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Abstract: We state and prove a general summation identity. The identity is then applied to derive various summation formulas
involving the generalized harmonic numbers and related quantities. Interesting results, mostly new, are obtained forboth finite and
infinite sums. The high points of this paper are the discoveryof several previously unknown infinite summation results involving non-
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1 Introduction

Harmonic numbers have been studied since ancient times.
Numerous interesting results, especially infinite
summation involving these special numbers are scattered
in the literature. References [1,2,3,4,5] and further
references therein are good sources of information on the
subject. In this paper, the generalized harmonic number of
orderm is denoted byHN,m, defined as usual by

HN,m =
N

∑
r=1

1
rm ,

whereHN,1 = HN is the N − th harmonic number. The
generalized harmonic number converges to the Riemann
Zeta function,ζ (m):

lim
N→∞

HN,m = ζ (m), ℜ[m]> 1,

since

ζ (m) =
∞

∑
r=1

1
rm .

We define the generalizedassociatedharmonic number by

hN,m =
N

∑
r=1

1
(2r −1)m ,

with hN,1 ≡ hN and note that

lim
N→∞

hN,m = (1−2−m)ζ (m), ℜ[m]> 1.

To establish the connection betweenHN,m andhN,m we first
make the following elementary observation:

r

∑
s=1

fs =
(r−ar )/2

∑
s=1

f2s+
(r+ar )/2

∑
s=1

f2s−1 , (1.1)

where we have introduced the symbolar = r mod 2.

Taking fs= 1/sm in the identity (1.1) allows us to write

Hr,m =
1

2mH(r−ar )/2,m+
(r+ar )/2

∑
s=1

1
(2s−1)m ,

which gives, on evaluation atr = 2N and atr = 2N−1,
respectively,

N

∑
s=1

1
(2s−1)m = H2N,m−

1
2mHN,m = hN,m (1.2)

and

N

∑
s=1

1
(2s−1)m = H2N−1,m−

1
2mHN−1,m = hN,m. (1.3)
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In what follows, various summation formulas
involving H(r,m) and h(r,m) will be derived. Most of
these formulas are new and many known results are
particular cases of those obtained here. In particular we
will derive the following presumably previously unknown
summation identities, whose summands contain terms
quadraticin H(r,2), H(r,3) andh(r,2):

∞
∑

r=1

H2
r,2

r2
=

19
22680

π6+ζ (3)2,
∞
∑

r=1

H2
r,2

(r +1)2
=

59
22680

π6−ζ (3)2 ,

∞
∑

r=1

H2
r,2

r(r +1)
= π2 ζ (3)−10ζ (5),

∞
∑

r=1

H2
r,3

r(r +1)
= −

10π2

3
ζ (5)+35ζ (7)

and
∞

∑
r=1

h2
r,2

4r2−1
=

3π2

64
ζ (3) .

We will also deduce the following remarkable
formulas:

2
∞

∑
r=1

(−1)r−1Hr,n =

(

1−
1

2n−1

)

ζ (n), n 6= 1,

2
∞

∑
r=1

(−1)r−1hr,2n = β (2n) , 2
∞

∑
r=1

(−1)r−1hr,2n−1 =
|E2n−2|

22nΓ (2n−1)
π2n−1 ,

2
∞

∑
r=1

(−1)r−1Hr,nHr−1,n =−
(22n−1−1)

(2n)!
|B2n|π2n, 2

∞

∑
r=1

(−1)r−1hr,nhr−1,n =−β (2n) ,

whereBm is themthBernoulli number,Em is themthEuler
number and

β (m) =
∞

∑
s=1

(−1)s−1

(2s−1)m .

Special cases of the above alternating sums include:

2
∞

∑
r=1

(−1)r−1Hr,2 =
π2

12
, 2

∞

∑
r=1

(−1)r−1hr =
π
4
, 2

∞

∑
r=1

(−1)r−1hr,2 = G,

2
∞

∑
r=1

(−1)r−1H2
r =

π2

12
− log2 2, 2

∞

∑
r=1

(−1)r−1hr hr−1 =−G,

2
∞

∑
r=1

(−1)r−1h2
r =

π log2
4

,

whereG= β (2) is Catalan’s constant.

In section3 numerous finite summation formulas will
be derived.

2 Summation Formula

Theorem 1.Given a non-singular summand, frs,
r,s∈ Z

+, 1≤ r,s≤ N, N∈ Z
+, the following summation

identity holds:

N

∑
r=1

r

∑
s=1

( frs+ fsr) =
N

∑
r=1

frr +
N

∑
r=1

N

∑
s=1

fsr . (2.1)

The proof is by mathematical induction onN. The theorem
is obviously true forN = 1. Assume that the proposition is
true forN = K ∈ Z

+, so that

PK :
K

∑
r=1

r

∑
s=1

( frs+ fsr) =
K

∑
r=1

frr +
K

∑
r=1

K

∑
s=1

fsr .

We now show thatPK+1 is valid wheneverPK holds.

PK+1 :
K+1

∑
r=1

r

∑
s=1

( frs+ fsr) =
K+1

∑
r=1

frr +
K+1

∑
r=1

K+1

∑
s=1

fsr .

Proof.

K+1

∑
r=1

r

∑
s=1

{ frs+ fsr}

=
K

∑
r=1

r

∑
s=1

{ frs+ fsr}+
K+1

∑
s=1

{ fK+1,s+ fs,K+1}

=
K

∑
r=1

r

∑
s=1

{ frs+ fsr}+
K+1

∑
r=1

fK+1,r +
K+1

∑
s=1

fs,K+1

We now invokePK

=
K

∑
r=1

K

∑
s=1

fsr+
K

∑
r=1

frr +
K+1

∑
r=1

fK+1,r +
K+1

∑
s=1

fs,K+1

=
K

∑
r=1

K

∑
s=1

fsr+
K+1

∑
r=1

frr +
K

∑
r=1

K+1

∑
s=K+1

fsr+
K+1

∑
r=K+1

K+1

∑
s=1

fsr

=
K

∑
r=1

K+1

∑
s=1

fsr +
K+1

∑
r=K+1

K+1

∑
s=1

fsr+
K+1

∑
r=1

frr

=
K+1

∑
r=1

K+1

∑
s=1

fsr +
K+1

∑
r=1

frr

.

1.If the summandfrs is symmetric in the summation
indicesr ands, that is, if frs = fsr, then

2
N

∑
r=1

r

∑
s=1

frs =
N

∑
r=1

frr +
N

∑
r=1

N

∑
s=1

frs . (2.2)

2.If frs is factorable, that is iffrs = grhs, then

N

∑
r=1

{

gr

r

∑
s=1

hs

}

+
N

∑
r=1

{

hr

r

∑
s=1

gs

}

=
N

∑
r=1

gr hr +

(

N

∑
r=1

gr

)(

N

∑
r=1

hr

)

. (2.3)

In particular, if frs = grgs, then

2
N

∑
r=1

{

gr

r

∑
s=1

gs

}

=
N

∑
r=1

(gr)
2+

(

N

∑
r=1

gr

)2

. (2.4)

3.Settingfrs = gs in identity (2.1) gives

N

∑
r=1

r

∑
s=1

gs = (N+1)
N

∑
r=1

gr −
N

∑
r=1

rgr . (2.5)
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3 Applications

3.1 General finite summation formulas
involving the generalized harmonic numbers

Example 1.

Choosinggs = 1/sn in identity (2.5) gives

N

∑
r=1

Hr,n = (N+1)HN,n−HN,n−1 , (3.1)

while setting gs = Hs,n in identity (2.5) and using
identity (3.1) gives

2
N

∑
r=1

rHr,n = N(N+1)HN,n+HN,n−1−HN,n−2 . (3.2)

In particular

N

∑
r=1

Hr = (N+1)HN−N (3.3)

and

N

∑
r=1

rHr =
1
2

N(N+1)HN−
1
4

N(N−1) (3.4)

Taking gs = sHs,n in identity (2.5) and using
identities (3.1) and (3.2), we find

N

∑
r=1

r2Hr,n =
N(N+1)(2N+1)

6
HN,n

−
1
6

HN,n−1+
1
2

HN,n−2−
1
3

HN,n−3 .

(3.5)

In particular

N

∑
r=1

r2Hr =
N(N+1)(2N+1)

6
HN −

N(N−1)(4N+1)
36

.

(3.6)
If we setgs = Hs,n/sn in equation (2.5) and make use

of equation (3.25), we obtain the identity

N

∑
r=1

H2
r,n = (N+1)H2

N,n+HN,2n−1−2
N

∑
r=1

Hr,n

rn−1 . (3.7)

Upon settingn = 1 in equation (3.7) we obtain the
interesting result

N

∑
r=1

H2
r = (N+1)H2

N− (2N+1)HN+2N . (3.8)

Identity (3.1) appeared in [6] (Equation (43)) and is
listed in Wikipedia [3]. The particular cases,

identities (3.3) and (3.4) are also derived in [7],
(equation 2.36, page 41 and equation 2.57, page 56).

Using identity (1.1) we write

N

∑
r=1

Hr,n =
(N−aN)/2

∑
r=1

H2r,n+
(N+aN)/2

∑
r=1

H2r,n−
1
2nH(N+aN)/2,n

from which upon using identity (3.1), we get

2
N

∑
r=1

H2r,n = 2(N+1)H2N,n−H2N,n−1−hN,n . (3.9)

Example 2.

The choice of frs = (2r − 1)−ms−n in the identity (2.3)
leads to

N

∑
r=1

hr,m

rn +
N

∑
r=1

Hr−1,n

(2r −1)m = hN,mHN,n . (3.10)

On settingn= 0 in identity (3.10) we obtain

N

∑
r=1

hr,m =

(

N+
1
2

)

hN,m−
1
2

hN,m−1 . (3.11)

In particular,

N

∑
r=1

hr =

(

N+
1
2

)

hN−
N
2
. (3.12)

Using the identities (1.1) and (3.48) gives

2
N

∑
r=1

hr,n= 2
(N−aN)/2

∑
r=1

h2r,n+2
(N+aN)/2

∑
r=1

h2r,n−hN+aN,n+ h̄N+aN,n

which, together with identity (3.11) then gives

4
N

∑
r=1

h2r,n = 2(2N+1)h2N,n−h2N,n−1− h̄2N,n . (3.13)

Substituting gs = hs,m in identity (2.5) and using
identity (3.11) gives

N

∑
r=1

rhr,m =

(

N(N+1)
2

+
1
8

)

hN,m−
1
8

hN,m−2 . (3.14)

In particular

N

∑
r=1

rhr =

(

N(N+1)
2

+
1
8

)

hN −
N2

8
. (3.15)
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Takinggs = hs,n(2s−1)−n in identity (2.5) and using
the result (3.31) we find

2
N

∑
r=1

h2
r,n = (2N+1)h2

N,n+hN,2n−1−2
N

∑
r=1

hr,n

(2r −1)n−1 .

(3.16)
Now settingn= 1 in equation (3.16) we obtain

2
N

∑
r=1

h2
r = (2N+1)h2

N−2NhN+N . (3.17)

Example 3.

The choicefrs = HrHs in identity (2.3) gives

2
N

∑
r=1

{

Hr

r

∑
s=1

Hs

}

=
N

∑
r=1

H2
r +

(

N

∑
r=1

Hr

)2

. (3.18)

The use of identities (3.3), (3.4) and (3.8) in
identity (3.18) leads to

N

∑
r=1

rH 2
r =

N(N+1)
2

H2
N −

(N2−N−1)
2

HN +
N(N−3)

4
.

Similarly, the choicefrs = hrhs in identity (2.3) gives

2
N

∑
r=1

{

hr

r

∑
s=1

hs

}

=
N

∑
r=1

h2
r +

(

N

∑
r=1

hr

)2

. (3.19)

The use of identities (3.12), (3.15) and (3.17) in
identity (3.19) leads to

N

∑
r=1

rh2
r =

(2N+1)2

8
h2

N−
(2N+1)(2N−1)

16
hN +

N2

16
.

Example 4.

Let

fr,s =
xpryqs

(r +a)m(s+b)n .

frs is factorable, so we apply equation (2.3), which
gives immediately

N

∑
r=1

{

xpr

(r +a)m

r

∑
s=1

yqs

(s+b)n

}

+
N

∑
r=1

{

yqr

(r +b)n

r

∑
s=1

xps

(s+a)m

}

=
N

∑
r=1

(xpyq)r

(r +a)m(r +b)n +

(

N

∑
r=1

xpr

(r +a)m

)(

N

∑
r=1

yqr

(r +b)n

)

.

(3.20)

Various combinations of the parametersp,q,m,n,a,b
and the variablesx,y may be considered. As an example if
we choosep= 0= q, then we have the interesting result

N

∑
r=1

Hr+b,n

(r +a)m +
N

∑
r=1

Hr+a,m

(r +b)n

= HN+a,mHN+b,n−Ha,mHb,n+
N

∑
r=1

1
(r +a)m(r +b)n .

(3.21)

In deriving the identity (3.21) we made use of the
identity

s

∑
t=1

1
(t +q)p = Hs+q,p−Hq,p .

Interesting special cases of identity (3.21) include

N

∑
r=1

Hr,n

rm +
N

∑
r=1

Hr,m

rn = HN,m+n+HN,mHN,n , (3.22)

N

∑
r=1

Hr,n

(r +1)m +
N

∑
r=1

Hr,m

(r +1)n

= HN+1,nHN+1,m−HN,n+m−
1

(N+1)n(N+1)m

(3.23)

and

N

∑
r=1

Hr,n

(r +1)m +
N

∑
r=1

Hr,m

rn = HN+1,mHN,n . (3.24)

The particular casem = n in equations (3.22) and
(3.23) gives

2
N

∑
r=1

Hr,n

rn = HN,2n+H2
N,n (3.25)

and

2
N

∑
r=1

Hr,n

(r +1)n = H2
N,n−HN,2n+

2HN,n

(N+1)n . (3.26)

The particular case corresponding ton= 1 in (3.26) is
also found in [6] (page 850, Theorem 16, example).

Equation (3.62) of reference [1] corresponds to setting
n= 1 in identity (3.25).

Example 5.
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Substitution offrs = (2r + 2a− 1)−m(2s+ 2b− 1)−n

into equation (2.3) gives

N

∑
r=1

hr+b,n

(2r +2a−1)m +
N

∑
r=1

hr+a,m

(2r +2b−1)n

= hN+a,mhN+b,n−ha,mhb,n

+
N

∑
r=1

1
(2r +2a−1)m(2r +2b−1)n .

(3.27)

Note that in deriving the identity (3.27) we made use
of the identity

s

∑
t=1

1
(2t +2q−1)p = hs+q,p−hq,p .

Interesting special cases of identity (3.27) include

N

∑
r=1

hr,n

(2r −1)m +
N

∑
r=1

hr,m

(2r −1)n = hN,n+m+hN,mhN,n ,

(3.28)

N

∑
r=1

hr,n

(2r +1)m +
N

∑
r=1

hr,m

(2r +1)n

= hN+1,nhN+1,m−hN,n+m−
1

(2N+1)n(2N+1)m

(3.29)

and

N

∑
r=1

hr,n

(2r +1)m +
N

∑
r=1

hr,m

(2r −1)n = hN+1,mhN,n . (3.30)

The particular casem = n in equations (3.28) and
(3.29) gives

2
N

∑
r=1

hr,n

(2r −1)n = hN,2n+h2
N,n (3.31)

and

2
N

∑
r=1

hr,n

(2r +1)n = h2
N,n−hN,2n+

2hN,n

(2N+1)n . (3.32)

From identities (3.31) and (3.32) we have

N

∑
r=1

hr,n

(2r −1)n +
N

∑
r=1

hr,n

(2r +1)n = h2
N,n+

hN,n

(2N+1)n (3.33)

and
N

∑
r=1

hr,n

(2r −1)n −
N

∑
r=1

hr,n

(2r +1)n = hN,2n−
hN,n

(2N+1)n .

(3.34)
Again all the formulas derived in this example are new.

Example 6.

Substitution of frs = r−nzs into identity (2.3) gives,
after some rearrangement,

N

∑
r=1

zrHr,n =
1

1− z

N

∑
r=1

zr

rn −
zN+1

1− z
HN,n, z 6= 1, (3.35)

while substitution of frs = (2r − 1)−nz(2s−1) into
identity (2.3) yields

N

∑
r=1

z2r−1hr,n =
1

1− z2

N

∑
r=1

z2r−1

(2r −1)n −
z2N+1

1− z2hN,n, z 6= 1.

(3.36)

Example 7.

If we choosefrs = Hr,n/rnsm in the equation (2.3) we
obtain the following identity, valid for all complex
numbersn,m and positive integersN:

2
N

∑
r=1

Hr,nHr,m

rn +
N

∑
r=1

Hr,2n

rm +
N

∑
r=1

H2
r,n

rm

= 2
N

∑
r=1

Hr,n

rm+n +HN,mHN,2n+HN,mH2
N,n .

(3.37)

In particular, settingm = n and using also the
identity (3.25) we obtain the beautiful result

3
N

∑
r=1

H2
r,n

rn −3
N

∑
r=1

Hr,n

r2n = H3
N,n−HN,3n , (3.38)

or equivalently,

3
N

∑
r=1

H2
r,n

rn +3
N

∑
r=1

Hr,2n

rn = H3
N,n+3HN,2nHN,n+2HN,3n .

(3.39)
Note that since

Hr,n = Hr+1,n−
1

(r +1)n ,

identity (3.38) can also be written

3
N

∑
r=1

H2
r,n

(r +1)n +3
N

∑
r=1

Hr,n

r2n

= H3
N+1,n+2HN,3n+

2
(N+1)3n −

3HN+1,n

(N+1)2n .

(3.40)
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Addition of identities (3.38) and (3.40) gives

3
N

∑
r=1

H2
r,n

(r +1)n +3
N

∑
r=1

H2
r,n

rn = H3
N+1,n+H3

N,n+HN,3n

+
2

(N+1)3n −
3HN+1,n

(N+1)2n .

(3.41)

Example 8.

The choice frs = hr,n(2r −1)−n(2s−1)−m in
equation (2.3) yields the following identity, which holds
for all complex numbersn,m and positive integersN:

2
N

∑
r=1

hr,nhr,m

(2r −1)n +
N

∑
r=1

hr,2n

(2r −1)m +
N

∑
r=1

h2
r,n

(2r −1)m

= 2
N

∑
r=1

hr,n

(2r −1)m+n +hN,mhN,2n+hN,mh2
N,n .

(3.42)

In particular, settingm = n and using also the
identity (3.31) we obtain the interesting result

3
N

∑
r=1

h2
r,n

(2r −1)n −3
N

∑
r=1

hr,n

(2r −1)2n = h3
N,n−hN,3n , (3.43)

or equivalently,

3
N

∑
r=1

h2
r,n

(2r −1)n +3
N

∑
r=1

hr,2n

(2r −1)n = h3
N,n+3hN,2nhN,n+2hN,3n .

(3.44)

Example 9.

In this example we derive a couple of alternating
summation formulas.

First we introduce the notations

H̄p,q =
p

∑
s=1

(−1)s−1

sq andh̄p,q =
p

∑
s=1

(−1)s−1

(2s−1)q . (3.45)

Then, from the identity (1.1) we have

H̄N,n =−
1
2nH(N−aN)/2,n+h(N+aN)/2,n ,

from which it follows that

H̄2N,n =−
1
2nHN,n+hN,n (3.46)

and

H̄2N−1,n =−
1
2nHN−1,n+hN,n . (3.47)

Similarly, using the identity (1.1) and the definitions of
h andh̄, it is straightforward to establish that

2
N

∑
r=1

1
(4r −1)n

= h2N,n− h̄2N,n

=
2(−1)n−1

4nΓ (n)

{

ψn−1

(

N+
3
4

)

−ψn−1

(

3
4

)}

(3.48)

and

2
N

∑
r=1

1
(4r −3)n

= h2N,n+ h̄2N,n

=
2(−1)n−1

4nΓ (n)

{

ψn−1

(

N+
1
4

)

−ψn−1

(

1
4

)}

,

(3.49)

whereψn(x) is thenthpolygamma function defined by

ψn(x) =
dψ(x)

dxn

where

ψ(x) =
d
dx

logΓ (x)

is the digamma function andΓ (x) is the gamma function.
Using frs = (−1)s−1r−n in identity (2.3) we obtain

N

∑
r=1

(−1)r−1Hr,n =−
1
2nHN−aN

2 ,n
+aNHN,n (3.50)

from which we get the interesting results

2N

∑
r=1

(−1)r−1Hr,n =−
1
2nHN,n (3.51)

and

2N−1

∑
r=1

(−1)r−1Hr,n = hN,n . (3.52)

Similarly using frs = (−1)s−1(2r − 1)−n in
identity (2.3) gives

N

∑
r=1

(−1)r−1hr,n =−
(N−aN)/2

∑
r=1

1
(4r −1)n +aNhN,n ,

which leads to

2
2N

∑
r=1

(−1)r−1hr,n = h̄2N,n−h2N,n (3.53)

and

2
2N−1

∑
r=1

(−1)r−1hr,n = h̄2N,n+h2N,n . (3.54)
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The particular case corresponding ton = 1 in
identity (3.51) is also derived in [6] (Equation (39)).

Using frs = (−1)r−1(−1)s−1r−n in identity (2.3)
yields

2N

∑
r=1

(−1)r−1H̄r,n = HN,n
/

2n (3.55)

and

2N−1

∑
r=1

(−1)r−1H̄r,n = hN,n . (3.56)

Taking frs = (−1)(s−1)Hs,nr−m in identity (2.3) gives

−
1

2m+n

(N−aN)/2

∑
r=1

Hr,n

rm +
(N+aN)/2

∑
r=1

hr,n

(2r −1)m

+
N

∑
r=1

(−1)r−1Hr,nHr,m

=
N

∑
r=1

(−1)r−1Hr,n

rm +HN,m

N

∑
r=1

(−1)r−1Hr,n .

(3.57)

Interchangingm and n in identity (3.57), adding the
resulting identity to identity (3.57) and using
identities (3.22) and (3.28) we obtain

−
1

2m+n

(

H(N−aN)/2,n+m+H(N−aN)/2,nH(N−aN)/2,m
)

+h(N+aN)/2,n+m+h(N+aN)/2,nh(N+aN)/2,m

+2
N

∑
r=1

(−1)r−1Hr,nHr,m

=
N

∑
r=1

(−1)r−1
(

Hr,n

rm +
Hr,m

rn

)

+HN,m

N

∑
r=1

(−1)r−1Hr,n

+HN,n

N

∑
r=1

(−1)r−1Hr,m,

(3.58)

from which we finally get

2N

∑
r=1

(−1)r−1
(

2Hr,nHr,m−
Hr,n

rm −
Hr,m

rn

)

=
1

2m+n (HN,m+n+HN,mHN,n)

−hN,m+n−hN,mhN,n

−
H2N,mHN,n

2n −
H2N,nHN,m

2m

(3.59)

and

2N−1

∑
r=1

(−1)r−1
(

2Hr,nHr,m−
Hr,n

rm −
Hr,m

rn

)

=
1

2m+n (HN−1,m+n+HN−1,mHN−1,n)

−hN,m+n−hN,mhN,n

+H2N−1,mhN,n+H2N−1,nhN,m.

(3.60)

In particular

2
2N

∑
r=1

(−1)r−1rHr,n = 2hN,n−1−hN,n−2NH2N,n−H2N,n−1 ,

(3.61)

2
2N−1

∑
r=1

(−1)r−1rHr,n

= 2hN,n−1−hN,n+2NH2N−1,n−H2N−1,n−1 ,
(3.62)

2N

∑
r=1

(−1)r−1
(

2H2
r,n−2

Hr,n

rn

)

=
HN,2n

22n −hN,2n−H2
2N,n

(3.63)
and

2N−1

∑
r=1

(−1)r−1
(

2H2
r,n−2

Hr,n

rn

)

=
HN−1,2n

22n −hN,2n+H2
2N−1,n .

(3.64)

Corresponding to identities (3.63) and (3.64) we have,
upon takingfrs = (−1)(s−1)hs,n(2r −1)−n in identity (2.3)

2
2N

∑
r=1

(−1)r−1
(

h2
r,n−

hr,n

(2r −1)n

)

=−h2
2N,n− h̄2N,2n

(3.65)
and

2
2N−1

∑
r=1

(−1)r−1
(

h2
r,n−

hr,n

(2r −1)n

)

= h2
2N−1,n− h̄2N−1,2n .

(3.66)

3.2 Evaluation of infinite sums

In the limit N → ∞ in the above summation results and
sometimes in combination with known results, it is
possible to evaluate certain infinite sums. We now present
some examples.
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Example 10.

In the limit N → ∞, equations (3.38), (3.39) and (3.70)
become

3
∞

∑
r=1

H2
r,n

rn −3
∞

∑
r=1

Hr,n

r2n = ζ (n)3− ζ (3n), n 6= 1, (3.67)

3
∞

∑
r=1

H2
r,n

rn +3
∞

∑
r=1

Hr,2n

rn = ζ (n)3+3ζ (n)ζ (2n)+2ζ (3n),

n 6= 1
(3.68)

and

3
∞

∑
r=1

H2
r,n

rn +3
∞

∑
r=1

H2
r,n

(r +1)n = 2ζ (n)3+ ζ (3n), n 6= 1.

(3.69)
Evaluating identity (3.67) atn= 2 we obtain

∞

∑
r=1

H2
r,2

r2 =
19

22680
π6+ ζ (3)2 , (3.70)

after using the known result:

∞

∑
r=1

Hr,2

r4 = ζ (3)2−
π6

2835
, ([8], (B.9a), [2]) .

Now using the result (3.70) in identity (3.69), we also
have

∞

∑
r=1

H2
r,2

(r +1)2 =
59

22680
π6− ζ (3)2 . (3.71)

Since

H2
r−1,n =

(

Hr,n−
1
rn

)2

= H2
r,n−

2Hr,n

rn +
1

r2n ,

we have

∞

∑
r=1

H2
r,2

r(r +1)
= 2

∞

∑
r=1

Hr,2

r3 − ζ (5) ,

and
∞

∑
r=1

H2
r,3

r(r +1)
= 2

∞

∑
r=1

Hr,3

r4 − ζ (7) ,

from which upon using the known results

2
∞

∑
r=1

Hr,2

r3 = π2ζ (3)−9ζ (5), (Eq. 3.3b of [9]) ,

and

∞

∑
r=1

Hr,4

r3 =
π4

90
ζ (3)−

5π2

3
ζ (5)−17ζ (7), (Eq. 3.5d of [9]) ,

we obtain

∞

∑
r=1

H2
r,2

r(r +1)
= π2ζ (3)−10ζ (5)

and

∞

∑
r=1

H2
r,3

r(r +1)
= 35ζ (7)−

10π2

3
ζ (5) .

Example 11.

In the limitN→∞, equations (3.43) and (3.44) become

3
∞

∑
r=1

h2
r,n

(2r −1)n −3
∞

∑
r=1

hr,n

(2r −1)2n

= (1−2−n)3ζ (n)3− (1−2−3n)ζ (3n) ,

(3.72)

and

3
∞

∑
r=1

h2
r,n

(2r −1)n
+3

∞

∑
r=1

hr,2n

(2r −1)n

= (1−2−n)3ζ (n)3+3(1−2−n)(1−2−2n)ζ (n)ζ (2n)+2(1−2−3n)ζ (3n) .
(3.73)

Example 12.

Dividing through identity (3.25) by rm, summing and
taking limit asN → ∞ gives

2
∞

∑
r=1

{

1
rm

r

∑
s=1

Hs,n

sn

}

=
∞

∑
r=1

Hr,2n

rm +
∞

∑
r=1

H2
r,n

rm , m 6= 1.

(3.74)
In particular (m,n) = (2,1) and (m,n) = (2,2)

in (3.74) give, respectively,

2
∞

∑
r=1

{

1
r2

r

∑
s=1

Hs

s

}

=
∞

∑
r=1

Hr,2

r2 +
∞

∑
r=1

H2
r

r2 (3.75)

and

2
∞

∑
r=1

{

1
r2

r

∑
s=1

Hs,2

s2

}

=
∞

∑
r=1

Hr,4

r2 +
∞

∑
r=1

H2
r,2

r2 . (3.76)

Using equation (3.84) evaluated atn = 2 and the
known result

∞

∑
r=1

H2
r

r2 =
17
360

π4, ([4], [1]) ,

in equation (3.75) we obtain

∞

∑
r=1

{

1
r2

r

∑
s=1

Hs

s

}

=
π4

30
. (3.77)

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theor.4, No. 1, 49-60 (2016) /www.naturalspublishing.com/Journals.asp 57

Using the result (3.70) above and the known result

∞

∑
r=1

Hr,4

r2 =
37

11340
π6− ζ (3)2, (Formula (42) of [2]) ,

in equation (3.76) we obtain

∞

∑
r=1

{

1
r2

r

∑
s=1

Hs,2

s2

}

=
31

15120
π6 . (3.78)

Equation (3.77) was also derived in reference [1].

Example 13.

In the limit N → ∞ in equation (3.35) of Example6,
we get the known result (Formula (36) of [2])

∞

∑
r=1

zrHr,n =
1

1− z
Lin(z) , |z| < 1, (3.79)

whereLin is the polylogarithm function.

At n= 1 we have

∞

∑
r=1

zrHr =−
log(1− z)

1− z
, |z|< 1.

Other interesting particular cases are

∞

∑
r=1

Hr,2

2r =
π2

6
− log22

and

∞

∑
r=1

Hr,3

2r =
7
4

ζ (3)−
1
6

π2 log2 2+
1
3

log3 2.

Using the recurrence relation of the polygamma
function

ψm(z+1) = ψm(z)+
(−1)mm!

zm+1 (3.80)

and the identity

ψm(z)
(−1)m+1m!

= ζ (m+1)−Hz−1,m+1, (3.81)

equation (3.79) can be written in terms of the
polygamma function as

∞

∑
r=1

zrψn−1(r) = (−1)(n−1)(n−1)!
z

1− z
[Lin(z)− ζ (n)] ,

n> 1, |z|< 1.

In the limit N → ∞, identity (3.36) becomes

2
∞

∑
r=1

z2r−1hr,n =
Lin(z)−Lin(−z)

1− z2 , |z|< 1.

In particular,

2
∞

∑
r=1

z2r−1hr =
1

1− z2 log

(

1+ z
1− z

)

, |z|< 1.

Example 14.

In the limit of N → ∞, equation (3.20) becomes

∞

∑
r=1

{

xpr

rm

r

∑
s=1

yqs

sn

}

+
∞

∑
r=1

{

yqr

rn

r

∑
s=1

xps

sm

}

= Lim+n (x
pyq)+Lim(x

p)Lin(y
q) ,

(3.82)

whereLi is a polylogarithm function.

Settingp= 0= q in equation (3.82) or taking limit as
N → ∞ directly in equation (3.22) we have

∞

∑
r=1

Hr,n

rm +
∞

∑
r=1

Hr,m

rn = ζ (m+n)+ ζ (m)ζ (n), n,m 6= 1,

(3.83)
The use of equations (3.80) and (3.81) allows

equation (3.83) to be written in terms of the polygamma
function as

(−1)n

(n−1)!

∞

∑
r=1

ψn−1(r)
rm +

(−1)m

(m−1)!

∞

∑
r=1

ψm−1(r)
rn

= ζ (m+n)+ ζ (m)ζ (n), n,m 6= 1.

The particular casem= n in equation (3.83) gives

2
∞

∑
r=1

Hr,n

rn = ζ (2n)+ ζ (n)2, n 6= 1. (3.84)

The result equation (4.20) of reference [10]
corresponds to an evaluation of the identity (3.84) at
n= 2.

Equation (3.84) is listed as Formula (43) in [2].

Example 15.

In the limit N → ∞, identities (3.28) and (3.31) of
Example5 become

∞

∑
r=1

hr,n

(2r −1)m +
∞

∑
r=1

hr,m

(2r −1)n

= (1−2−m−n)ζ (m+n)+ (1−2−m)(1−2−n)ζ (m)ζ (n),
n,m 6= 1,

(3.85)
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and

2
∞

∑
r=1

hr,n

(2r −1)n

= (1−2−2n)ζ (2n)+ (1−2−n)2ζ (n)2, n 6= 1,
(3.86)

while identities (3.29) and (3.30) become

∞

∑
r=1

hr,n

(2r +1)m +
∞

∑
r=1

hr,m

(2r +1)n

= ζ (m)ζ (n)(1−2−m)(1−2−n)

− ζ (m+n)(1−2−m−n)

(3.87)

and

∞

∑
r=1

hr,n

(2r +1)m
+

∞

∑
r=1

hr,m

(2r −1)n
= ζ (m)ζ (n)(1−2−m)(1−2−n) .

(3.88)
In particular

2
∞

∑
r=1

hr,n

(2r +1)n = ζ (n)2(1−2−n)2− ζ (2n)(1−2−2n)

(3.89)
and

∞

∑
r=1

hr,n

(2r +1)n +
∞

∑
r=1

hr,n

(2r −1)n = ζ (n)2(1−2−n)2 . (3.90)

Example 16.

The result equation (3.8c) of reference [9] implies that

∞

∑
r=1

hr,3

(2r −1)2 =
π2

16
ζ (3)+

31
64

ζ (5) , (3.91)

from which, upon using identity (3.85), we get

∞

∑
r=1

hr,2

(2r −1)3 =
3π2

64
ζ (3)+

31
64

ζ (5) . (3.92)

From identities (3.91) and (3.92) and using
identity (3.88) we get

∞

∑
r=1

hr,3

(2r +1)2 =
π2

16
ζ (3)−

31
64

ζ (5)

and

∞

∑
r=1

hr,2

(2r +1)3 =
3π2

64
ζ (3)−

31
64

ζ (5) .

Since

h2
r−1,2

=

(

hr,2−
1

(2r −1)2

)2

= h2
r,2−

2hr,2

(2r −1)2 +
1

(2r −1)4 ,

we also have

2
∞

∑
r=1

h2
r,2

4r2−1
= 2

∞

∑
r=1

hr,2

(2r −1)3 − (1−2−5)ζ (5) ,

from which we get, upon using equation (3.92)

∞

∑
r=1

h2
r,2

4r2−1
=

3π2

64
ζ (3) . (3.93)

Example 17.

Letting N → ∞ in identity (3.10) of Example2 we
obtain

∞

∑
r=1

hr,m

rn +
∞

∑
r=1

Hr−1,n

(2r −1)m =(1−2−m)ζ (m)ζ (n), n 6= 1, m 6= 1.

(3.94)
In particular,

∞

∑
r=1

hr,n

rn +
∞

∑
r=1

Hr−1,n

(2r −1)n = (1−2−n)ζ (n)2, n 6= 1.

(3.95)

Example 18.

From the definition ofH̄ and the identities (3.46) and
(3.47) it follows that

lim
N→∞

H̄N,n =











log2, n= 1

(

1− 1
2n−1

)

ζ (n), n 6= 1
. (3.96)

Hence, from the identities (3.51) and (3.52) we obtain

2
∞

∑
r=1

(−1)r−1Hr = log2 (3.97)

and

2
∞

∑
r=1

(−1)r−1Hr,n =

(

1−
1

2n−1

)

ζ (n) , n 6= 1. (3.98)

Similarly from identities (3.53) and (3.54) and using
identities (3.48) and (3.49) we have

2
∞

∑
r=1

(−1)r−1hr,n =
∞

∑
r=1

1
(4r −3)n −

∞

∑
r=1

1
(4r −1)n

=
(−1)n

4nΓ (n)

{

ψn−1

(

1
4

)

−ψn−1

(

3
4

)}

.

(3.99)
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In reference [11] it was established that

ψ2n

(

1
4

)

−ψ2n

(

3
4

)

=−π(2π)2n|E2n|

and

ψ2n−1

(

1
4

)

−ψ2n−1

(

3
4

)

= (2n−1)!24nβ (2n) ,

where

β (m) = lim
N→∞

h̄N,m =
∞

∑
s=1

(−1)s−1

(2s−1)m

andEm is themthEuler number defined by the exponential
generating function

2
et +e−t =

∞

∑
m=0

Emtm

m!
.

Using these results in identity (3.99) we obtain

2
∞

∑
r=1

(−1)r−1hr,2n = β (2n) (3.100)

and

2
∞

∑
r=1

(−1)r−1hr,2n−1 =
|E2n−2|

22nΓ (2n−1)
π2n−1 . (3.101)

In particular

2
∞

∑
r=1

(−1)r−1hr =
π
4
, (3.102)

2
∞

∑
r=1

(−1)r−1hr,2 = G (3.103)

and

2
∞

∑
r=1

(−1)r−1hr,3 =
π3

32
. (3.104)

From identities (3.59) and (3.60) we have

∞

∑
r=1

(−1)r−1
(

2Hr,nHr,m−
Hr,n

rm −
Hr,m

rn

)

=

−

(

1−
1

2m+n−1

)

ζ (m+n) .

(3.105)

Settingm= n in identity (3.105) yields

2
∞

∑
r=1

(−1)r−1
(

H2
r,n−

Hr,n

rn

)

= 2
∞

∑
r=1

(−1)r−1Hr,nHr−1,n

=−

(

1−
1

22n−1

)

ζ (2n) .

(3.106)

Thus

2
∞

∑
r=1

(−1)r−1Hr,nHr−1,n =−
(22n−1−1)

(2n)!
|B2n|π2n ,

(3.107)
whereBm is themthBernoulli number defined by

t
et −1

=
∞

∑
m=0

Bm
tm

m!
.

In particular

2
∞

∑
r=1

(−1)r−1HrHr−1 = 2
∞

∑
r=1

(−1)r−1H2
r −2

∞

∑
r=1

(−1)r−1 Hr

r

=−
π2

12
.

(3.108)

From identity (3.108) and the known result

2
∞

∑
r=1

(−1)r−1Hr

r
=

π2

6
− log22, ([12], equation 4.2c)

we obtain

2
∞

∑
r=1

(−1)r−1H2
r =

π2

12
− log22. (3.109)

Setting m = 0 in identity (3.105) and using
identities (3.96) and (3.98) we obtain

2
∞

∑
r=1

(−1)r−1rHr,2 =−
π2

24
+ log2

and

2
∞

∑
r=1

(−1)r−1rHr,n =

(

1−
1

2n−2

)

ζ (n−1)

−
1
2

(

1−
1

2n−1

)

ζ (n) , n 6= 1,n 6= 2.

From identities (3.65) and (3.66) we have

2
∞

∑
r=1

(−1)r−1hr,nhr−1,n

=
1

42nΓ (2n)

(

ψ2n−1

(

3
4

)

−ψ2n−1

(

1
4

))

=−β (2n) .

In particular

2
∞

∑
r=1

(−1)r−1hrhr−1 =−G. (3.110)

From the corrected version of equation 4.5c of [12]

2
∞

∑
r=1

(−1)r−1 hr

2r −1
=

π log2
4

+G
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and the identity (3.110) we deduce that

2
∞

∑
r=1

(−1)r−1h2
r =

π log2
4

. (3.111)

4 Conclusion

We have given and proved a summation identity which we
subsequently applied in its various forms to obtain mostly
new finite and infinite summation formulas involving the
generalized harmonic numbers.
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