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Abstract: We state and prove a general summation identity. The igeigtithen applied to derive various summation formulas
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1 Introduction with hy 1 = hy and note that

Harmonic numbers have been studied since ancient times. lim by = (1=27")¢(m),  Ofm > 1.
Numerous interesting results, especially infinite

summation involving these special numbers are scatteredo establish the connection betweéq, andhy m we first
in the literature. Referencesl,P,3,4,5] and further  make the following elementary observation:
references therein are good sources of information on the

subject. In this paper, the generalized harmonic number of r (r-ar)/2 (r+ar)/2
ordermis denoted by m, defined as usual by Y= Y fast Y fasa, (1.1)
' s=1 s=1 s=1
T N1 where we have introduced the symbpk=r mod 2.
N,m = Z r_m )
r=1

Taking fs = 1/s"in the identity (. ) allows us to write
whereHy 1 = Hy is the N —th harmonic number. The

generalized harmonic number converges to the Riemann H 1 H (r+ar)/2 1
Zeta function (m): rm= om (r—ar)/2zm+ ; (2s—1)m’
lim Hym=¢(m),  Ofm| > 1, which gives, on evaluation at= 2N and atr = 2N — 1,
respectively,
since
1 N 1 1
¢(m) = r—1r_m . Szlm = Honm— FHN,m =hnm (1.2)

We define the generalizegsociatecharmonic number by  5nq

N 1 1
ZLM =Hon_tm— z=Hn—im=hym.  (1.3)
&

N
i m = r; (2r—1m’ 2m
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In what follows,
involving H(r,m) and h(r,m) will be derived. Most of

various summation formulas The proofis by mathematical induction dh The theorem
is obviously true folN = 1. Assume that the proposition is

these formulas are new and many known results argrye forN = K ¢ Z*, so that
particular cases of those obtained here. In particular we

will derive the following presumably previously unknown

summation identities, whose summands contain terms

quadraticin H(r,2), H(r,3) andh(r, 2):

2 2
H Hi2

< M2 19 2 59 2
r;TZ 22680”S+Z(3) rzl (r+1)2 22680”S O
i —22(3)-102(5 WH'2’3—1°"25357
2 g =@ -10205), DN BR AU
and
2
& hr72 3T[2 3
r;4r2—1 63 <

We will also deduce the following remarkable
formulas:

) 2<7l>r—1Hm _ (1, 2%) Z(n), n#£1,
25 (-1 o= BE). 23 (1) s gt
2 3 (*1)r71HrnHr71n: (2 i l> ‘BZn‘ n2n 2 S (*1)r71hrnhr—1n: 7[3(2n) 5
= i i=-si

whereBy, is themthBernoulli numberEy, is themthEuler
number and

oyt
B(m) - SZ]- (23_ 1)m

Special cases of the above alternating sums include:

2% (C) M= T 25 () = T 25 (1) th,=G
SV =T 25 (U= G 23 (1) g
25 (71)”1H2:f40922 2 Y hh 1 =-G
U= g2 25 (1 =G,

)ih? = 7T|092

25 (-1
whereG = 3(2) is Catalan’s constant.
In section3 numerous finite summation formulas will
be derived.
2 Summation Formula

Theorem 1.Given a non-singular summand, s,f
rrscZ",1<rs<N, NcZ", the following summation
identity holds:

P
P4

r

N N
(frs+ fsr) fsr.
1; rs + fsr) rzlszl sr

for +
Zl rr

15

K r K K K
P : r;;( frs+ fsr) = r; for + rzls; fsr.

We now show thaBx 1 is valid whenevePk holds.

K+1 K+1K+1

DA

K+1 r
(frs+ fsr)
Proof.

K+1 r

Z Z{frs+ fsr}
= ; ;{ frs+ for}+ Ki\l{ fkrrs+ fske}

K+1 K+1

= ;;{frs+ fr} -+ ; frar + Z fak+a

We now |nvokeH<
K+1 K+1

;;EH— ;frr + Z fcrar + ; skt

K+1 K K+1 K+1 K+1

fsr+ f+ for + f
;Zsr Z " 1& SR +1;1 y

K K+1 K+1 K+1 K+1

r; s; fo - r:ZJrl s; f5r+ rzl frr

K+1K+1 K+1
= Z Z fsr+ Z frr
r=1s= r=

1.If the summandf;s is symmetric in the summation
indicesr ands, that is, if f;s = fg, then

N r N
23 2 fs= 2 T
r=1s=1 r=1

2.If fis is factorable, that is if,s = g hs, then

s{osnfesingel-sons(30)(3n) e

In particular, if fs = grgs, then

N r N N 2
zrzl{gr;gs} = r;(gr)z"‘ <rzlgr> . (24

3.Settingf,s = gs in identity (2.1) gives

igs Z gr.

1s=1 =

z

2.2)

rs-

|||\/|z

1s=

b4
P4

(2.5)

N
(N+1) z
r:

r
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3 Applications

3.1 General finite summation formulas
involving the generalized harmonic numbers

Example 1.

Choosinggs = 1/s" in identity (2.5 gives

N
;Hr7n =(N+21)Hnn— Hnn-1, (3.1)

while settinggs = Hsp in identity (2.5 and using
identity (3.1) gives

N
2 Z rHrn = N(N+ 1)HN,n+ Hnn-1—Hnp—2. (3.2)
r=1
In particular
N
ZHr =(N+1)Hy—N (3.3)
r=
and
N 1
Z :—N N+1)HN—ZN(N—1) (3.4)

Taking gs = sHsn in identity (2.5 and using
identities 8.1) and @.2), we find

N
N(N+1)(2N+1
rann = ( )6( )HN,n
r=1 (3.5)
1 1 1
- EHN,n—1+ EHN,n—Z - éHN7n—3-
In particular

N N(N+1)@N+1) N(N-1)(4N+1)

Z 6 N 36 '
(3.6)

If we setgs = Hspn/s” in equation 2.5 and make use
of equation 8.29, we obtain the identity

ZH

Upon settingn = 1 in equation 8.7) we obtain the
interesting result

N Hrn

(N+ 1)HE o+ Hyzn- 1-23 =T

(3.7)

=(N+1Hfi— (2N+1)Hy+2N.  (3.8)

r=1

Identity (3.1) appeared inq] (Equation (43)) and is
listed in Wikipedia B]. The particular

cases,

identities 8.3 and .4 are also derived in 7],
(equation 2.36, page 41 and equation 2.57, page 56).
Using identity (L.1) we write

(N+an)/

; H2rn+ ; H2rn

from which upon using identity3(1), we get

N+aN )/2,n

N
2% Han=2(N+1)Hann—Hann-1—Pnn.  (3.9)
Example 2.
The choice offis = (2r — 1)"™Ms " in the identity @.3
leads to
N N
hr m Hr—1n
—+ = hnmHN, (3.10)
rzl A er (ZI’ - 1) " "
On settingh = 0 in identity 3.10 we obtain
S h (N+ 1) h 1h (3.12)
r,m = a N.m — FTINm-1- .
2 2)™m 2
In particular,
N 1 N
r;hr = (N+§> hN_E' (3.12)

Using the identitiesX.1) and 3.48 gives

N (N-an)/2 (N+an)/2 _
2 Z hrn=2 Z horn+2 Z hor.n—Pnpan,n+ INcag,n
r=1 r=1 r=

which, together with identity3.11) then gives

N

4% horn=2(2N+ 1)hann—honn-1— honn.  (3.13)

Substituting gs = hsm in identity (2.5 and using
identity (3.17) gives

N N(N+1) 1
rhr’m: <_ + =
r; 2 8

In particular

g =(M+%)hN—N§.

1

(3.15)
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Takinggs = hsn(2s—1)~" in identity (2.5) and using

the result 8.31) we find

N h
2N—|—1 hNn+hN2n 1— Z nn

25 h2,
Zi (3 16)

Now settingn = 1 in equation 8.16 we obtain

2rN;hr2=(2N+1)h2 —2Nhy+N. (3.17)
Example 3.
The choicef;s = HyHs in identity (2.3) gives
2% {Hr 2Hs}: iHEJr <iHr>2 (3.18)
=1 = = o

The use of identities 3, (3.4 and @.8 in
identity (3.18 leads to

N N(N+1)

2 _
r;rHr = 3

(N>-N-1) N(N—3)
> Hn + 2 .

Similarly, the choicef;s = hyhg in identity (2.3) gives

N r N N 2
2rzl{hr;hs} = r;hrZJr <rzlhr> . (3.19)

The use of identities 312, (3.15 and @.17) in
identity (3.19 leads to

N 2 2
2N +1) (2N+1)(2N—-1) N
2 = h2 — hy+ = .
r; ' 8 16 16
Example 4.
Let
‘¢ Xpryqs
"7 (r+a)M(s+b)n

frs is factorable, so we apply equatiod.®, which
gives immediately

N xPr r yqs N yqr r xPs
2, { Trand, (s+b)”} +Zl{ PN (S+a)m}

N Xpyq N N xPr N yqr
Zx A\ & T )\ & (r+b)"
(3.20)

Various combinations of the parametgrs, m,n,a,b
and the variables,y may be considered. As an example if
we choose = 0 = g, then we have the interesting result

% Hr+bn % Hr+a,m
r=1 r= 1(r+b)n

N
= HnramHN+b,n — HamHon + Z r+on’

(3.21)

In deriving the identity 8.21) we made use of the
identity

S 1
2 arap

Interesting special cases of identiB.21) include

Hstq.p—Ha,p-

S H””+§H”" H,min + H,mH (3.22)
—m = FIN;m+n N,mMIN;n .
r; rm r=1 rm
% Hrn % Hrm
r:l r=1
1
= HN+17nHN-~-1,m - HN,n+m— m
(3.23)
and
N Hr n N
z z = HN+1 mHN n- (3-24)

The particular casen = n in equations 3.22 and
(3.23 gives

¥ Hin
z r_ = Hy.2n+Hfip (3.25)
and
oy oz o 2 (3.26)
PNV RIS ST

The particular case correspondingte- 1 in (3.26) is
also found in ] (page 850, Theorem 16, example).

Equation (3.62) of referencé][corresponds to setting
n=1inidentity 3.29.

Example 5.
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Substitution off,s = (2r + 2a— 1)~
into equation2.3) gives

m(2s+ 2b— 1)"

i hr+b,n + % hr+a7m
& (2r+2a-1)m & (2r+2b—1)"
= hN-&-a th+b n— ha mhb,n (3-27)

N 1
Z (2r+2a—1)™(2r+2b—1)""

Note that in deriving the identity3(27) we made use
of the identity

S

1
t; (2t+2g9—1)P

Interesting special cases of identiB.27) include

Example 6.

Substitution off.s = r~"Z into identity 2.3) gives,
after some rearrangement,

z41, (3.35)

while substitution of f,s = (2r —
identity (2.3) yields

1)""Z%Y into

Z2r71

=

Z2N+1
1 —

z#£1.
(3.36)

hN Ny

ZLZZr lhrn _

N hr ) N Example 7.
z 2 z 2 —hN,n+m+ hN,th,na . i
& (2r— & (2r— If we choosefrs = H;n/r"s™ in the equationZ.3) we
(3.28)  obtain the following identity, valid for all complex
numbera, m and positive integen:
N hr,n + % hr,m N H H H N H2
ONCESTAPN ST 2y Helin. 5 D
1 r= r= r=
= Nt 1nhNsm = hnnem —
: ’ ’ 2N+ 1)N(2N +1)m H
(2N+1)"(2N+ ()3.29) :2“ Tt rn—|—HNmHN2n+HNmHNn
and (3.37)
N N In particular, settingm = n and using also the
Pr.n hem identity (3.25 we obtain the beautiful result
rzl 2ryom + r; 2r—1)n = hN+1,th7n' (3.30)
The particular casen = n in equations 3.28 and N H
(3.29 gives 3 ; % = Hyn—Hnan, (3.38)
2N Men  _ pyan+ 12 (3.31) ivalentl
rzl Gro 1y N,2n 4 P . or equivalently,
and
H
; LI Z "20 — H  + 3HN20HNn + 2HN 30
N hrn 2hN n
z @+ 1) —hy2n+ m . (3.32) (3.39)
r=1 Note that since
From identities 8.31) and 3.32 we have
Hn = H =
N hrn N hr n 2 rn T (I’ + 1)n ’
r; (2r—1)n + & (2r+1)n =t (2N + 1) (3-33) identity (3.38 can also be written
and
N N
% hrn B % hen —h B hnn Z #
A-10 4+ T RN+ (r + 1 re (3.40)
(3.34) o o 2 3HN+1n
Again all the formulas derived in this example are new. N+1n T eANan T T N )
(@© 2016 NSP
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Addition of identities 8.38 and @.40 gives

N 2 N 2

H H
3y 43y -In
rZ]_ (r + 1)n er rn

= HR 10+ Hn + Hian

N 2 3BHngan
(NTL® (Nt L2
(3.41)
Example 8.
The choice fis = hp(2r—1)""(2s—1)"™ in

equation 2.3) yields the following identity, which holds
for all complex numbers, m and positive integers:

N h -h N h N h2
2 rn r,mn_|_ Z r2n Z r,n

r=1 (2r—1) r=1 r=1

hrn
=2y ——2——+hymh hn.mh?
r;(Zr—l) + N,m N2n+ N,mtIN n -
(3.42)
In particular, settingm = n and using also the

identity (3.31) we obtain the interesting result

hrn

N N
Z T ; —hnan, (3.43)
or equivalently,
hr2
3; > _1 (2 r_r:]l-) hﬁ7n+3hN,2nhN7n+2hN,3n~
(3.44)

Example 9.

In this example we derive a couple of alternating

summation formulas.

First we introduce the notations

Similarly, using the identityX.1) and the definitions of
h andh, it is straightforward to establish that

22 4r

=honn— th,n

= 722;,})(:; {LIJn—l <N +

2w (3)

(3.48)
and
N 1 _
zrzl m =honn+honn
2=t 1 1
=t (o (vea) e (3
(3.49)

whereyi(x) is thenth polygamma function defined by

dy(x
dxn

Yn(x) =

where q
Y(x) = g logr (X

is the digamma function and(x) is the gamma function.

Using frs = (—1)5~1r~"in identity (2.3) we obtain
N 1
(-1)"~ 1Hrn = _ﬁHN*aN n"‘aNHN,n (3.50)
=1 -z
from which we get the interesting results
2N . 1
21( D™ Hen = —55Hun (3.51)
r=
and
2N-1
(=) *Hen=hnn. (3.52)
r=1
Similarly using fis = (=1)%2r — 1)™ in

identity (2.3) gives

Foo= S 0 g 5 EYT (345
p.q - an p.q - Y~ .
2s—1)4
;l ;( ) N L (N-an)/2 1
r
Then, from the identityX.1) we have 21(_1) hrn = — Z (4r —1)n +anhnn,
r= r=
HN n= _%H(NfaN)/Z,n + NNy /20 which leads to
from which it follows that N _ -
2 Z (—=1)"*hen = hann — honn (3.53)
— 1 r=1
HZN,FI = _ﬁHN,n + hN,n (346) and
and
2N-1
_ 1 -1 _h
Hon-1n =~ 55 HN-1n+ B (3.47) 2 % (0" hen = Pawn -+ P (3.54)
(@© 2016 NSP
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The particular case corresponding = 1 in and
identity (3.57) is also derived ing] (Equation (39)).
. L . 2N-1
Using frs = (—=1)"" (=151 " in identity (2.3 1 oM. H Hin Him
yields r;( i e
1
2N _ _ Hn_ Hn 1 Hn (3.60)
ZL(_l)rilHnn:HN,n/zn (3.55) 2m+”( N-imen - HN-2mFN-10)
r= — hnymeen — hymbingn
and + Hon-1,mhnn + Hone 1 nhinym
N In particular
z ) Hen = (3:56) Pt
r=
. e . . 2N
Taking frs = (1) YHsor ™ in identity (2.3 gives 22(_1)r71I’Hrn:2hN‘nfl_hNn_2NH2N,n_H2N n-1,
r=1 ' ' ’
(N-an)/2 (N+an)/2 (3.61)
_ 1 Hrn+ hrn
2 Z Z 2N-1
N 25 (-1 rHen
+ 5 (=) HeaHem ,Zl
r=1 " " =2hnn-1—hnn+2NHon- 10— Hone1n-1,
H .
- Z ( 1)r—1 rr],qn +Hym (_1)r_1Hrn (362)
r=1 r r=1
(3.57) N
H H
-1 2 _on) N,2n g2
Interchangingm andn in identity (3.57, adding the Zl( b <2H““ 2 ) Zon ~ MN2n—Hana
resulting identity to identity 3.57 and using (3.63)
identities 8.22 and (3.28 we obtain and
1 H H H 2N-1 H
— 5 (Hin-ay)2nem+ Hineay) 2nHn-ay) /2m) > (—1)-t <2Hr2n_2ﬂ)
+ hinsay) 2nm+ Ninvay) 20D N4ay) /2m = (3.64)

N
+25 (=) HraHem

r=1
% <Hrn + Hrr,im)
= r

(=) Hrn

+ +
I I
Zz Zz
= 3
z7 z
hA

(=) Hrm,

_:
||
L

(3.58)

from which we finally get

2N( 1)1 ( 2H,nH Hrn
r; rntirm rm

Hr7m
_ r—n

1
= S (HNmen - HymHien) (3.59)

- hN,ern - hN,th,n
HonmHNn HangnHnym
S22 m

Hno
= szi,Zn - hN72n + H22N—l,n-
Corresponding to identitie8(63 and 3.64 we have,
upon takingfrs = (—1) Yhgpn(2r — 1)~"in identity 2.3

< r-1( K2 hf‘n 2 h
2 Z (_1) hr,n - m = —h2N,n - h2N,2n
r=1
(3.65)

N1 B . _
25 (-1 hn— m =h5n_1n—han-1.2n-
(3.66)

3.2 Evaluation of infinite sums

In the limit N — o in the above summation results and
it is
possible to evaluate certain infinite sums. We now present

sometimes in combination with known results,

some examples.

(@© 2016 NSP
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Example 10.
In the limitN — o, equations3.38, (3.39 and @8.70

become
0 H2 0 Hrn

3 Zi r2n

z +32Hr2n:

=7(n)*—7(3n), n#1, (3.67)

*+3(n)g(2n) +2¢(3n),

n#1
(3.68)
and
o0 rZn ) H2
3r;r_“+3z( +1) =27(nN3+Z(3n), n#1.
(3.69)
Evaluating identity 8.67) atn = 2 we obtain
© HfH 19 )
PR —22680n5+z(3) : (3.70)

after using the known result:

55 (81 (B:92). ).

Now using the result3.70 in identity (3.69, we also
have

©  Hp 59
2 —_——_mP_7(3)>. 3.71
4 (r+1)2 " 22680 ¢ (3.71)
Since
1\? 2H 1
W 10— (Moo 1m ) =HE= T+
we have
i H2 o He2 5)
Lr(r+1) &l ’
and )
il Hr3 i Hr3
S _oy M3 77
r;r(r+1) Zl r4 (@),

from which upon using the known results

ZiHrz —9(5), (Eq.3.3bofp]),
and
i—f—ﬁi —%Z() 177(7), (Eq.3.5d of ]),

we obtain
s M2 e 109
Sr(r+1)
and
o0 2
3 g = -2
Example 11.

Inthe limitN — o, equations3.43 and @.44) become

3 il hr2n i hrn
;x Zx (3.72)
=(1-2""3%¢(n)® (1 2" 3”)((3n),
and
it hﬁn i I"lr.Zn
) @-1 L @1

(123 (M3 +3(1-2""(1-22") (M) (2n) +2(1-2)(3n).
(3.73)

Example 12.

Dividing through identity 8.25 by r™, summing and
taking limit asN — o gives

- 1 Hsn < Hr2n < Hr2n
2 = — + ) —— m#1l.
rZL{rm &Zl s } rzl rm er rm

(3.74)
In particular (mnn) = (2,1) and (mn) = (2,2)
in (3.74 give, respectively,
1 r Hs & Hr2 o H2
ZZ{rZZ }—; +Z (3.75)
and
00 1 r H82 0 Hr4 00 Hr22
2 =) 5+ ) — (3.76)
r;{rzs; & } r; r r; r2

Using equation .84 evaluated atn = 2 and the
known result

2 HZ 17

:
} 2
=

in equation 8.75 we obtain

— o (@111,

(3.77)

(@© 2016 NSP
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Using the result3.70 above and the known result

o 4 szrflhr’n:%7 |Z|<1.
ra _ r=1 -

Z > 11340715 Z(3)%, (Formula (42)ofp]), .

r=1 In particular,

in equation 8.76 we obtain

1+z
© (1 1 He, 31 ZZ2F Ih = 2Iog(1—>, |7 < 1.
S e [t G = o
=t s Example 14.

Equation 8.77) was also derived in referencH | In the limit of N — e, equation 8.20 becomes

Example 13.
In the limit N — o in equation 8.35 of Example6, © Xpr r s © [yar I xps
we get the known result (Formula (36) &) z z + z ™ z gn (3.82)
r=1 S= r=1 s=1 :

> ZHin= 75k L (9 + L)L)
3 ZHn=gth(@ 2 <1 @79) mr

1- . . .
wherelLi is a polylogarithm function.
whereLip, is the polylogarithm function.
Settingp = 0= g in equation 8.82 or taking limit as
At n= 1 we have N — oo directly in equation3.22 we have

l log(1—2) o o
=——" H H
2T st b Y = dmEn) £ mZm), nm#l,
r=1 r=1
Other interesting particular cases are (3.83)
The use of equations3(80 and @.81) allows
< Hr2 f _loc?2 equation 8.83 to be written in terms of the polygamma
; 26 g function as
r=
e (D" & gaal) (<D™ 2 Y alr)
- h—1(r — m—1(r
(n—1)! r; rm + (m—1)! r; rn
i Hr73 7 1 2 1 3 - -
— = 7{(3)— zlog"2+ Zlog*2. = Z(m+n)+Z(MZ(n), nm#1.

The particular casen= nin equation 8.83 gives

Using the recurrence relation of the polygamma 4
function zzﬁzz(zmu(n)é n#1. (3.84)
(—1)™m! =

Ym(z+1) = () + g (3.80) The result equation (4.20) of referencel(f
. . corresponds to an evaluation of the identiB.89 at
and the identity n=2.
Um(2) Equation 8.89) is listed as Formula (43) ir2].
—mirg = ¢(M+1) —Hz1mea, (3.81)
(—1)m+Im! ’ Example 15.
equation 8.79 can be written in terms of the In the limit N — oo, identities 8.28 and @.3]) of
polygamma function as Example5 become
[e4] 1 i hrn +
Y 24 a0 = (1" V- Ln@ - Em), 2 Z i
r=1
n>1|2<1. = (1—2-'“- >z<m+n> +(1—27M (L2 (M) (M),
nmz=1,
In the limit N — oo, identity (3.36 becomes (3.85)
(@© 2016 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

8 B o

K. Adegoke, O. Layeni : New finite and infinite summation...

and
ad hnn
Zr; (2r—1)n
=(1-2"MZ@2n)+(1-2"M27(n)?, n#1,
(3.86)
while identities 8.29 and @.30 become
< _ hrn hr.m
Z (2r+21)m * Z (2r+21)n
- i (3.87)
={(MZ(n1-2-"@a-2" :
—Z(m+n)y(1—-27"™")
and
< hrn 2 hrm m .
Greom 2 rogn ~{MIMA-2Ma-27).
i (3.88)
In particular
- hr,n - 2 —m2 o
23 G {2 En-27)
(3.89)
and
2 hn i hrn ) o
= 1-27"%. (3.90
Z 2r+1)n Zl W )2. (3.90)
Example 16.

The result equation (3.8c) of referen& implies that

- hr,3 - w 31
2 @-17 1653 5l (3.91)
from which, upon using identity3(85, we get
& hp 3 31
oo el 6

From identities 8.91) and @.92 and using
identity (3.88 we get

h? Mo — i
12 2 (2r _ 1)2
K2 2hr’2 1

NPT PR e

we also have

%)¢(5),

2% 2 2% .2 (1-2"
La2-1 T4 (2r-1)3

from which we get, upon using equatio®192

(3.93)

Example 17.

Letting N — oo in identity (3.10 of Example2 we
obtain

< hr,m - Hrfl,n _ —m
err_n+r;m_(l_2 )Z(m)Z(n)7 n#]-’m#l.
(3.94)
In particular,
2 hr,n o Hr—l,n o -n 2
R L
(3.95)
Example 18.

From the definition ofH and the identities 3.4 and
(3.47) it follows that

log2, n=1
I|m Hy.n = . (3.96)
o (1- 7)), nz1
Hence, from the identities3(51) and 3.52 we obtain
25 (1) 'Hr =log2 (3.97)
r=1
and

Zi(_l)rl'*rv”: (1— %) {(n), n#1. (3.98)

o hgs m 31 ~ Similarly from identities 8.53 and @.54 and using
r; (2r n 12 1_6Z(3) - a5(5) identities 8.489 and 3.49 we have
and 2 il(_l)f—lhnn — g il
- hr 2 32 31 r= =1 -
> G 62t @540 e 1) ! ;
A& (2r+1) 64 - ){wn 1(2) " 1(4)}
Since 5,99
(@© 2016 NSP
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In reference11] it was established that Thus
1 3
Yon <—> — Y (—) = —11(21)*"|Ezn| o o2n-1
4 4 2 Z (—1)r71Hr,nHr—17n = g |BZn| 7T2n
and = (2n)!
(3.107)
whereBy, is themthBernoulli number defined by
1 3
s () v () = 20— 12pan). C o
d—1 Wgo mi
where )
In particular
B(m) — fim =3 =9
= N,m = oo ) [
AN 2, (a5 1 23 (U MHH1 =23 ()23 (T
andEp, is themthEuler number defined by the exponential "= r= =
generating function -~ ﬁ
12°

2 % Ent™
d+et Lom

Using these results in identit$.09 we obtain

00

2 ;(—1)r—1hr,2n = B(2n) (3.100)
r=
and
2 i(_l)rlhr,Zn—l = ﬁinﬁ‘*l. (3.101)
£ 220 (2n—1)
In particular
2% (1)t =" (3.102)
& T 4 9 .
25 (-1)"'h2=G (3.103)
r=1
and
> e
r-1
221( ) i 3 (3.104)
From identities 8.59 and @.60 we have
ZL(_]-) (ZHr nHrm— H;nn Hrr,im> =
e r r
1 (3.105)
Settingm= nin identity (3.109 yields
r—1 an ad r 1
22 (_1) z HrnHr 1n
r=1 r

=( o= 1) (2n).
(3.106)

(3.108)
From identity 8.108 and the known result

22 rlHrzg

we obtain
23 (-1

Setting m = 0 in identity @.105 and using
identities 8.96 and (3.98 we obtain

—log?2, ([12], equation 4.2c)

)IH2 = ——Iog 2. (3.109)

© i
_q\r—1 -
221( 1)""rH; 2 24+IogZ

and

23 (-1 = (1- 505 ) {01

r=1
1 1
_5(1_F) {(n), n#ln#2.

From identities 8.65 and (3.66 we have

zi(-
:W:L(Zn) <l,Uzn 1(3> Yon- 1<1>) =—B(2n).

In particular

2 ;(—
r=
From the corrected version of equation 4.5¢c1][

hd h mrlog2
_q\r—1 r _
22( 1) o1 2 +G

1)rilhr,nhr—1,n

1) hh_1=—-G. (3.110)

(@© 2016 NSP
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and the identity3.110 we deduce that

l _ log2
2% (—1) 12 = 109
rzl( ) T 4

4 Conclusion

We have given and proved a summation identity which we 77
subsequently applied in its various forms to obtain mostly
new finite and infinite summation formulas involving the Number Theory.
generalized harmonic numbers.
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