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Abstract: The phenomenology related to the exceptional groups afgsthieory will be reviewed. A known success of tgmodel
is an accurate prediction of the Weinberg angle. Spontansgmmetry breaking produces scalar and fermion fields thabtibelong
to the lepton and quark multiplets, and therefore, a desonpf the standard model is likely to be derived from a grafigess
dimension. A comparison with theories that contain comaatips, which are subgroups of the ten-dimensional Lorgraap, is
given. Following the reduction of a twelve-dimensionaldhg governing the ten-dimensional superstring and hétestring effective

xS (2)xU(1)

actions in ten dimensions, over the coset manitgf; =77 571

7> or eleven-dimesional supergravity over the compact spe&g,

the renormalization group flow of the couplings is found teegthe approximate value afn?6y only for a certain ratio of the
hypercharge to nonabelian gauge couplings, which is foamdduire modification at supersymmetric scales. The isgngeoups of
these coset spaces arise from geometrical consideratidiilg, a unique connection with the larger exceptional greumtroduced
through the intersection form of the manifold in four dimiems.
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1 Introduction fields. A large number of experiments have been
conducted to establish the Higgs boson mass for the

Anomaly cancellation at leading order in the powers Ofelectroweak modelq , and there is almost no evidence

the curvature in heterotic string theory can be achieveQOf additional massive Higgs scalar fields.
initially through the introduction of the grouf®0(32) or A check of the matter multiplets the reduction of the
Eg x Es. There are other anomalies that arise at theEs supergravity in ten dimensions to four dimensions
next-to-leading order, and the phenomenology of theorieyi€lds three massless scalar fiel&. [The existence of
with a residual symmetry may be determined. After thethese massless fields has not been confirmed. The
identification of one of the factors & with gravitational ~ fermions produced also do not match the lepton and quark
connection, the other factor @& may be reduced t&g multiplets of the standard model. There are too many
on compact spaces with SU(3) holonomy, preservingParticles arising from the symmetry breaking of this large
N = 2 supersymmetryl]. An Eg gauge symmetry also group. A description of the elementary particle
would be achieved by the dimensional reduction of theinteractions, however, does exist in a model derived from
heterotic String effective action over the coset Spacethe.C”ffOI’d algebra with a division algebra module that is
G2/U(3) [2). a direct sum of a tensor product &, H and O. The
Although the dimension of this group is larger than Clifford algebra corresponding to this tensor product is
the maximum dimension of groups with an effective R19 and the space of products of two elements is the
pointwise action on a four-dimensional manifol],[its ~ Lorentz groupSO(1,9) [7].
phenomenological viability is verified in the unique The problem of determining the symmetries relevant
theoretical prediction of the value of the Weinberg angleto elementary particle physics then may be considered.
[4]. This grand unified theory, however, contains many The Lorentz group this symmetry of Type Il superstrings,
symmetry breaking patterns which yield massive scalawhere exceptional groups are not necessary. The
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reduction of this symmetry to subgroups coinciding with 3 The Phenomenological Gauge Groups and
the standard model gauge groups also exists. By requiringhe Ee¢ Symmetry

invariance of certain elements and idempotent conditions
on the representation of the algebra, a projection tog

known gauge groups of the standard model is derivgd [ upersymmetric theories with aBie gauge symmetry

have been investigated with regard to phenomenological
viability. Given a choice of the intermediate gauge group
in the pattern of symmetry breaking, which may involve
more than one scald (], the number of multiplets of the
reduced groups can be evaluated from the inigil
2 Geometry and the Allowed Groups representations ds. o

It has been demonstrated that an asymmetric orbifold
in heterotic string theory yields a different number of
fermion and anti-fermion generationt]] , which is not
physically realistic. Different partition functions withn
Es symmetry can be constructed, although these models

remainder of space-time. However, since it is a pointyre not viable because certain gauge symmetries are not
particle, its location may be included in a continuous ;. 1uded L7

manifold, and the functional space on the complement It follows that the theories wittEg symmetry and

can be cpmpleted from a dense subse'g of th‘?‘t on th%upersymmetry may not form an adequate basis for
union, which is necessary for the a consistent limit of aphenomenology The symmetry breaking patternEgf
quantum theory. The conditions on a manifold, therefore, .o\ "o qescribed without supersymmetry because the
will be relevant for a point particle, and the gauge groupg,,ce  of the symmetry is nhot necessarlly a
action could be interpreted as a localization of a traresitiv supersymmetric field theory. Instead, it may be included
group action on a manifold at a point. Specifically, the j, ¢ isometry group of the subbu’ndle of the tangent
admission of the effective action of a compact group ofy\hqje 9 a ten-dimensional manifold and could arise

0 a limit on the di . £ th i ttfrom the intersection form of infinite-genus surfaces with
0 a limit on the dimension of the gauge groups acting at, ;s maoth houndaries 1.

tht?r:t(?ca?t?nl Ofigifo'nft part;lcilerh'l;ﬂe Sr)i/mmtitr}rl gf;rcr)u;?\?w?f The preference for a theory which does not have a
point-particie S of quantu eories, therelore, generalEg invariance in four dimensions follows from

be required to satisfy this bound. elementary particle phenomenology. Instead, it would be
It has been proven that the allowed effective compactsufficient to have a viable model based on symmetries

group actions on a four-dimensional manifold have that can be reduced to the standard model together with a

dimensions less than or equal to B).[The gauge groups mechanism for introducing the larger exceptional group

of the standard model all satisfy the inequality, whereassymmetry for a specific parameter suchsag8y. The

the dimensions of the exceptional groups exceed thidollowing results have been provehd:

bound. The potentials of a gauge theory may be identified o

with the components of a vector field in the vertical 1.Infinite-genus surfaces can have nonplanarends.

Subspace of a bundle. A connection in a fibre bundle is 2.The metric structure of the Inflnlte—genus surface is

given by a choice of the horizontal subspace of the total ~not smooth when the capacity of the ideal boundary is

space of the bundle at each point on the base manifold. Nonvanishing.

The tangent bundle of a four-manifol that may be  3.Equality of the integral over the wedge product of the

approximated in a local neighbourhood by a submanifold ~ curvature and its dual with the signature of Bp

of $* has a subbund€S x R, whereZ is a hypersurface homolpgy manifold yields a condition on the measure

in M, which can be described by a Pfaffian system of  Of the ideal boundary.

differential equations that have @, symmetry B]. The

maximal dimension of a group acting effectively on the _ SiNce a physical model in the four-dimensional
the bundleT = x R is 28. embedding space must preserve the intersection form in

the neighbourhood of the ideal boundary, it would be
An analogous bound for the maximal dimension of a compatible with anEg gauge symmetry. Therefore, this
pointwise effective compact group on a ten-dimensionalinvariance should be present locally for certain scatterin
manifold would be 55. Whilés,, F4 andSO(1,9) satisfy  parameters includingsin6y. The large-scale gauge
this inequality, the dimension ds may be considered to  group, however, would be determined by the Lagrangian
be too large for a pointwise effective action to be supportedand must be consistent with the elementary particle.

The location of a particle may be distinguished from the

by a ten—dimensicr)]nac; manifolc?I.fV\éith the inIClLUSigln of A The particle spectrum already can be derived from
tangent vectors, the dimension of the natural bundle on t fakm — VE)xV@)xU(1) o kKm 5 y(1) bundle over
manifold is increased to 190. The point-particle limit of ° ~_ SU(@>xUA/UA" ’ @)

gauge theories in ten dimensions then would aliaw Eg MG’ ngsuellght-dlmensmnal space may be compared to
and notEg x Eg. W&Xﬂ}(i)”' which gives the particle and
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antiparticle spectrum of the standard mod&B|[ The  where the sign of the charge af, dr andeg is chosen

wreath product of the isometry group of the latter cosetto be identical to that ofi , d. ande_, and therefore, the

space and; is isomorphic to the automorphism group of coefficients ofi’ andm'” are opposite to that o}Y for the

the spinor space of the formulation of the particle (u®)., (d°)_ and(e®)..

spectrum of the standard model with division algebra A matching with quantum numbers of the fermions in

modules. the standard model requires the embedding paramters to

Consider the manifoldM¥™ and let the charges satisfy & = —n1 since the quarks have charges that are

generating &J (1) group embedded in the tangent space,multiples of%e. From the relations = Q — %Y, 0 =Fm

U(1)" andU(1)” be reflects contributions of the same magnitude of the isospin
and half of the hypercharge for fixed electric charge. The
two solutions generating the quantum numbers are

Z=k (l \/§/\3> +4 (l 03> +m(iY) (1) 3K =&l = —nml, ' =£L"=—m".
2 2 The conditions for supersymmetry in the theory have
i i been proven to be
Z=K(Lvarg ) +¢(Las) +miiv) P
2 2 K¢
, : = 4)
[ [ . K-
Z' =K' =V3A " = m’(iY).
(2\/§ 8) +/ (203> + (I ) 3k//+£// m’
/ T
The quantum numbers of the first generation of quarks 3K +¢ m
and leptons14] is which will be valid singularly for the two classes of

solutions [L4].
Since the fermions in the standard model represent the

(u) ‘. Q= 2 Iy — 1.1 (2)  spinor content, there would be scalar fields in the ground
d/L 3 2 3 state by supersymmetry. However, the masses of these
4 0= 1 e 1 Y:} fields could be much larger through supersymmetry
- 3 3 2 3 breaking. The absence of couplings of these heavy fields
c 2 4 to the lighter fields cause the existence of composite
(U Q= 3 l3=0 Y= 3 particles to be less prevalent. The classical value of the
1 2 electromagnetic coupling in this model follows from
(d): Q=5 I3=0 Y=
3 3 9i2
1 a = I 5
(f) Ve Q=0 li=3 Y=-1 ' an ®)
] 1 o 3L 31]"
e Q=-1 |3:_§ Y=-1 5 a; 5ar ’
(€L Q=1 I3=0 Y=2 based on a relation between the electromagnetic and

_ hypercharge couplings, amd = g3sin?6y, whereg; and
since(u®). and(d®), transform under th@ representation g, represent the gauge couplingslbfl)y andSJ (2). At
of SU(3) while (¢°). belongs to the complex conjugate the solution withN = 2 supersymmetry with the quantum
represer;tation oU(1). Expi&ii?g) thﬁs(i)/fefrsi&r;/s/ in numbers of the standard model, in units with
terms of a representat_lt_)n X X s K2 — 811G = 1’ g2 _ 18nZ l.C72 Ko —K'e' 2\~ is
based on the decompositidn-> 2+ 1[14], singular. The breakling of suéérsyr;metry is r)le)cessary for
a valid formula forg;. Then the contribution tor from ail

u 1 1 1 1 } U } o } " ]
(d)f’z'émi“ém'z ot +em(> ®  would vanish and
1 1 1 1 1 1
+’z;_wf_m_m;_wu_z”+_m’> 2
2¢ 2" TaME Tt e a0y = 2_721 ©6)
1 1 1 1
+‘1:—k’+—é’+—n¥;7k”+—ﬂ”+—n~(’>
2 6 2 6 . .
1 L ande? = g3sin?Gy andsin6y — 1.
+’1?*V*5/’+5m?*‘(’*§f”+gm’> A renormalization group flow is necessary for a
1, 2.1, 2, 2 L2, derivation of the couplings and the masses. However, the
“R:IZ'EHE’”'E” +ém>+’1"" 3k +§m> relation betweere and g, continues to be valid at low
4 7’2_ 1,. 15,,>+‘1_0_0> energy scales. With the breaking of supersymmetry and
A A T the energy-dependence cl)f the cougli{giswill be finite
Ve oLy Lol LN | Yy 1 la Ly and let the contribution equalk- £=-. Then
(e)f’z’zk PR 2m>+’l’ 2l Mt 2m(> of; €d 5az
o 315 1
eR:’1(’,€’> a== —Qay = a 7
51+k3 2 1+k ° O
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and 1 Therefore, the other eight-dimensional geometry
sin26y = T (8) % may be considered with regard to the

generation of the quarks, leptons and antiparticles of the
The conventional value ofy will be achieved when standard model. Furthermore, there is a factorization,
k>~ 3. The value of theU(1l)y coupling g satisfies  G,/9U(3)x U (2)/U(1)xU(1)/(U(1)") which is
SM6y — 2955 ... Whenk ~ 3, the ratio is3, and the ~ diffeomorphic to S x £ x U(1)/U(1)", where the
, 11392 ) squashing parameter may be set equal to zero Wi
relation between the hypercharge and nonabelian gaugg jgentified with theSt fibre in the Hopf fibration. By the
charge couplings must be modified at Supersymmetric, e\ ious analysis, it would not be usual to identify1)”
scales. L with U (1), for embeddings orthogonal to the tangent
This theory must be distinguished from t8;  g¢pace. However, the manifold is  well-defined,
minimal supersymmetric standard models, which req“irenevertheless, and a reduction o < will have N = 1
stabilization of the moduli together with a stratificatioih o supersymmetry. There is no possibility of a coincidence
the pa:jrfticle §pec|trur.rtln135].h'l'|ypically, [lt7fl1isG_space;h IS of the topologies, with the exception GfP2 x S* x St,
seven-dimensional withG, holonomy fL7]. Given the Gy : : : -
difficulties in verifying the commutation of thEg gauge becaus (3)xU(1)"xU(1)" is & singular vam/aty, smc/fa.the
group elements with the holonomy group on this space@nk ofGz is 2 and the rank 08U (3) x U (1)" x U(1)" is
when the strings are interpreted to be Wilson loops, sincé
the  noncovariance under infinitesimal gauge
transformations modifies the condition for the centralizer
[18][19] and may be restored only with the introduction 4 Conclusion
of a scalar field 20}, the phenomenology derived from
this formalism is considerably different from the : : :
G,/ (3) solution to the heterotic string field equations IQ\?GE?OT enigii/ ?g:x?gnfrgg;;i%ﬁfsmg? tt::gor%rfgg tgf
pl]_%_ﬁgwm onents of the Ricci tensors of thM particle and antiparticle multiplets are not equal. The
. POl dimensionally reduceétg super-Yang-Mills theory over
manifolds are given by G,/ (3) yields results in an anomaly-frelgs theory
with N = 1 supersymmetry. With the scalar potential, it is

2

Rig = §a2 {1_6‘_2(4/”{/_4/’”{)2} g 9) possible to determine each of the symmetry breaking
4 12 patterns, which introduce, however, a larger number of
b? b? extra fields.

m ! ! 2| sm

Rin= ) [1_ 2_02(k,n'{ —K'n) }5 n The prgdiction of the Weinberg angle supportsEgn
b 4 model without supersymmetry. By contrast, the

R = —(Km' —K'm)2 + a_(g/n»{/ —0'm)2. phenomenological viability of a unified field theory with
2c2 8c? xS (2)xU (1)

compactification over the coset spa U <UD
If 3k = —m and X' = -, Km" = —%k/k” — K'm, results from the reduction of the fermions in the higher

and, 7 = =m and ¢ = =n?’, ¢'m’ = Trint’ = ¢'nd. dimensions to the known quarks and leptons and
Then R3; = 0 and the metric is not a Freund-Rubin antiparticles and the automorphism group of the spinor

solution. Nevertheless, a flat metric can be placed on théPace of the standard model. The tgfmo'ogy of this
parallelizable circle. compact mamf_old is .dlfferent that of th\q solutions
The equality of thez’ andZ” numbers follows from 10 eleven-dimensional =~ supergravity — or the

an identification of theU (1) and U(1)” factors. The ﬁigg}:g:g"ﬁ&ﬂogﬁb {irr]giti cl)_:ent] . gg’“gg g kt’ﬁéh p;?te'}cle
. . X X | yi |
resulting manifold| M = £3x2(2)xU{1)

1 .
SJ(Z)XU(l)()'WhICh can be spectrum, there is a difference in the value of the
equivalent to ars® bundle overs® or anS? x St bundle  couplings, especially since the solution with = 2
over  or have the topologiesCP? x S® x St or supersymmetry, necessary to produce the fermion
CP? x & x St x St, where the spherical topologies may multiplets in the former model, does not generate the
include squashed spheres. Although the last topologyalue of the Weinberg angle at electroweak scales.
does not admit a metric of the Freund-Rubin form, it is  The resolution to the problem of the precise value of
sufficient for the description of a configuration with sin?6y and the ratios of the couplings is provided by a
supersymmetry and a spinor sector consisting of thenew mechanism for the introduction of the exceptional
fermions in the standard model. gauge groupEg without affecting the physical gauge

It may be noted that, although there is a bosonicsymmetries derived from the compactification. The
sector which can be found by a supersymmetryinvariances of a physical theory defined over a four
transformation of the fermionic sector, it is more easily manifold, in which infinite-genus surfaces are embedded,
derived by dimensional reduction of the six-dimensionalmay be enlarged to a larger subgroup of Hahomology
Yang-Mills theory with gauge groupG, over S group of a nonsmooth structure occurring in the
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neighbourhood of the ideal boundary. The prediction of[20] S. Davis, Wilson Loop Variables and Global Lagrangjans

the Eg theory without supersymmetry is known for RFSC-13-06.

sinzew is known to coincide closely with the [21]T. R. Govindarajan, A. S. Joshipura, S. D. Rindani and U.
experimental value. Then, a consistent phenemonological Sarkar, Coset Spaces as Alternatives to Calabi-Yau Spaces i
theory may be derived from the compactification of the  the Presence of Gaugino Condensatlon,J. Mod. Phys. A2

string model. 797-829. _ .
[22] S. Davis, Coset Supersymmetry from Twelve Dimensions,

Il Nuovo Cim. 124B, 947- 958, (2014).
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