified by an algorithm 

                                                           
2 A direct path is one not intersecting itself. 
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that computes probabilities directly as sums of Boltzmann 

terms as in Eq. (10). Now, these numerical calculations 

reveal that if one introduces varying interaction constants Jij 

and local magnetic fields hi ≠ 0, one can strongly violate 

the BI, for a wide range of parameter values for , hi, Jij. 

The parameter values leading to XBI > 2 are standard values 

used in simulations; moreover one can maintain left-right 

symmetry in the lattice, such that e.g. Ja6 = Jb8. For instance 

for  = 1, hi {–1, 1, 3}, Jij {1, 2, 3, 4} one finds that 

XBI = 2.87 at its local maximum3. This value is larger than 

2√2 ≈ 2.83, the Tsirelson bound and the value for the 

singlet state in a real Bell experiment. The value XBI = 2.87 

is likely close to the absolute maximum for the lattice of 

Fig. 1 as argued below; but other lattices may lead to even 

larger values (cf. below). Other examples are given in [10]. 

 

3. Explanation: violation of Measurement Independence 

(MI) 

 If the BI is violated, at least one of the conditions 

MI, OI, PI does not hold. It appears that the resource for 

violation of the BI in our experiment on the lattice of Fig. 1 

is violation of MI, as we will now prove. To verify MI in 

Eq. (1c) analytically, we again assume all Jij = J and all hi = 

0. One then finds, for  ≡  ≡ (3,4,…8) and with the 

same notations as before: 

P(│a,b) ≡ P(,,...,│a,b) = 









821

,

,

21

...







ji

ji

ji

ji

J

J

e

e
  

= 

].1[

].1[

821

21

... ,

,

 















ji

ji

ji

ji

K

K
 

=   
].1[

)1)(1)(1)(1(].1[

821

21

... ,

225311

2,1,

 
















ji

ji

ba

ji

ji

K

KKKKK
 

=    

].1[

].1[])(1.[2

821 ... ,

2,1,

53

4

53

22

 














ji

ji

ji

jibaba

K

KKK
 

=    

].1[

].1[)1)(1.(2

821 ... ,

2,1,

5

2

3

22

 














ji

ji

ji

jiba

K

KKK
    .     (15) 

The term in K2 in the numerator (second last line) 

corresponds to the two paths in which 1 or 2 are squared 

(namely a-1-3 and b-2-5); the term in K4 to the product of 

these two paths; there are no other non-zero terms in the 

                                                           
3 In detail, one obtains XBI = 2.87 for following numerical values: 

h1 = 3, h3 = h4 = 1, h6 = ha = –1 (and identical values at symmetric 

nodes on the right); J1a = J13 = 2, J36 = J34 = 1, J47 = J67 = 4, J6a = 3 

(and identical values for symmetric interactions).  

sum over 1 and 2. Using (13) for the denominator, we 

obtain:  

P(,,...,│a,b) 

=  
]3534)510(1[2

].1[)1)(1)(1)(1(

108648646

,,2,1,

5

2

3

2

KKKKKKK

KKKKK

ba

baji

jibaba



 





.   

                                                                                         (16) 

This clearly implies that MI is violated, except for the 

trivial case K=0 (i.e. J=0). For instance: 

P(+++…+│a,b) 

=  
]3534)510(1[2

)1)(1)(1)(1)(1(
108648646

722

KKKKKKK

KKKKK

ba

baba







 .  (17)   

Thus one immediately sees that P(+++…+│+,+) ≠ 

P(+++…+│–,–), or numerically for =J=1 (i.e. K = 0.762): 

0.973 ≠ 0.0012. Again, numerical calculations can also be 

done by an algorithm that evaluates the sums over 

Boltzmann terms (first line in (15)). 

 In conclusion, in the lattice of Fig. 1 MI is always 

violated, for all non-trivial parameter values of  and J. 

Numerical simulations have shown that this conclusion 

remains valid when one introduces different interactions Jij 

and local fields hi over the nodes; and that it also holds for 

other 1-D and 2-D structures. We prove the latter claim for 

an arbitrary N-spin chain in Appendix 2. The latter 

calculation shows that MI is only asymptotically satisfied 

for N = ∞.  

To quantify to which degree a hidden-variable 

model for given {h, J} violates MI we use a measure 

introduced by Hall in [8-9]. We term this parameter for 

self-explaining reasons ‘measurement dependence’ (MD): 

 MD = 
)',,',(

sup
bbaa

   d.│(│a,b) –(│a’,b’)│.                                      (18a) 

Here 
)(

sup
X

(Y) indicates the supremum of Y when varying 

the parameters X over all their values. Thus one sees that 

MD = 0 is equivalent to MI. We analogously define 

‘Outcome Dependence’ (OD) and ‘Parameter Dependence’ 

(PD) [8-9]: 

 
OD =

),,(

sup
ba


21 ,

│P(1,2│a,b,) –   

                                 P(1│a,b,).P(2│a,b,)│ 

(18b) 

 PD  = 
),b,,a'(a, 2

sup


 │P(2│a,b,) – P(2│a’,b,) │                                          (18c) 

As an example, for the parameter set given in the former 

footnote, MD = 1.99 (its maximum possible value is 2), 

indicating that, with these parameters, we are likely close to 

the absolute maximum for XBI in the model [8-9]. 

Recall that while MI is always violated (MD ≠ 0), 

the BI only is for certain ranges of parameter values. 

Numerical simulations show that in 2-D structures the 
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tendency is the same as in 1-D structures (cf. Appendix 2): 

for fixed parameters {h, J}, MD decreases with increasing 

size of the lattice; in parallel XBI decreases. This is not 

really a surprise [8-10]: the correlation in the system 

decreases – which can also be simulated by decreasing the 

interaction strengths Jij. 

4. Spin-lattices and locality 

Are spin-lattices local ? To verify (the standard 

definition of) locality, we must calculate outcome 

independence (OI) and parameter independence (PI), or 

equivalently the Clauser-Horne factorability condition. 

Note that the conditions OI and PI in (1a-b) are indeed 

equivalent to the Clauser-Horne factorability condition 

[12], defined as: 

P(,│,a,b) = P(│,a).P(│,b)  for all  (,1,2). 

                                                                                         (20) 

In the literature one always assumes that locality is 

equivalent to satisfying Eq. (20). Let us here verify this 

condition analytically for the case Jij = J and hi = 0, as 

applied to Fig. 1. One finds, using a result obtained in Eq. 

(15) in the denominator: 

P(,│,a,b)  ≡  P(,│,a,b)  =  






21

,

,
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J
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e

e    
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].1[
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,
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On the other hand: 
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By symmetry we then immediately also have: 

          P(│,b) =  
)1.(2

)1)(1(

5

2

522


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b

b

K

KK



 .     (23)                                                                                    

Thus indeed Eq. (20) and OI and PI are satisfied. 

Numerical simulation shows that OI and PI are always 

exactly satisfied also for other geometries and for any 

parameter set (including variable Jij and hi ≠ 0), implying 

that these systems are local in the sense of Clauser-Horne 

[11-12]. Note that the fact that PI is satisfied, implies that 

the system is ‘non-signaling’ in information-theoretic 

jargon [4-9].  

Now, the result that the lattice satisfies Clauser-

Horne factorability could be expected, or is at least in 

agreement with the fact that we forced the interactions to be 

local: we took the interaction constants Jij = J = 0 beyond 

nearest-neighbors. Interestingly, if one artificially 

introduces a delocalized ‘left-right’ interaction, e.g. J12 or 

J1b ≠ 0, calculation shows that the Clauser-Horne 

factorability is not satisfied. This is for instance the case in 

the system of Fig. 2.  

● ●

● ●

●

●

●

●

3

1 2

a b

5

6 7

●

4

8
●

 

Fig. 2. A lattice with delocalized left-right interactions. 

Let us take here interactions Jij that are ≠ 0 for first and 

second neighbours. If for instance all hi=1, Jij=1 (first 

neighbours), Jij=0.5 (second neighbours), then one finds XBI 

= 2.32, MD = 0.03, PD = 0.78, and OD = 0.15 (cf. 

definitions (18)). In other words, none of the conditions OI, 

PI, MI holds.  

We reached identical conclusions for a variety of 

2-D lattices that are small enough to be numerically 

tractable. To further confirm our conclusions, we 

analytically investigated an arbitrary 1-D lattice in 

Appendix 2. This exercise is also useful to treat the case N 

→ ∞. 

5. Contradictions. 

 Let us now show that any reasonable explanation 

for above results leads to a conflict with generally accepted 

claims; it seems there is no explanation that is free of 

surprises and problems. Thus below we list and discuss the 

possible explanations (E1-E3) one could a priori invoke for 

the violation of the Bell-inequality in our test system. 
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 (E1). “The BI is violated because MI 

(measurement independence) is violated in the system”. 

Correct, the BI can only be derived if MI, OI and PI hold 

for the considered hidden-variable system; if one of these 

conditions is violated then the BI does not necessarily hold 

(it may or it may not, depending on the detailed system 

parameters); and in Section 3 it was proven that MI is 

always violated. So this interpretation is satisfactory; and 

yet it points towards a contradiction with a generally 

accepted wisdom. Indeed, in Section 1 we emphasized that 

MI is usually considered to be an ‘obvious’ assumption for 

Bell experiments, and that MI-violation amounts to 

superdeterminism and violation of free will. However, it 

seems that spin-lattices are an example of a physical system 

in which MI can be violated without any superdeterministic 

or conspiratorial mechanism, and thus in a manner that is 

fully compatible with free will. Even if this conclusion 

follows from a thought experiment, it seems that the 

important point is that the latter does not violate a physical 

law. Indeed, all above calculations and in particular BI-

violation and MI-violation remain valid for an experiment 

on spin-lattices in which Alice and Bob are manifestly free 

agents – namely experiment Ex2 discussed in Section 2 

(above Eq. (6)). In Section 2 we argued that all relevant 

probabilities for a lattice evolving ‘on its own’ (Ex1) are 

identical to those obtaining when free experimenters 

intervene on a and b (Ex2) (if T≠0). If the dynamics of the 

system (Eqs. (4) and (5)) remains unchanged in this second 

experiment, then it is intuitive that all relevant probabilities 

are identical in Ex1 and Ex2; an explicit proof is given in 

Appendix 1. Then, since MI (and the BI) are violated in 

Ex1, they also are in Ex2, an experiment in which Alice 

and Bob manifestly freely set the analyzer spins (a 

andb)4.  

If this reasoning, based on a thought experiment, 

can be generalized, this conclusion is essential. If there 

indeed exist local systems in nature in which MI and the BI 

can be violated without superdeterminism, their physics 

may be at the basis of theories completing quantum 

mechanics, much in the sense of ‘t Hooft’s Cellular 

Automaton Theory [17]. This claim will be further 

investigated in a forthcoming publication [15]. The key 

point is to use MI-violation (MD) as a resource for BI-

violation and reproduction of the quantum statistics. In this 

context it was recently shown that MD (compared to OD 

                                                           
4 This implies that we also have in these lattice models that 
P(a,b|) ≠ P(a,b|’) in general, again even if Alice & Bob may 

choose to set (a,b) in whatever sequence, with whatever 

frequency, they fancy. The point is that one should not understand 

this as a manifestation of a causal determination of the freely 

chosen (a,b) by . An infinity of such systems exist. Think e.g. of 

P(x|T) with x = half-life of a nucleus, T = experimental 

temperature (suppose that a few discrete values of x and T are 

sampled). If one performs 1000 experiments measuring x at 

different T's, P(T|x) ≠ P(T) in general even if one chooses T 

freely.  

and PD) is the strongest resource for reproduction of the 

quantum statistics in a Bell-experiment [8-9].  

(E2). “The BI is violated because spin-lattices are 

non-local systems”. Granted, spin-lattices are ‘extended’ 

and the Coulomb-interaction between the nodes ensures a 

‘communication’ between them – so these systems have 

something vaguely ‘delocalized’ about them. But in these 

lattices there surely are no non-local interactions in the 

sense of Bell, the sense that matters: local means ‘only 

involving subluminal, Lorentz-invariant interactions’. 

Moreover these systems are well modeled by assuming that 

the spin-spin (Coulomb) interaction is localized between 

nearest neighbours only. Most importantly, all spin-lattices 

satisfy the Clauser-Horne factorability condition (20) 

(Section 4). Thus, if one still maintains that spin-lattices are 

nonlocal then our result would be the first to prove that the 

generally accepted Clauser-Horne factorability is not a 

good definition of Bell-locality. 

 (E3). “The BI is violated because spin-lattices are 

quantum systems”. True, when Bell originally devised his 

theorem in [1] he was probably thinking in the first place of 

hidden variables that are classical, not quantum. Recall that 

the test system I consider is a hidden-variable model in the 

sense that it allows one to calculate the probabilities 

P(1,2|a,b), P(1|a) etc. by summing over probabilities as 

P(1|a, ) etc.; the hidden variables are the spins on the 

nodes in between (1, a) and (2, b), cf. Fig. 1. Now, 

nowhere in Bell’s derivation it is required that the hidden 

variables are classical and not quantum, as Bell explicitly 

mentions in a more recent article [2]. On p. 56 he says: “It 

is notable that in this argument nothing is said about the 

locality, or even localizability, of the variable . These 

variables could well include, for example, quantum 

mechanical state vectors, which have no particular 

localization in ordinary space time. It is assumed only that 

the outputs [1] and [2], and the particular inputs a and b, 

are well localized” [2]. Therefore the claim that the Ising-

lattice is a quantum system should not be a valid 

explanation of the above results. Moreover, the 

Hamiltonian (4) is usually termed classical: the spins are 

numbers and not operators as in the quantum Ising 

Hamiltonian [16]. Hamiltonian (4) also describes purely 

classical systems as lattice gases. 

Thus we see that none of the above explanations 

(E1-3) is free of controversy.  

6. Conclusion. 

 We presented here well-known model systems 

from statistical mechanics, namely Ising spin-lattices, in 

which the Bell inequality (BI) can be strongly violated even 

if they are Bell-local. Some of these lattices violate the Bell 

inequality more than the Tsirelson bound. We showed that 

any explanation of the above results invites fundamental 
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questions. The best explanation hinges on the fact that these 

lattices violate measurement independence (MI). But we 

argued that MI (and the BI) can be violated in these 

systems in a non-conspiratorial way: it appears that MI can 

be violated in an experiment in which Alice and Bob are 

manifestly free-willed, in contradiction with the claim that 

MI-violation amounts to superdeterminism and violation of 

free will.  

If this conclusion can be generalized, it may have 

weighty consequences. Indeed, if MI can be violated in 

real-world physical systems by mechanisms that are 

compatible with free will (and of course Bell-local), then 

searching for MI-violating theories may be a promising 

road for finding theories completing quantum mechanics. 

Such theories are evidently not affected by Bell’s no-go 

result, which presupposes MI. We explore this avenue 

further in [15]. Although we did not investigate here ‘t 

Hooft’s Cellular Automaton Theory for quantum 

mechanics [17] (which is still an unfinished research 

project), there yet might be a link: spin-lattices are cellular 

automata.   

The above results invite also other questions. What 

is the exact link with Tsirelson’s theorem ? What is the 

exact link with non-locality in quantum information theory 

? The Bell inequality is the essential safeguard for secure 

quantum communication. Some of the above systems allow 

to violate the Bell inequality more than the singlet state 

while being non-signaling (Section 4). They may thus be 

compared to results published in an information-theoretic 

context [4-9], in particular those involving correlation 

between the hidden variables and the settings (a,b) [5, 8-9]. 

For instance, our results confirm that it is essential for 

quantum communication that the particle source and the 

random number generators are sufficiently decorrelated [5]. 

What is the exact link with ‘non-local Popescu-Rohrlich 

boxes’ [4, 6-7], violating the Bell-inequality more than the 

singlet state while being non-signaling – just as certain 

types of spin-lattices ? We hope that also these information-

theoretic questions will be addressed in the context of spin-

lattices.  
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Appendix 1. ‘Free will’ and violation of MI in 

spin-lattices. 

Here we calculate the 16 probabilities 

P(1,2|a,b) ≡ P(1=1, 2=2 |a=a, b=b) (all i = ±1) 

needed to verify the BI for the experiment of Section 2. 

More precisely, we compare two experiments that Alice 

and Bob can do to determine these probabilities (Ex1 and 

Ex2 of Section 2).  

Ex1) In this experiment the ensemble evolves fully 

‘on its own’ (there is no intervention of Alice and Bob on 

any of the spins). Alice just measures 1 and a, Bob 2 and 

b for the whole ensemble of lattices. From this set of 

results they ‘postselect’ 4 sub-sets, each sub-set 

corresponding to one for the 4 possible couples of (a,b)-

values. They then compute the probabilities P(1,2|a,b) 

by counting relative frequencies within the sub-sets. They 

will find following values (these are Eqs. (8-10) in the main 

text):  

http://www.naturalspublishing.com/Journals.asp
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 Ex2) A second way to determine the 

P(1,2|a,b) is available to Bob and Alice if they can 

intervene on a and b. If they have sufficient technological 

means to control a and b (and keep their values fixed) 

they can do 4 consecutive experiments each corresponding 

to a given value of a and b. In that case and under the 

assumptions stipulated in Section 2, they will find: 
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where the asterisk reminds us that the probability is 

determined in an experiment in which a and b have a 

given value. With Eq. (5) of the main text we have:  
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Here the partition function Z* is the sum over all 

Boltzmann terms given that a and b are fixed, i.e.: 

   Z*  = 
8

2

2

)(

)(He
.                                                     (A4) 

Thus comparing (A2-A3) and (A1) proves that the 

probabilities P(1,2|a,b) determined in Ex1 and Ex2 are 

identical. This was to be expected: the dynamics is the 

same in both experiments. Also, this nicely reflects what 

happens in real Bell experiments. Finally, it is clear that 

any other relevant probability, such as ),( baP   

≡ ),( baP 
 is also identical in both experiments: the 

partition function Z* in Ex2 always corresponds to 

P(a,b), the denominator in Ex1. Ergo, the BI and MI can 

be violated in an experiment compatible with free will. 

Appendix 2. 1-D spin-lattices: test of MI, OI 

and PI. 

Here we investigate a 1-D spin-lattice with N+2 

spins, as in Fig. 4. We assume all Jij = J and all hi = 0, 

which makes analytical calculations tractable. 

      

1 a N3 2b. . .



 
Fig. 3. 1-D chain of N+2 spins. 

To verify whether MI holds, we calculate P(│a,b) for ≡ 

≡ (3,4,…N). First:
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Introducing analogous definitions of  and K as in the 2-D 

case (cf. main text), we now have:  
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The last step follows from the fact that in the sum 
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both 1 and 2 run over +1 and -1. For P2 we find 

likewise: 
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Grouping the terms in powers of K, one sees that in only 

one term all i appearing as indices are squared, namely in 

bNNa

NK  22

1

2

4

2

3

1 .... 

 . All other terms vanish, so that 

we obtain: 

2P   = 
Z

1
)1(

...
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321
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N
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K 


  = 
Z

1 )1(2. 1
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NN K   .                                                

                                                                                       (A8) 

Finally 

P(│a,b) = P(,...│a,b)  

= 
)1(2

)1)(1)...(1)(1(
12

1433

ba

NN

bNNNa

K

KKKK










 .       

                                                                                        (A9) 

Thus in general P(│a,b) ≠ P(│a’,b’). In other 



 Quant. Phys. Lett. 4, No. 1, 7-15 (2015)/ http://www.naturalspublishing.com/Journals.asp                                                                 15 
 

 

 

© 2015 NSP 

 Natural Sciences Publishing Cor. 
 

words, according to Eq. (1c) MI is violated (MD ≠ 0), 

except for the trivial case K=0, i.e. J=0, corresponding to a 

non-interacting lattice. For instance: 

P(,,...,│,)  =  
)1(2

)1()1(
12

23








NN

N

K

KK   

≠  
)1(2

)1()1(
12

23








NN

N

K

KK  =  P(,,...,│,).                  (A10) 

Notice that MD → 0 for N → ∞. Formulas as (A9-A10) 

can be checked by a short computer program. Such 

numerical calculations also show that nothing substantially 

alters by introducing different interactions Jij between sites 

and local fields hi ≠ 0.  

 For verifying the Clauser-Horne factorability 

condition (OI and PI), we need to calculate: 

P(,│,a,b) = 


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.                                       (A11) 

On the other hand, 

P(│, a)  =  













b

i

ii

i

ii

b

J

J

e

e









21

1

1

2
=  









b

b

bbNa

bbNa

KKK

KKK









21

2

).1)(.1)(.1(

).1)(.1().1(

21

21

 

= 
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).1( 1 aK  ,                                                            (A12)                                                             

and similarly 

P(│, b) = 
2

).1( 2 bK  , so that we do satisfy OI and 

PI, i.e. locality à la Clauser-Horne for an arbitrary N-chain.  
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