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In this work we consider a transmission problem for the longitudinal displacement of
a Euler-Bernoulli beam, where one small part of the beam is made of a viscoelastic
material with Kelvin-Voigt constitutive relation. We use semigroup theory to prove
existence and uniqueness of solutions. We apply a general results due to L. Gearhart [5]
and J. Pruss [10] in the study of asymptotic behavior of solutions and prove that the
semigroup associated to the system is exponentially stable. A numerical scheme is
presented.
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1 Introduction

Consider a clamped elastic beam of length L. Let the interval [0, L] be the reference con-
figuration of a beam and x ∈ [0, L] to denote its material points. We denote u(x, t) the
longitudinal displacement of the beam. Suppose that the stress σ is of rate type, i. e.,

σ = αux + γuxt with γ > 0.

Then, the equation governing such a motion is given by

utt − αuxx − γutxx = 0 in (0, L)× (0,∞). (1.1)
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Assuming that the beam is held fixed at both ends, x = 0 and x = L we have the following
boundary conditions

u(0, t) = 0, u(L, t) = 0.

Now we observe that in the equation (1.1) the viscosity is distributed uniformly in the
whole beam. However, it is desirable in practice to consider a situation where viscosity is
active only in a piece of the beam. In this case, it is important to know if the dissipation is
transmitted and if it is strong enough to stabilize the whole system.

In order to work out this question we consider the following model where one small
part of the beam is made of a viscoelastic material with Kelvin-Voigt constitutive relation,

utt − αuxx − γutxx = 0 in (0, L0)× (0,∞), (1.2)

vtt − βvxx = 0 in (L0, L)× (0,∞), (1.3)

with boundary conditions

u(0, t) = v(L, t) = 0, t > 0, (1.4)

initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L0), (1.5)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L0, L), (1.6)

transmission conditions

u(L0, t) = v(L0, t), t > 0, (1.7)

αux(L0, t) = βvx(L0, t), t > 0, (1.8)

and compatibility condition

utx(L0, t) = 0, t > 0, (1.9)

This kind of problem is known as a transmission problem.

A relevant question raised about the transmission problems and problems with lo-
cally distributed damping, is the asymptotic behavior of the solutions. Does the solution
goes to zero uniformly? If this is the case, what is the rate of decay?

In [7] longitudinal and transversal vibrations of a clamped elastic beam where stud-
ied as problems with locally distributed damping. It was shown that when viscoelastic
damping is distributed only on a subinterval in the interior of the domain, the exponential
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stability holds for the transversal but not for for the longitudinal motion.

At this point it is crucial to notice the difference between the formulation of trans-
mission problems and problems with locally distributed damping. While in the former, the
transmission conditions play decisive role establishing the way the parts of the body mingle
with each other, in the latter it is expressed only by discontinuities in the coefficients of the
equation. For further information on general transmission problems we refer to [4].

A exponential stability of transmission problem for waves with frictional damping
was treated in [2], for the Timoshenko system it was treated in [12], the General Decay
of solution for the transmission problem of viscoelastic waves with memory was treated
in [13] and in [8] uniform stability is proved for the wave equation with smooth viscoelastic
damping applied just around the boundary.

In this work we address the questions above to the system (1.1)-(1.8). We prove
that the solution this system decay exponentially, i.e., the estimate,

E(t) ≤ CE(0)e−wt, C > 0, w > 0, ∀ t > 0 (1.10)

holds for the total energy E(t) of the system. This is equivalent [15] to establish the
exponential stability for the semigroup S(t) generated by the system, i. e.,

||S(t)|| ≤ Ce−wt, C > 0, w > 0, ∀ t > 0.

The central idea is to explore the dissipative character of the infinitesimal generator of the
semigroup and make use of a Theorem due to Gearhart [5] and Pruss [10]. It is in this point
that transmission conditions makes the difference between the formulations of problems
with locally distributed damping and transmission problems. Therefore, our result does
not contradicts that in [7].

These type of questions for viscoelastic waves with memory are studied in [14], for
frictional and viscoelastic damping for a semi-linear wave equation are studied in [3] and
for Timoshenko’s beams with viscoelastic damping and memory are studied in [12].

The paper is organized as follows, in the section 2 we introduce the notation and
the functional spaces, in the section 3 we prove the existence and uniqueness of solutions,
in the section 4 we prove exponential stability of the semigroup generated by the system
and finally, in the section 5 a numerical scheme is presented.
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2 Notation and Functional Spaces

For the Sobolev spaces we use the standard notation as in [1]. We define I1 = (0, L0) and
I2 = (L0, L). We also define

V1 = {u ∈ H1(I1) : u(0) = 0},

V2 = {v ∈ H1(I2) : v(L) = 0},

and

H =




u1

v1

u2

v2

 : ui ∈ Vi, vi ∈ L2(Ii)

 .

In H we consider the following inner product

⟨U1, U2⟩ =
∫ L0

0

αu1
xu

2
x + v1v2 dx+

∫ L

L0

βz1xz
2
x + w1w2dx, (2.1)

where

U =


ui

vi

zi

wi

 ∈ H i = 1, 2.

Following [9] we define the linear operator A : D(A) ⊂ H → H with

D(A) =




u1

v1

u2

v2

 ∈ H : ui ∈ Vi ∩H2(Ii), vi ∈ Vi, αu1
x + γv1x ∈ H1(I1)


and

A =


0 I 0 0

α ∂2

∂x2 γ ∂2

∂x2 0 0

0 0 0 I

0 0 β ∂2

∂x2 0

 .

The problem (1.2)-(1.3) can be written as

Ut −AU = 0 (2.2)

U(0) = U0 (2.3)
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where

U(t) =


u

ut

v

vt

 , U(0) =


u0

u1

v0

v1

 , AU =


ut

αuxx + γutxx

vt

βvxx

 .

3 Existence of Solutions

From the construction of the functional spaces and from the theory of Sobolev Spaces, it
follows that D(A) is dense in H.

Now we will to show that the full system is dissipative. First we define the total
energy of the system by

E(t) =
1

2

∫ L0

0

|ut|2 + |ux|2dx+
1

2

∫ L

L0

|vt|2 + |vx|2dx,

and denote the energy in each part as

E1(t) =
1

2

∫ L0

0

|ut|2 + |ux|2dx,

E2(t) =
1

2

∫ L

L0

|vt|2 + |vx|2dx.

Multiplying equation (1.2) by ut and performing integration by part on (0, L0) we obtain,

d

dt
E1(t) = −γ

∫ L0

0

|utx|2dx+ αux(L0)ut(L0)− αux(0)ut(0) + βutx(L0)ut(L0).(3.1)

Multiplying equation (1.3) by vt and performing integration by part on (L0, L) we obtain,

d

dt
E2(t) = βvx(L)vt(L)− βvx(L0)vt(L0). (3.2)

Now adding (3.1)-(3.2), using boundary condition, transmissions conditions and compati-
bility condition, we get the dissipative character as we intend, that is,

d

dt
E(t) = −γ

∫ L0

0

|utx|2dx.

In this direction, the operator A has an important property which will be used in the
sequel.
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Lemma 3.1. The operator A : H → H is dissipative.

Proof. Using the definition of the inner product (2.1), we have

⟨AU,U⟩ =
∫ L0

0

αutxux + (αuxx + γutxx)ut dx+

∫ L

L0

βvtxvx + βvxxvtdx.

Performing integration by parts and using the boundary conditions , the transmission con-
ditions and the compatibility condition, we get

⟨AU,U⟩ = −γ

∫ L0

0

|utx|2 dx ≤ 0 (3.3)

which proves the dissipativeness of A.

Theorem 3.1. The operator A generates a C0-Semigroup of contractions S(t) = eAt.

Proof. For any

F =


f1

f2

f3

f4

 ∈ H,

consider the equation AU = F , i.e.,

ut = f1 ∈ H1(I1) (3.4)

αuxx + γutxx = f2 ∈ L2(I1) (3.5)

vt = f3 ∈ H1(I2) (3.6)

βvxx = f4 ∈ L2(I2). (3.7)

Using (3.4), (3.5) and observing the regularity of the stress, as settled in the definition of
D(A), we get

αuxx = f2 − γf1
xx ∈ L2(I1).

Thus, by the standard results of the theory of elliptic equations we conclude that u ∈
H2(I1). Then we obtain a unique solution

U =


u

ut

v

vt

 ∈ H,

such that U ∈ D(A), ||U || ≤ k||F || for k > 0 and satisfies (3.4)-(3.7). Thus 0 ∈ ρ(A)

the resolvent set of A, and then, A is invertible and A−1 is bounded linear operator. By
the contraction mapping theorem, the operator λ I − A = A(λA−1 − I) is invertible for
0 < λ < ||A−1||−1. Therefore, it follows from the Lummer-Phillips Theorem that A is the
infinitesimal generator of a C0-semigroup of contractions S(t) = eAt.
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From the theory of semigroup it follows that U(t) = eAtU0 is the unique solution of (1.1)-
(1.8) in the class

U ∈ C0([0,∞) : D(A)) ∩ C1([0,∞) : H).

4 Exponential Stability

In order to prove the exponential decay we are going to use the following result.

Theorem 4.1. Let S(t) = eAt be a C0-Semigroup of contractions in a Hilbert space. Then
S(t) is exponentially stable if and only if,

iR = {i β : β ∈ R} ⊂ ρ(A)

and

||(λ I −A)−1|| ≤ C, ∀ λ ∈ iR.

Proof. This result is due to L. Gearhart and its proof can be found in [5] or in Huang [6]
and Prüss [10].

Now, by using the stability criterium due to Gearhart we prove the main result of this paper.

Theorem 4.2. The C0-Semigroup of contractions S(t) = eAt generated by A is exponen-
tially stable.

Proof. Since 0 ∈ ρ(A) then, for every β with |β| < ||A−1||−1 the operator

i β −A = A(i βA−1 − I)

is invertible and ||(i β −A)−1|| is a continuous function of β ∈ (−||A−1||−1, ||A−1||−1).

At this point we are going to use an argument of contradiction. First we sup-
pose that the condition {i β : β ∈ R} ⊂ ρ(A) is not satisfied. Then, there exists
w ∈ R with ||A−1||−1 ≤ w < ∞ such that {i β : |β| < |w|} ⊂ ρ(A) and the
Sup

{
||(i β −A)−1|| : |β| < |w|

}
= ∞.

Hence, there exists (βn) ∈ R with βn → w, |βn| < |w| and a sequence of com-
plex vector functions Un ∈ D(A) such that ||Un|| = 1 in H and

||(i βn −A)Un|| → 0.

Taking the inner product of (i βn −A)Un with Un we obtain

i βn||Un||2 − ⟨AUn, Un⟩ → 0.
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Now, using (3.3) arrive at

i βn||Un||2 + γ

∫ L0

0

|v1n,x|2 dx → 0. (4.1)

Taking the real part we get

γ

∫ L0

0

|v1n,x|2 dx → 0. (4.2)

Using (4.2) in (4.1) we can say that

i βn||Un||2 → 0. (4.3)

Observing that βn → w, |βn| < |w| we conclude that ||Un|| → 0 which contradicts
||Un|| = 1.

In order to finish the proof it remains to prove that

||(λ I −A)−1|| ≤ C, ∀ λ ∈ iR.

Suppose that it is not true. Then there exist a sequence of vector function (Vn) such that

||(i βn −A)−1Vn|| > n||Vn||. (4.4)

As (Vn) ∈ H and i βn ∈ ρ(A), there exists a unique sequence Un ∈ D(A) such that

i βnUn −AUn = Vn with ||Un|| = 1.

Introducing gn = (i βn −A)Un and using (4.4) we obtain

||gn|| ≤
1

n
and hence gn → 0.

By taking the inner product of gn with Un and using (3.3) we get

i βn||Un||2 + γ

∫ L0

0

|v1n,x|2 dx = ⟨gn, Un⟩.

Now, taking the real part and observing that (Un) is bounded and that gn → 0 we deduce

γ

∫ L0

0

|v1n,x|2 dx → 0.

Proceeding as in the previous case we prove ||Un|| → 0 which is a contradiction. This
completes de proof.
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5 Numerical Results

In this section we implement a numerical scheme using the method of finite difference
without any additional technic of numerical dissipation.

In order to verify our computational code we construct an analytic solution which
produces source terms in the equation (1.2) and (1.3).

These solutions are defined by ,

u(x, t) =

(
1

1 + t

)[
a50 +

4∑
i=0

aia
(4−i)
0

]
in (0, L0)× (0,∞) (5.1)

v(x, t) = u(x, t) in (L0, L)× (0,∞) (5.2)

where ai = cos
[
(i+1)(x−π)

2

]
, i = 0, ..., 4. Observe that u(x, t) → 0, t → ∞.

We considered a spacial domain of length L = 2π with a grid with 128 nodes uni-
formly distributed. The convergence of the solution, or permanent regime, is attained after
290.000 iterations in time, with error of 10−7 to u and 10−4 to v, with △t

△x = 0, 22.

We made four tests. In the first one the viscosity was distributed uniformly in the
whole string L while in the others viscosity was localized in the piece of length L0.
If L0 = L we have exponential stabilization for the solutions of equation (1.2) well
illustrated in the figure 5.1. In the figures 5.2-5.4 the lengths for L0 were:

{
π, π

2 ,
π
4

}
,

respectively. The parameters used in all the tests were α = 1, γ = 0, 2 and β = 10.

We could have used other sets of parameters since our code accepts any. In the se-
quence of the tests we observed that, as L0 decreases, the solutions oscillate with
larger amplitude, and, bigger values for γ could be considered. We finally observe that
exponential decay occurs no matter what is the size of the interval (0, L0).

This indicates that the presence of any quantity of viscous material in the mixture
will cause exponential stability for the problem considered here.
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Figure 5.1: Test 1, with L0 = L.
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Figure 5.2: Test 2, with L0 = L
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Figure 5.3: Test 3, with L0 = L
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Figure 5.4: Test 4, with L0 = L
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