
Appl. Math. Inf. Sci.9, No. 4, 1961-1969 (2015) 1961

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090436

Pushout with Differentiated Dropping Queue
Management for High-Speed Networks
Jui-Pin Yang∗

Department of Information Technology and Communication, Shih-Chien University, Kaohsiung 84552, Taiwan, R.O.C.

Received: 6 Nov. 2014, Revised: 6 Feb. 2015, Accepted: 7 Feb.2015
Published online: 1 Jul. 2015

Abstract: Queue management is critical for high-performance and high-speed routers. Pushout scheme (PO) performs well in terms of
buffer utilization and packet loss probability, but requires identifying the longest flow queue and executing frequentpushout operations
whenever a packet arrives at a full buffer. Additionally, POcannot effectively protect lightly loaded flows against bandwidth aggression
from heavily loaded flows under bursty traffic conditions. Toovercome the disadvantages of the PO, this study proposes a simple but
efficient queue management scheme, namely pushout with differentiated dropping (PDD). PDD uses a weight function to estimate the
weights of active flows based on their traffic intensity; moreover, it maintains the flow states of two approximate maximumand sub-
maximum differentiated factors. By comparing differentiated factors of arriving packets with both maintained differentiated factors,
PDD can correctly deal with each arriving packet by discard,pushout or acceptance. Simulation results verify that PDD has better fair
bandwidth sharing and much lower packet pushout probability than PO under a variety of traffic conditions.

Keywords: differentiated dropping, queue management, fair bandwidth sharing, packet pushout probability

1 Introduction

When a feasible queue management scheme is applied to
manage the buffer, it benefits high buffer utilization and
low packet loss performance. Furthermore, this scheme is
useful to enhances fair bandwidth sharing and upgrade
congestion control mechanisms [1,2]. Queue
management thus is important for network routers, which
could be divided into three types including static
threshold, dynamic threshold and pushout. The static
threshold schemes generally designate one or more fixed
thresholds in advance which are used to control the
growth of queue lengths [3,4]. Ideally, the control
thresholds should be dynamically adjusted in order to fit
for varying traffic. Accordingly, many dynamic threshold
schemes are proposed [5,6,7,8,9]. In a word, the
threshold-based types are easy to implement, but they
both are unable to achieve robust performance.

In order to improve the threshold-based types, the
pushout (PO) type is proposed [10,11,12,13,14,15,16,
17,18]. In general, the PO type fully utilizes the buffer
capacity and allows each flow to increase in queue length
until they reach fair buffer allocation. When the buffer is
full, a residing packet belonging to the longest flow queue
should be pushed out to make room for the new arrival.

On the other hand, no additional constraint is applied
before the buffer is full. The PO type is superior to the
threshold-based types in several performance metrics
inclusive of buffer utilization, fair buffer usage and packet
loss probability. However, the PO type should find out the
longest flow queue and then execute a pushout operation
whenever a packet arrives at a full buffer. This causes PO
type too difficult to deploy in high-speed networks. In
addition, this type favors the heavily loaded flows under
bursty traffic conditions that could lead to unfair
bandwidth sharing on the lightly loaded flows.

We propose a novel queue management scheme
which possesses low complexity and excellent fair
bandwidth sharing namely pushout with differentiated
dropping (PDD). PDD is a variant of the PO type, but it
eliminates the original disadvantages. The PDD first
estimate the traffic intensity of active flows and then use a
weight function to transform traffic intensity into the
corresponding weight. Next, the PDD evaluated the
differentiated factor (df) of each arriving packet. The df is
equal to the product of current queue length and weight.
By comparing the df of each arriving packet with two
approximate maximum and sub-maximum df, the PDD
can deal with arriving packets correctly. A representative

∗ Corresponding author e-mail:juipinyang@gmail.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090436

1962 J. P. Yang: Pushout with Differentiated Dropping Queue...

PO scheme is selected from the PO type as a comparison
[10]. Considering the implementation overheads of the
PDD and PO, we analyze packet pushout probability of
both schemes.

An adequate scheduling algorithm greatly contributes
to improve the fairness of the queue management
schemes. In this study, we consider the PDD and PO
cooperating with a well-known scheduling algorithm,
namely deficit round robin (DRR) [19]. The main idea of
the DRR is that arriving packets are classified first before
they are dispatched to a dedicated flow queue. Next, the
residing packets in the forefront of each nonempty flow
queue are served in turns until their respective deficit
count is smaller than the size of the following residing
packet. We summarize the differences between PDD and
PO;

1.PDD supports differentiated dropping by simply
comparing the differentiated factors. Otherwise, the
PO merely considers current queue lengths.
Consequently, PDD can effectively protect the lightly
loaded flows from bandwidth aggression by the
heavily loaded flows. PDD thus achieves better fair
bandwidth sharing than the PO.

2.PDD has lower implementation overheads than PO.
PO needs to execute a pushout operation whenever a
packet arrives at a full buffer. However, PDD only
needs to execute a necessary pushout operation by
early and precisely discarding arriving packets. PDD
thus has much lower packet pushout probability than
the PO.

3.PO needs to identify the longest flow queue among all
active flows. However, PDD only needs to compare
the differentiated factor of each arriving packet with
two approximate maximum and sub-maximum
differentiated factors. PDD thus has lower
implementation complexity than the PO.

The remainder of this paper is organized as follows.
Section 2 illustrates previous studies related to the queue
management schemes and scheduling algorithms. Section
3 consists of three components. First, we describe the
detailed PDD scheme, including intensity estimation,
weight function and then complete PDD algorithm;
second, we define two performance indexes, namely
normalized bandwidth ratio and packet pushout
probability, and use both for performance measurement;
third, we analyze the complexity of the PDD and PO.
Computer simulations are used to compare the fairness
and pushout behavior of the PDD with PO under various
traffic conditions in Section 4. Finally, we conclude with
a summary in Section 5.

2 Related work

Many queue management schemes have been proposed to
improve specific performance metrics such as throughput,
fairness, packet loss probability, multiple loss priorities

and so on. Irland proposed a queue management scheme
that optimizes growth in queue lengths according to
traffic conditions [3]. This scheme is too complicated to
implement because it needs instant measurement of
current traffic behavior. A simplified square-root rule was
proposed. However, it leads to performance degradation.
On the other hand, several static threshold schemes were
proposed and analyzed based on product form solutions,
including complete sharing (CS), complete partitioning
(CP), sharing with maximum queue lengths (SMXQ),
sharing with a minimum allocation (SMA), and sharing
with a maximum queue and minimum allocation
(SMQMA) [4]. Although these schemes are easy to
implement, they perform well under limited traffic
conditions.

To improve the disadvantages of the static threshold
schemes, dynamic threshold schemes that automatically
adjust control thresholds according to buffer variations
were proposed [5,6,7,8,9]. Dynamic queue length
threshold (DT) changes control threshold in association
with residual buffer size [5]. When the queue length of a
flow equals or exceeds the control threshold, the DT
discards all arriving packets from that flow until its queue
length is smaller than the control threshold. DT has low
buffer utilization because excessive buffer size is reserved
to guarantee high throughput and low packet loss
probability of the lightly loaded flows. An extended
version of the DT was proposed by considering multiple
packet loss priorities [6]. Hierarchal queue management
(HBM) can improve buffer utilization and achieve fair
buffer usage at the same time [7]. In addition, HBM
works as CS or CP based on the setting of a control
threshold.

Considering buffer utilization and fair buffer usage,
partial sharing and partial partitioning (PSPP) was
proposed which has better performance than the HBM
[8]. PSPP first classifies flows as active or inactive. Next,
it reserves sufficient buffer size for all inactive flows.
Finally, the residual buffer size is fairly allocated among
each active flow. Although the PSPP performs well under
many traffic conditions, it is still unable to fairly allocate
buffer size. Consequently, a threshold-based selective
drop (TSD) that originates from the concept of the
max-min fairness was proposed [9]. Dynamic threshold
schemes often have better and more robust performance
than static threshold schemes in terms of throughput, fair
buffer usage and packet loss probability. However, all
threshold-based queue management schemes (static
threshold and dynamic threshold) cannot fully utilize
buffer size because they have to reserve a certain amount
of buffer size so as to implement effective queue
management.

PO is also named as drop on demand policy [10].
When the buffer is not full, each arriving packet is
admitted to the buffer. Otherwise, one residing packet
belonging to the longest flow queue should be removed.
PO always performs much better than the threshold-based
schemes. Unfortunately, the PO may degrade under

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 4, 1961-1969 (2015) /www.naturalspublishing.com/Journals.asp 1963

asymmetric traffic conditions. For instance, when the
lightly loaded flows have larger traffic burstiness than the
heavily loaded flows, their queue lengths suddenly
increase. As a result, the lightly loaded flows possess
higher packet loss probability, lower throughput and
unfair bandwidth sharing. A variant of the PO was
proposed to alleviate the drawback, namely pushout with
threshold (POT) [11]. The main difference between PO
and POT is that the latter assigns a dedicated control
threshold to each flow. When the buffer is full, the control
threshold is used to determine whether a residing packet
should be pushed out by other flows. The POT is
sophisticated because it has to assign adequate thresholds
to each flow where a lot of current flows exist. To simplify
POT, a maximum busy period scheme was proposed by
modifying the original assumptions of the POT (poisson
arrival, exponentially distributed service time) and
considering correlated contiguous time slots [12].

Many network applications require differentiated
packet treatment, and therefore several modified schemes
based on PO were proposed to support multiple packet
loss priorities [13,14,15,16,17,18]. PO-based schemes
often keep promising performance, but they suffer at least
three critical drawbacks. First, they are relatively complex
since they have to find out the longest flow queue.
Second, they need to execute frequent pushout operations
whenever a packet arrives at a full buffer. This means that
they have high implementation overheads. Third, they are
unable to achieve fair bandwidth sharing under
asymmetric traffic conditions.

To resolve the drawbacks of traditional PO-based
schemes, pushout with differentiated dropping (PDD)
queue management scheme is proposed. PDD benefits
fair bandwidth sharing while it keeps low implementation
complexity and overheads. On one hand queue
management schemes are used to determine which
arriving packets could be admitted to enter the buffer, and
on the other hand scheduling algorithms are used to
schedule the transmission of residing packets. Both
mentions thus must cooperate well so as to achieve the
optimal performance. Deficit round robin (DRR) is a
well-known scheduling algorithm which provides
excellent fair bandwidth sharing accompanying with low
implementation complexity [19]. Many modified
scheduling algorithms based on the DRR have been
proposed to deal with various quality of service (QoS)
requirements such as proportional bandwidth, delay, jitter
and so on [20,21]. To summarize, we analyze the fairness
and packet pushout probability of the PDD and PO under
a variety of traffic conditions where DRR works as a
default scheduling algorithm in the following simulations.

3 Pushout with differentiated dropping

The details of the PDD queue management scheme are
described as follows; (1) intensity estimation for active
flows, (2) weight function for transforming intensity into

corresponding weight, and (3) a complete PDD
algorithm. Next, we describe the definitions of two
performance indexes and analyze the implementation
complexity of the PDD and PO.

3.1 Intensity estimation

Before explaining the intensity estimation method, we
define a flow that is composed of a stream of packets with
the same source and destination IP addresses.
Furthermore, a flow is identified as active only if it has at
least one residing packet in the buffer. We use a weighted
moving average to estimate the traffic intensity of the
active flows, which resembles in random early detection
(RED) [22]. Equation (1) is the method to estimate the
intensity whereIi,k denotes the estimated intensity of
active flow i at the beginning of time interval k, and
mi,k−1 denotes the amount of arriving packets belonging
to active flow i during time interval k-1.Td denotes the
duration of a time interval and C denotes output link
capacity. In addition,wa is a parameter that affects the
dependency of intensity estimation in association with
short-term or long-term traffic conditions where
0≤ wa ≤ 1 . PDD enrolls the estimated intensity of each
active flow into the ActiveList of DRR especially. To
obtain accurate intensity estimation, PDD changes the
maintenance rule on the ActiveList by removing the
records of active flow i from the ActiveList at the
beginning of time interval k only ifmi,k−1 = 0 . PDD thus
can get rid of frequent updates to the ActiveList.

Ii,k = wa ·
mi,k−1
C· Td

+(1−wa) · Ii,k−1 (1)

3.2 Weight function

The weight function is used to transform estimated
intensity into corresponding weights related to active
flows. PO only compares current queue lengths of the
active flows and then selects a residing packet to be
pushed out on demand. Consequently, PO cannot
effectively protect the lightly loaded flows from
bandwidth aggression of the heavily loaded flows that
degrades fairness and increases packet pushout
probability. The basic principle of the weight function is
to transform small intensity to a small weight. Otherwise,
large intensity is transformed to a large weight. The
simplest weight function involves allocating weight
linearly in proportion to intensity but it may result in
insufficient flow differentiation that greatly degrades the
fairness of the lightly loaded flows.

Based on the analysis, we establish a two-phase
weight function, as described in Equation (2). Theα is a
parameter which denotes the differentiated degree where
α > 1 . Additionally,WFi,k denotes the weight of active

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1964 J. P. Yang: Pushout with Differentiated Dropping Queue...

flow i at the beginning of time interval k. When
0 ≤ Ii,k ≤ 1 , WFi,k is estimated using a logarithmic
function in order to provide sufficient flow discrimination
for the lightly loaded flows. On the other hand,W Fi,k is
linearly proportional to intensity whenIi,k > 1 . Ii,k is
larger than 1 only if the incoming links have higher
capacity than the outgoing link. This weight function is
motivated by the idea of colored layers from rainbow fair
queueing (RFQ)[23]. The weight function is critical
because it dominates the PDD performance on fairness
and packet pushout probability.

W Fi,k =

{

logα (1+(α −1) · Ii,k) 0≤ Ii,k ≤ 1
Ii,k Ii,k > 1

}

(2)

3.3 PDD algorithm

In general, the arriving packets that have larger weights
and current queue lengths should be discarded with
higher probability. Accordingly, a differentiated factor
(df) is defined that is equal to the product of weight and
current queue length. Figure 1 illustrates the complete
PDD algorithm.

Fig. 1: PDD algorithm

When the buffer is not full, all arriving packets are
accepted. Furthermore, PDD compares the df of each
arriving packet with themaxd f andsubmaxd f where they
both represent the approximate maximum and
sub-maximum df respectively. After comparisons, PDD
updates the flow states of themaxd f and submaxd f . The
flow state includes the weight, current queue length and

flow identification (a pair of IP addresses). PDD can use
the flow identification to locate the residing packets of a
specific active flow which are candidates for being pushed
out on demand. In this phase, the goal of the PDD is to
update related flow states of bothmaxd f and submaxd f ,
and prepare for consequent pushout operations.

When the buffer is full, the comparisons of df differ
from the previous phase. In the first place, PDD only
compares the df of the arriving packet withmaxd f .
Furthermore, it adopts a different way to estimate the
current queue length. For a new arriving packet, PDD
adds its packet size to current queue length in the buffer
within the same flow; meanwhile, the current queue
length of themaxd f is subtracted from the size of the
arrival. Without exception, PDD adopts the same rule for
the submaxd f . The benefit to the PDD is that it only
executes necessary pushout operations. If the df of the
arriving packet is larger than themaxd f , the new arrival is
directly discarded without any additional procedures.
Otherwise, PDD has to compare the size of arriving
packet with Qmax, where Qmax denotes current queue
length of a given flow withmaxd f . If the Qmax equals or
exceeds the packet size of the arrival, the new arrival can
be accepted by pushing out a residing packet. PDD
selects the residing packet to be pushed out is from tail to
head. Next, PDD may need to update the flow states
related to themaxd f or submaxd f . If Qmax is smaller than
that of the new arrival, PDD will compare its df with the
submaxd f further that is similar to the comparison with
the maxd f . If Qsubmax is larger than packet size of the
arrival, the arriving packet is admitted to enter the buffer
where Qsubmax denotes current queue length of a given
flow with submaxd f . Particularly, the flow states related to
themaxd f andsubmaxd f is invariable herein.

Two more differentiated factors are preferable to
PDD because they make for better fairness.
Unfortunately, this may also increase packet pushout
probability and implementation complexity at the same
time. Based on previous analysis, two differentiated
factors are sufficient for the PDD to cope with various
traffic conditions. In this phase, the goal of the PDD is to
determine the most optimal residing packet to be pushed
out. As a result, PDD can achieve excellent fairness and
avoid unnecessary pushout operations.

3.4 Performance indexes

To completely analyze the PDD and PO, two performance
indexes are defined, inclusive of packet pushout
probability and normalized bandwidth ratio (NBR). The
former is equivalent to the number of pushed out packets
divided by the number of arriving packets for a flow. The
latter is associated with the max-min fairness[24], as
shown in Equation (3) whereN denotes the number of
active flows andf denotes the max-min fair rate. Also,ri
denotes the mean arrival rate of flow i.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 4, 1961-1969 (2015) /www.naturalspublishing.com/Journals.asp 1965

N
∑

i=1
min{ri, f} =C (3)

Equation (4) is the definition of normalized
bandwidth ratio whereNBRi denotes the NBR of flow i
and Di denotes the mean departure rate of flow i. If the
NBR of each active flow equals 1, a queue management
scheme achieves the optimal fairness.

NBRi = Di/min{ri, f} (4)

3.5 Complexity analysis

Whenever there is an arriving packet, the PDD needs a
maximum of B comparisons to obtain current queue
length belonging to the same flow where B denotes the
number of residing packets. Meanwhile, bothQmax and
Qsubmax are available. As a result, PDD has time
complexity of O(B). PDD has to maintain traffic intensity
and the weight of each active flow, so its space
complexity is proportional to the number of active flows,
namely O(N). On the other hand, PO has to find out the
longest flow queue among the active flows, so its time
complexity is aroundO(N)∼O(N2), depending on select
sorting algorithms. In addition, PO has to maintain queue
lengths related to the active flows, so its space complexity
is the same as that of PDD. Generally, N significantly
exceeds B, so PDD has lower implementation complexity
than PO. Based on above analysis, PDD is more suitable
to be deployed in high-speed network environments.

4 Simulation Results

In Figure 2, we consider a single congested link topology.
Also, all network links have the same capacity of 10
Mbps. Moreover, there are 10 flows and buffer size is set
at 20 KB. Each flow generates packets based on a specific
ON-OFF traffic model. To simplify computer simulations,
assume that all arriving packets have the same packet size
of 1 KB. The simulation time for each experiment is set to
200 seconds. In the DRR, the quantum size is set at 1 KB.
The parameters for the PDD are set as follows;wa = 0.3 ,
Td = 16 ms andα = 10 . Unless otherwise specified, all
mentioned configurations are applied to successive
simulations all the time. We compare the normalized
bandwidth ratio and packet pushout probability of PDD
with that of PO in subsections 4.1 and 4.2, respectively.

4.1 Fairness

This subsection analyzes the fairness of PDD with PO
under various traffic conditions by comparing their NBRs.
All flows are numbered from 1 to 10, and transmit several
times over the max-min fair rate. The max-min fair rate is

Fig. 2: A single congested link topology

1 Mbps. In other words, the average arrival rate for each
flow is set to [1 2 3 4 5 6 7 8 9 10 (Mbps)], respectively.
Figure 3 illustrates the NBR versus different buffer sizes.
If the buffer size is set at 10 KB, the fair buffer usage for
each flow equals 1 KB. This leads to extremely unfair
bandwidth sharing in both schemes due to an extreme
lack of buffer size. In the PO, the NBR of flow 1 is close
to 0.52. However, the NBR of flow 1 is close to 0.72 in
the PDD. This reason is that PDD assigns lower weights
to the lightly loaded flows, so their packets are more
likely to be accepted and less likely to be pushed out.
Furthermore, flow 10 is the heaviest loaded flow which
obtains the largest NBR near 1.15 in the PO. This may
encourage network users to violate congestion control
mechanisms so as to maximize their bandwidth. In the
PDD, flow 8 has the largest NBR near 1.08 not flow 10.
Thus PDD does not favor the heavily loaded flows like
the PO. Both PDD and PO have the optimal fairness if the
buffer size is set at 60 KB. The fair buffer usage for each
flow equals 6 KB, which is sufficient for all flows to
increase their queue lengths during bursty traffic
conditions. Undoubtedly, an excellent queue management
scheme is critical for achieving excellent fairness even if
the DRR scheduling algorithm is applied to schedule the
residing packets. Simulation results show that PDD
achieves better fairness than PO.

In Figure 4, the traffic conditions are similar to Figure
3, except the average arrival rate of each flow is changed
to [1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 (Mbps)],
respectively. If the buffer size is set at 10 KB, flow 10
obtains the largest NBR, approaching 1.21 in the PO.
Also, flow 10 in the PDD obtains the largest NBR near
1.11. Each flow has approaching average arrival rate, so
PDD does not assign a sufficient weight to constrain the
arriving packets of flow 10. Furthermore, flow 1 has
better NBR in both schemes as compared with Figure 3.
The buffer is relatively unlikely to be filled up because of
the lower total arrival rate, leading to the acceptance of
more arriving packets of flow 1. Both schemes improve
fairness along with the increment of buffer size.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1966 J. P. Yang: Pushout with Differentiated Dropping Queue...

Fig. 3: Normalized bandwidth ratio versus different buffer sizes
where average arrival rate varies from 1 Mbps to 10 Mbps

Fig. 4: Normalized bandwidth ratio versus different buffer sizes
where average arrival rate varies from 1 Mbps to 1.9 Mbps

In Figure 5, we consider 30 flows that have average
arrival rates several times larger than the max-min fair
rate, and hence the max-min fair rate is 1/3 Mbps.
Accordingly, the average arrival rates of these flows are
set to [1/3 2/3 1 4/3 5/3 2 10 (Mbps)], respectively.
Flows 5 to 30 have approximate NBRs near 1.03 in the
PO if the buffer size is set at 30 KB. As for the PDD,
flows 24 to 30 all have NBRs below 1. PDD thus punishes
flows with higher average arrival rate. Otherwise, the PO
still allows the heavily loaded flows to seize bandwidth
from the lightly loaded flows. Flow 1 has the worst NBR
near 0.13 in the PO but the NBR grows near 0.74 in the
PDD. PDD can effectively protect the lightly loaded flows
against bandwidth aggression from the heavily loaded

Fig. 5: Normalized bandwidth ratio versus different buffer sizes
where average arrival rate of 30 flows varies from 1/3 Mbps to
10 Mbps

Fig. 6: Normalized bandwidth ratio versus different time
intervals

flows while it punishes the heavily loaded flows with less
bandwidth below the max-min fair rate.

Figure 6 shows the effect of time intervals on the
PDD. Additionally, the other traffic conditions are similar
to Figure 3, except the buffer size is set at 20 KB. IfTd is
set at 4 ms, PDD cannot correctly estimate flow intensity
owing to insufficient statistical information. Accordingly,
flow 1 has the lowest NBR near 0.83. When theTd
increases, PDD can estimate flow intensity more
accurately. Consequently, the fairness of PDD is thus
improved. IfTd is set at 32 ms, the NBR of flow 1 is near
0.88. Regardless of the value of theTd , PDD always has
better fairness than PO.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 4, 1961-1969 (2015) /www.naturalspublishing.com/Journals.asp 1967

Figure 7 shows the effect on fairness under different
burst lengths of flow 1. The traffic conditions are the same
as Figure 6. When the burst length increases, both the
PDD and PO schemes degrades their fairness. The
average arrival rate of flow 1 is 1 Mbps which equals
max-min fair rate. Consequently, a larger burst length will
prevent arriving packets of flow 1 from being accepted
because of short-term traffic burstiness. If the burst length
is larger than 33, the NBRs of both schemes slowly
decrease and finally approach a constant. This occurs
because a certain amount of arriving packets of flow 1 are
admitted to the buffer. Simulation results show that PDD
is capable of resisting traffic burstiness.

Fig. 7: Normalized bandwidth ratio versus different burst lengths

In Figure 8, the average arrival rate for each flow is set
at either 1 Mbps or 10 Mbps. In addition, there are 10
flows and buffer size is set at 20 KB. In the “3 flows”
case, flows 1 to 3 are all set at 1 Mbps, while the others
are all set at 10 Mbps. The same explanations are used to
illustrate “5 flows” and “8 flows” cases. In the “8 flows”
case, two 10 Mbps flows in PDD obtain the highest NBR,
approaching 1.22, higher than in the other two cases
because only two flows share grabbed bandwidth from
eight 1 Mbps flows. As for the PO, both flows have higher
NBR near 1.26. In all cases, the PDD has better restraints
on 10 Mbps flows than PO. On the other hand, PDD can
protect 1 Mbps flows from the bandwidth aggression of
10 Mbps flows. Figures 3 to 8 show that PDD is capable
of supporting better fairness than PO under a variety of
traffic conditions while it is beneficial for congestion
control.

4.2 Packet pushout probability

This subsection analyzes the packet pushout probability
of PDD and PO. In Figure 9, the traffic conditions are the

Fig. 8: Normalized bandwidth ratio versus different number of
flows that consist of two kinds of average arrival rate

same as Figure 3. When a pushout operation is needed,
both PDD and PO have to push out a residing packet from
the buffer. In the PO, the operation involves finding out
the longest flow queue. Inversely, PDD only needs simple
comparisons. That is, PDD is much simpler to implement
than PO even if both have the same packet pushout
probability. In the PDD, the buffer size displays less
improvement in packet pushout probability because it can
correctly push out residing packets on demand. Hence,
the packet pushout probability of PDD is relatively
independent of buffer size than that of PO. Particularly, a
large buffer size is helpful to improve the packet pushout
probability of PO particularly for flow 1. Simulation
results show that PDD has much lower packet pushout
probability than PO. In a word, PDD has much lower
implementation overheads than PO.

In Figure 10, the traffic conditions are the same as
Figure 6. WhenTd increases, PDD enhances the accuracy
of flow intensity estimation and thus assigns more
adequate weights to differentiate flows. All flows in PDD
repeatedly have much lower packet pushout probability
than that of PO especially for flow 1. IfTd is larger than
32 ms, PDD has a little improvement on packet pushout
probability. In a word, the PDD has much lower packet
pushout probability than PO under various time intervals.

Figure 11 considers the burst lengths of flow 1 and the
traffic conditions are the same as Figure 7. In the
“overall” case, the average packet pushout probability of
all flows in PDD is near 0.1. However, it is near 0.85 in
PO. PDD obviously shows much lower overall packet
pushout probability than PO. In the case of “flow 1”, a
large burst length increases the packet pushout probability
of flow 1 in both schemes. Flow 1 has more arriving
packets because of traffic burstiness, and hence its packets
are more likely to be discarded or pushed out. If the burst
length exceeds 11, the packet pushout probability of flow

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1968 J. P. Yang: Pushout with Differentiated Dropping Queue...

Fig. 9: Packet pushout probability versus different buffer sizes
where average arrival rate varies from 1 Mbps to 10 Mbps

Fig. 10: Packet pushout probability versus different time
intervals

1 is close to a constant, being either PDD or PO. The
reason is that at least a certain amount of arriving packets
of flow 1 are accepted in both schemes. Based on Figures
9 to 11, we conclude that PDD can support much lower
packet pushout probability than PO under various traffic
conditions. In summary, PDD can cooperate well with the
DDR, contributing to excellent fairness and low packet
pushout probability. Besides, the PDD is simpler to
implement than PO. Undoubtedly, PDD queue
management scheme is suitable for deployment in
high-speed and high-performance routers.

Fig. 11: Packet pushout probability versus different burst lengths

5 Conclusions

Queue management schemes are critical because they
predominantly affect the performance of a router. The
threshold-based schemes are easy to implement, but they
perform well under limited traffic conditions. On the other
hand, PO-based schemes achieve better performance, but
they are too sophisticated to apply to high-speed
networks. To overcome the above issues, a simple but
efficient queue management scheme is proposed, namely
pushout with differentiated dropping (PDD). PDD uses a
weight function to transfer the traffic intensity into
corresponding weights. In addition, PDD maintains flow
states related to two approximate maximum and
sub-maximum differentiated factors. By comparing and
evaluating the differentiated factors, the PDD optimally
determines packet treatment on arriving packets. Based
on the simulation results, PDD achieves better fair
bandwidth sharing, as well as much lower packet pushout
probability and implementation complexity than PO
under a variety of traffic conditions. In summary, PDD is
suitable for high-speed and high-performance network
environments. In the future, we would like extend the
PDD by taking TCP Vegas [25] into account.

Acknowledgement

The work was supported by Shih-Chien University
and National Science Council under grant number
USC-101-05-05007 and NSC 100-2221-E-158-008
respectively, Taiwan, R.O.C..

References

[1] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,
D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge,

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 4, 1961-1969 (2015) /www.naturalspublishing.com/Journals.asp 1969

L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski
and L. Zhang, Recommendations on queue management and
congestion avoidance in the Internet, RFC2309 (1998).

[2] A. Mankin, K. Ramakrishnan, Gateway congestion control
survey, RFC1254 (1991).

[3] M. Irland, Buffer management in a packet switch, IEEE
Transactions on Communications,26 (3) 328-337 (1978).

[4] F. Kamoun, L. Kleinrock, Analysis of shared finite storage
in a computer node environment under general traffic
conditions, IEEE Transactions on Communications,28 (7)
992-1003 (1980).

[5] A. K. Choudhury, E. L. Hahne, Dynamic queue length
thresholds for shared-memory packet switches, IEEE/ACM
Transactions on Networking,6 (2) 130-140 (1998).

[6] E. L. Hahne, A. K. Choudhury, Dynamic queue length
thresholds for multiple loss priorities, IEEE/ACM
Transactions on Networking,10 (3) 368-380 (2002).

[7] R. Fan, A. Ishii, B. Mark, G. Ramamurthy, Q. Ren,
An optimal buffer management scheme with dynamic
thresholds, Proceedings of the GLOBECOM, 631-637
(1999).

[8] Y. S. Chu, J. P. Yang, C. S. Wu, M. C. Liang, Partial
sharing and partial partitioning buffer management scheme
for shared buffer packet switches, IEICE Transactions on
Communications,E85-B (1) 79-88 (2002).

[9] J. P. Yang, Performance analysis of threshold-based
selective drop mechanism for high performance packet
switches, Performance Evaluation,57 (2) 89-103 (2004).

[10] S. X. Wei, E. J. Coyle, M.-T. T. Hsiao, An optimal buffer
management policy for high-performance packet switching,
Proceedings of the GLOBECOM, 924-928 (1991).

[11] I. Cidon, L. Georgiadis, R. Guerin, Optimal buffer sharing,
IEEE Journal on Selected Areas in Communications,13 (7)
1229-1239 (1995).

[12] S. Sharma, Y. Viniotis, Optimal buffer management policies
for shared-buffer ATM switches, IEEE/ACM Transactions
on Networking,7 (4) 575-587 (1999).

[13] H. Kroner, G. Hebuterne, P. Boyer, A. Gravey, Priority
management in ATM switching nodes, IEEE Journal on
Selected Areas in Communications,9 (3) 418-427 (1991).

[14] A. K. Choudhur, E. L. Hahne, Space priority management
in a shared memory ATM switch, Proceedings of the
GLOBECOM, 1375-1383 (1993).

[15] C. G. Kang, H. H. Tan, Queueing analysis of explicit
policy assignment push-out buffer sharing schemes for ATM
networks, Proceedings of the INFOCOM, 500-509 (1994).

[16] R. Roy, S. S. Panwar, Efficient buffer sharing in shared
memory ATM systems with space priority traffic, IEEE
Communications Letters,6, (4) 162-164 (2002).

[17] V. Zaborovsky, O. Zayats, V. Mulukha, Priority queueing
with finite buffer size and randomized push-out mechanism,
Proceedings of the ICN, 316-320 (2010).

[18] Y. S. Lin, C. B. Shung, Quasi-pushout cell discarding, IEEE
Communications Letters,1, (5) 146-148 (1997).

[19] M. Shreedhar and G. Varghese, Efficient fair queuing
using deficit round-robin, IEEE/ACM Transactions on
Networking,4 (3) 375-385 (1996).

[20] S. Ramabhadran, J. Pasquale, The stratified round robin
scheduler: design, analysis and implementation, IEEE/ACM
Transactions on Networking,14 (6), 1362-1373 (2006).

[21] S. C. Tsao, Y. D. Lin, Pre-order deficit round robin: a
new scheduling algorithm for packet-switched networks,
Computer Networks,35 (2-3) 287-305 (2001).

[22] S. Floyd, V. Jacobson, Random early detection gateways
for congestion avoidance, IEEE/ACM Transactions on
Networking,1 (4), 397-413 (1993).

[23] C. Zhiruo, W. Zheng, E. Zegura, Rainbow fair queueing: fair
bandwidth sharing without each-flow state, Proceedings of
the INFOCOM, 922-931 (2000).

[24] I. Stoica, S. Shenker, H. Zhang, Core-stateless fair
queueing: A scalable architecture to approximate fair
bandwidth allocations in high-speed networks, IEEE/ACM
Transactions on Networking,11 (1) 33-46 (2003).

[25] M Shin, M Park, D Oh, B Kim, J Lee, Adaptive
Logarithmic Increase Congestion Control Algorithm for
Satellite Networks, KSII Transactions on Internet and
Information Systems (TIIS)8, 2796-2813 (2014).

Jui-Pin Yang was
born in Kaohsiung, Taiwan,
R.O.C., in 1972. He
received the Ph.D. degree
in department of electrical
engineering at National
Chung Cheng University
in 2003. From 2004 to 2008,
he served as an engineer and
project leader in Industrial

Technology Research Institute (ITRI). He is currently an
associate professor with the department of information
technology and communication, Shih Chien University,
Taiwan. From 2010 to 2014, he was elected as a special
outstanding researcher from National Science Council,
Taiwan. His research interests include computer network,
information system design and development and cloud
technology.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related work
	Pushout with differentiated dropping
	Simulation Results
	Conclusions

