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Abstract: This paper presents a non-linear mathematical model ofrraddg considering the human reservoir and larvivorous fishe
The different equilibria of the model are computed and $tgluf these equilibria is investigated in-detail. Alsbgtbasic reproduction
numberRy of the model is computed and we observe that the model eghibitkward bifurcation for some set of parameters implying
the existence of multiple endemic equilibria f&§ < 1. This existence of multiple endemic equilibria emphasithe fact thaRy < 1

is not sufficient to eradicate the disease from the populatiod the need is to lowd®y much below one to make the disease-free
equilibrium to be globally stable. The numerical simulatis performed to support analytical findings and the presergsults show
meaningful agreement. Additionally, the model is extentiethcorporate optimal control by introducing the ‘inseae control’ to
control the mosquito population and Pontryagin’s maximuingiple[1] is used to analyze the optimal control model. Here too the
numerical simulation is performed to demonstrate the etieoptimal control.
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1 Introduction malaria has been described i) §]. Disease-modification
o ) , ) , .. and transmission-blocking concept have been discussed
Malaria is a mosquito borne infectious disease and it isj getail through the model explored if][ In [9], visual
endemic in many countries around the world. It has enresentation of spatial aspects of malaria transmission
become the economical and health related burden for the, " ¢,ccessive snap-shots in time, is presented with
countries affected with endemic malaria. Malaria is jgentification of mosquito vector breeding sites of defined
caused by Plasmodium parasites which is transmitted tQpane and area. How the intensity of malaria transmission
people through the bites  of n:fected Anopheles .hanges over the evolution of drug resistance is explained
mosquitoes, called “malaria vectors™. These mosquitoes, 110]. A delay-differential equation model with partially
bite mainly between QUsk anq dawn..The 'CDC reportimmune population is discussed i1l]. In [12], the
reveals that malaria is the fifth leading killer among geas0nal fluctuation of the mosquito density in Brazilian
infectious diseases worldwide, and it is the secondamazon region is investigated. Inl3, the authors
leading cause of death in Africa, following HIV/IAIDS.  qngidered two latent periods with non-constant host and
Several malaria vector control methods are beingyecior populations in order to assess the potential impact
implemented in order to reduce the density of malariasf nersonal protection, treatment and possible vaccinatio
vector population to protect the human population againskyategies on the transmission dynamics of malaria. A
infectious mosquitoes. , __mathematical model for malaria showing the impact of
Mathematical mod'els are extensively used to prediCteatment and drug resistance is describedlél. [This
the future of these kind of problems (se&d], €c.).  model also considers delays in the latent periods in both
Many methods and models have been proposed to predighosquito and human populations. A host-vector
and control the dynamics of diseases like malaria,inieraction model with constant immigration in human
dengue, th, HIV etc. The general SIR and SIRS epidemig,opyjation and a fraction of infective immigrants has
model with some qualitative features are described,in[ paen depicted in[5]. The possibility of Hopf bifurcation

5]. The epidemiological impact of immunity to malaria j, 4 non-linear delay model for malaria is demonstrated in
has been investigated i6,[/]. The effect of vaccines for
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[16]. Threshold dynamics of a malaria transmission mosquito populationNy(t)) of Anopheles species are
model in periodic environment is dealt inq. The divided into two disjoint classes namely susceptible
phenomena of insecticide treated bed-nets usage t¢S,(t)) and infected(ly(t)). Additionally, we have two
decrease the malaria vector population is described imore classes corresponding to Larvae populatlat))

[18]. This fact is also incorporated inl]. Modelling and Larvivorous fish populatiofP(t). Larvae L, and
malaria transmission by considering the variable humarLarvivorous fish P populations are linked with
population is exhibited ing0], where it is assumed that prey-predator type interaction. Here it is assumed that the
the individuals recovered from malaria can act aspredatory fish population is fully dependent on mosquito
infectives for susceptibles mosquitoes. This fact is true i larvae. Assuming the criss-cross interaction between
endemic region. Infectious humans can recover througlsusceptibles and infected humans and mosquitoes, the
the treatment, but some of them can carry infectionmathematical model is formulated as follows:

without affecting themselves and transmit infections to )

the mosquitoes biting them. As these people do not showv = 9Ny — diby — aly —mby — yLyP, (1a)

any symptoms of malaria in their body, so they act as Ih+ Ry

reservoir of malaria. The idea of reservoir class is alsosf - mLV_CBSV% —0:S, (1b)
incorporated in  14,19,21,22]. Introduction  of (In+Ry)

larvivorous fish is a promising biological control method I, = cBS,hi —daly, (1c)
to eradicate malaria. This method of control is N

inexpensive and is being used in many part of the World P’ = kyL,P — d3P, (1d)

where this disease is endemic. The introduction of ly
larvivorous fish to control malaria by decreasing the S1:/\_bﬁsh|\1_h_d“sh“LKl_p)r]lh“”th’ (le)
larvae population i(e. the birth stage of mosquitoes

|
population) is established 28, 24). I = bBSnN—V —(dg+ds+1)lp, (1f)
. . . . h
The optimal control strategies of an SIR epidemic
model with time delay has been discussed?8 26]. The ~ Rh = PTIh— (da+11)Rn, (19)

optimal control approach is used to minimize the number. . . .
of infectives. The pape2f] concentrated on the study of The parameters used in the modg) fre described in

optimal control on vaccination program. There are severag;g?]fmli's sﬁgrrl ?eertrﬁieg ndeeigm?ég[ﬂ] the parameters and

other research papers which have incorporated the The transfer diagram of the model is shown in Figure
timal control problems for different t f di ; . ; A
optimal control problems for different types o Olseases1,where dotted line denotes interactions and the solid line

(see p4,27,28,29,30,31,32,33,34,35,36,37,38,39],
etc.). Out of these, few papers deal with the optimal denotes transfer from one class to another. The mdglel (

control of malaria 24,27,28,29,30,31] can be rewritten in the following form:

Keeping all the above aspects in consideration, we , _ _ 2 _
formulated a non-linear mathematical model by L‘,’ 9Ny — Ly —aly —mby = yLoP (23)
introducing Larvivorous fish population and the reservoir N, = mby — d2Ny, (2b)
human population. We found the equilibria and analyzed ) — BNy — | (In+Rn) @l 20)
the stability of these equilibria. Later we applied the vV — (Ny—1v) N, 2V

optimal control by introducing insecticide control — KVL P — daP od
parameter to the model and analyzed it using the methocr, Vv 3" (2d)

of Pontragin’s Maximum Principlé]. Nf = A — daNp — dslh, (2e)
This paper is organized as follows: Sectidh r_ e

describes the basic model, sectidh elaborates the "~ PP(Nh—In—Rn) Nn kalh, (20

existence of equilibria and backward bifurcation using theR/h = ptlh— (ds+11)Rn, (29)

center manifold theorem. Sectiod deals with the
stability analysis and numerical simulation which affirms wherek; = (d4 + ds+ 7).
our analytical findings. Section5 describes the
application of optimal control to the proposed model and
numerical simulation of optimal control model. At the . .
last we have given our results as conclusion in sed@ion 2.1 The Basic Reproduction Number Ry
The basic reproduction number is defined as the number
2 TheModd of secondary infections generated by a typical infected
individual in an otherwise disease free population in
The whole human populatioiNg(t)) under consideration his/her whole infectious period. The reproduction number
is divided into three disjoint classes namely susceptible(Ry) for our model is computed using the method
class (S(t)), infected class(l(t)) and the class of described in40 and using the same notation as #0[
recovered individuals(R,(t)) and the whole adult the matrices# and? are given by
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Table 1. Description of parameters
Parameter  Description

g Vector's egg laying rate
k Tropical convention efficiency
a Density dependent mortality rate of larvae
m Maturation rate of larvae
y Predation rate
B Mosquitoes biting rate
b Probability of disease transmission from infectious méses to humans
c Probability of disease transmission from infectious hust@amosquitoes
N Recruitment rate in the Susceptible humans class
o Proportion recovered with temporary immunity
I Loss of immunity rate for Recovered humans
T Rate of treatment
d1 Natural mortality rate in mosquito larvae
do Natural mortality rate in adult mosquitoes
ds Natural mortality rate in predators (Larvivorous fishes)
ds Natural mortality rate in humans
ds Disease induced mortality rate in humans
(h d:j \
T ! Recruitment
Predators(P) q
Mos&l?ﬁ\(ﬁzls (L) |7 (LarFYiiglls)rous ILsIﬁfﬁig‘;l(bslg ~dy
1 P
da- M?,;‘Zﬁ?%’&;‘;%i) """"""""""""""""" Humans(h) | (s + d5)
. Humane() |
Fig. 1. Transfer diagram of the model.
CBdsA; | cBdsApT  cBdsA
cBS, (‘e ol 0
Nn k2|v Fy-1 b ki kiA(dg+11) A(dg+17)
= | = =
=1 sy | 7 ] > 0 0
0 —pTlh+ (dg+11)Ry dy
0 0 0
Now, the matrixF andV evaluated at disease free d.SO’ tpt’i\ reprotd.)LkJ:(i/tlg? .nur.nbébbwhlch is the spectral
equilibrium point are given by racdius ot the matri IS given by
bcdsAr (da+11+pT
Aqd Ad R‘):B\/kl/\dz ds+11 ‘
0 B2 B2 d, O 0
F={b38 O 0 V=0 ki 0 . b
’ , cdaA1(1+kp) bBg1A;
0 —p1 dg+lI i.e = =
°c o 0 pT Ca+l Ro=B\ —iord; KAy
ith oz = cBda(1+ kp) andkp = — L
And the matrixFV 1 is given by with gy = cBda(1+ k) andkp = (da+11)
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Here the numbeuF% gives the average number of summarized below:
infected mosquitoes (humans) generated by one typical
infected mosquito (human) in a fully susceptible Let us assume thatB3 — 4B;B; > 0 and

population. disc = |/B%— 4B;Bs.

It is easy to see that the discriminant can be obtained as
3 Equilibria follows:
disc? = (Ho — Hy + Hz)? + 4HH
The equilibria for our model are determined by setting (Hz=HaHy)"+ 4HaHs,
right hand sides of the mode2)(to zero. The system2f  \yhich implies that the discriminai2 — 4BBs is always
has following equilibria namelyE; (0,0,0,0,4—4,0,0), positive forRy > 1.
Also, it is observed that we can have positive equilibrium

* L* * L* £
B (Liomit.0.0.4.0.0). B (Lmgt 0P £.00). Lt A
Ba (Lo NG 1P NG 1R, ;). where ie T We must have
Lo B dic A dis? (A B 2
' ’ —_— T — — r——— —_— T =
ky' 2B; 2By s (2B1)2 " \ds 2B,
* rT“‘V _ m:g _ 2
NG = Y = 2 A By (A ABy
d2 deV l.e B— < d_ + ﬁ
1 CBAL(1+kp)dal}; _ hALl} ' ° ° Q:1L+k YbBa1Ard
V' cB(1+kp)dali +d2(A —dslf)  auli+d2(A —dsl))” Proceeding this way we ge 2PPAPL o

~gm—dy(di+aLj+m) ke ds(dads — a1)

p* g ) = (1 — 005 <0
A —del* 2y — Bl >0
Ny = 5 > h. Hence for the existence of positive equilibrium point we
,L;lT must haveB; > 0 andl,, < A
* (W)Iﬁ:kzlﬁ’ ds
4Tl Also we concluded that wherB; <0, there is no
andI; is the positive root of the following quadratic equilibrium point.
equation So we consider only the cases unégr> 0
CASE (1): Ry > 1 (Also B3 < 0), we have the following
Byl2+ Byl + B3 = 0. (3)  sub-cases.
The expressions fd;, B, andBs of (3) are as follows: Sub-case (1a): If B, > 0, there is only one change of sign
By = kyds(dads — qu) in the quadratic equation

Bz = KiGdsA (RE — 2) + Aky [Oa + (1 + ko) dpdaR3],

B1l2 + Bl + B3 = 0.
= Ky ads (RS — 1) -+ Aky (01 — dads) 1l +Baln +Bg

+(1+k2)bBg1A1ds, So by Descartes’s rule of signs, there exigps at-most one
= Hi+Ha+Hs, ) positive root. It is easy to see that 229 s the
B — dokiA2 (1 bcBdaAa (1 + ko) 2B
3 = V2Rl - doki A desired positive root (as4 |B;| < disc).
_ 2
= dakgA® (1~ R%)’ Sub-case (1b): If B, < 0, again there is only one change
where of sign and the expression to obtain the positive root is

same as in the above sub-case.
H1 = kqd2dsA (R3 — 1), Ha = Aky (g1 — dads) ,
CASE (2): Ry < 1 (Also Bz > 0), we have the following
Hz = (1+k2)bBa1A1ds. sub-cases.

The two roots of this quadratic equation are given by Sub-case (2a): If B, > 0, then there is no change of sign

5 and there is no equilibrium in this case.
—Bz+/B5—4B1B3 Sub-case (2b): If B, < 0, then there are two changes of
In = 2B, ’ signs and of course there exists at most two positive roots

of the quadratic equation. For the quadratic equation (3)
Now depending upon the signs Bf, B, andBs, we may  to have real roots we must need to hige- 4B,B3 > 0.
have unique, two or no positive roots. These findings aren this case, we havdisc < |B;|, B, < 0 andB; > 0. And

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 4, 1893-1913 (2015)www.naturalspublishing.com/Journals.asp NS = 1897
disc .
the roots are given b = 2—81 LI 2IB which must be theform% = (fq, fp, f3, T4, f5, s, f7)T as follows:
A . I
less thand— to have two positive non-trivial equilibria. Xy = gXp — diXg — axf — MX1 — YX1X4, (5a)
5
This result is summarized below: X = mxg — doXp, (5b)
(X6 +X7)
=cB(x— — dox; 5c
The following conditions are needed for the eX|stence Blie—xs) X5 278 (5¢)
of two positive roots Xy = Kyx1xq — daxg, 5d
Condition 1:B3 — 48B3 > 0 o Ayi e d ((56))
Condifon 2:82 <0 5= P 5X6’X3
isc _ A X = bB (X5 — X6 — X7)— — k 5f
Condition 3:—22 + I A 5 — X6 —X7) 1%, (5f)
oS B, " 2B, ~ds Xs
From conditon 3 we proceed as follows: X, = ptxg— (dg+11)x7, (59)
—82 disc A
2B, 2B, ~ de The Jacobian of the systerb) (at DFE is given by
a;z g 0 —-yq O 0
) m —d, 0 0 0 o 0
dI_SC < (A.,.ﬁ) (4) 0 0 —dy O 0 cﬁ*% 0
(2By) ds 2By = ks 0 0 kpi—ds 0 0 0
0 0 0 0 —ds —dg 0
The RHS of the inequality4) can be simplified as 8 8 bg % % ;krl 7(df+|l>
whereay1 = —(d1 4+ 2ax] + m+ yx;).

e [ K0205A (1 — R®) + (1+ ko) bBanAcda]
= & [Hi+Hs

Thus ineqality 4)
disc

iT < Hi1+Hs
From this we see thai; + Hz > 0 is necessary for the

existence of two positive roots.

Hi+H3>0 = k1d2d5/\(1— F(%) <

can be rewritten as

(1 + kz) be1A1d4

= ds— d5R(2) < (1+ kz)belAlF%d4

= Trods el
ds
=\ Trk)dsrds ~ 0 <1

Consider the case whd®y = 1. Suppose thgk = 3*
is chosen as a bifurcation parameter. Solvingfdirom
Rp =1 gives
Nkydo

B=p"= baiAs

Using the following theorem which is reproduced from
Referencesq1] we will be able to determine whether or
not the systemg) exhibits backward bifurcation & = 1.

Theorem 1.Consider the following general system of
ordinary differential equationswith a parameter ¢

dx

Fri f(x @)

Hence the final condition for the existence of two

positive roots and backward bifurcation is

ds
Ark)dsrds ~ 0=t
ds .
We denote the val [(ETAT asR§ whichwe

say the critical value oRy.

3.1 Bifurcation Analysis

Let LV:XlaNV = X27IV: X3, P= X4, Nh = Xs, Ih = Xe,
and R, = x7. Further, by using the vector notatiofi=
(X1,X2,X3,Xa,Xs5, X6, X7) ", the system2) can be written in

f:R"XR—R

and

f € C3(R"xR),

where 0isan equilibriumpoint of thesystem (i.e.f (0, @) =
Ofor all @) and

1. A = D4f(0,0) = ("f' (0,0)) is the linearization
matrix of the system around the equilibrium O with ¢
evaluated at 0;

2. Zeroisa simple eigenvalue of A and other eigenvalues
of A have negative real parts;

3. Matrix A has a right eigenvector w and a left
eigenvector v corresponding to the zero eigenvalue.
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Let f bethe k' component of f and derivatives are given by

0213 0°f3  cB(Xe+x7)

2f = = 2 ) (Ga)
a1 = 2 j— VMW —;, dk, (0,0), P0G OX50%s s
Xi0X; 0213 0213 cp (6b)
2 = ==
by = Zl?,i:lkaid_—f"(O, 0), Ox30%  0%0% X
9%0¢ 0°fs 0%t B (60)
0X30X7 B 0X70X3 n X57
) dzfg . (92f3 . CB(Xz—X3) 6d
then the local dynamics of the system around the 5y 9.~ Oxgdxs x2 : (6d)
equilibrium point 0 is totally determined by the signs of ) )
a; and by. Particularly, if a; > 0 and b; > 0, then a 0°fs  0°fs  cBle—X3) (6e)
backward bifurcation occursat ¢ = 0. OXs0X7  O0X70%5 xg ’
0%f3  cB(x2—X3)(Xe +X7) (6
2 = 3 ’
0xs X5
0°fe _ 0°fs _ bB(xe+x7) (60)
0X3(9X5 0X5(9X3 Xg ’
3.1.1 Eigenvalues alp- 92 fg 92fg bp 6h
Ox30xs  O%e0x3 X2’ (6h)
0% fg B 0% fg _ bB (6i)
0x30%7  Ox70%s X’
It can be easily seen that the Jacobian v@ta: B* of the 0%fs  0°fg  bPxs 6)
linearized system has a simple zero eigenvalue and all th@xzdxs ~ dIxgdxs x% ’ g
other eigenvalues have negative real parts. Hence, thed2f 22f b
center manifold theory can be used to analyze the 6 _ 6 _ BX3, (6k)
dynamics of the systenb) near = B*. For the case 0X30%  O%0x3 X2
whenRp = 1, using the technique in Castillo-Chavez and  52f;  ppB(xs — x5 — X7)xs
Song 1], it can be shown that the matri. has a right > = 3 : (61)
eigenvector (corresponding to the zero eigenvalue), given %5 X5
by w = [wy Wy W3 W4 W5 We W7|T, where
It follows from the above expressions that
ka(dsg+17)
W1:W2:Oa W3 = —————Wg7, W4:07 2cBv: X
bBpT ay = & 3{W3 {Ws()((aJr 7)—(W6+W7)”
Wi d5(d4+|1)w Wi (d4+|l)w wr =wy; >0 N X5
5= —F——— W7, Wg = ———— W7, Wy =W7 > 0. 1
dapt Pt 2B (%o — xa)wis | 2ws ( 27} _ (wg+wy)
X5 (X5)2 J
2bBV6
—— { W3 [W5 (Xg + X7) — (Wg + W
Similarly, the matrix Jg- has a left eigenvector (Xs)2 (W [Ws (X6 +x7) = (We +wr)
(corresponding to the zero eigenvalue), denoted by 2bpBve X5 — (Xg + X7 1
V= [V1 V2 V3 V4 V5 Vg V7], Where 02 {X3W5 [2w5 <#) + (We + w7) }
kid ]
= ﬁ { (w3 —wg —W7)cvads — cvadaAgWs(We +Wr) }
d>
Vi=Vo=V4=V5=Vy; = 0, V3 =V3 > 0, Vg = — V3. kldz bVedi
b _
B bauAy { A W3(Wg + W)
Computation of a;: Computation of by:

For the system %), the associated non-zero partial For the computation dlfy, it is found that the associated
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non-zero partial derivatives are when Ry < 1 and hihy — hg > 0, where hy, hy and hs are
92 X6+ %) given in the proof of this theorem. The endemic
3 _ et X7 7 (7a)  equilibrium point E4 (Ly, Ny, Iy, P*, Nz, 17, Ry) is locally
0x30B* X5 asymptotically stable provided
0%fs  —clx—X3)(X6+X7) sy % >0 g -g3 >0 u >0 =134
908" % ; (70) & uyuuz > U3 + u2uy, where g; and u; are given in the
proof of the theorem.
0xs0B* X5 Proof. The variational matrix corresponding to the system
0%f3  c(x2—Xa) (2) is given by
= ) 7d 0 by 0 0 0
0x70B* X5 (7d) aél 7%2 0 %L 0 o0 0
0 —agy—d 0 0
0%f3  b(Xs —Xe—X7) (7€) M= | kP T KyLy—da T 0
;= ) 0 0 0 0 —d4 —d 0
dX320[3 X5 0 0 & 0 ae: 357—5k1 a7
0°f3  b(Xe+X7)%3 7 0 0 0 0 0 pt  —(ds+l)
9%0B" X52> ) where
02f3 o —bxs (79) a1 = —(d1+20LV+ m+ VP),
0xg0B* X 9 Ih+ Ry
) a2 =cf :
0-f3 . —bX3 (7h) N\
0x;0B* X5 ass — OB <(Nv—|v)(|h+Rh)>
It follows from the above expressions that I\ ’
—1
Xo — X3 _ Nv \
b1=V3{C< . )(W6+W7)} asﬁ—CB( N >,
X oy N — Ih— Ry
Xg+ X7 Xo—X3 agz3=D <7h h ),
_v3{0< v )x {W3—|—W5< v )” 3=DbB N,
(Ih+ Rp)l
+bV6{W3—§—z(W6—|—W7)} ags = bp <T§V )
Cbved (XX Jwe (28) —w as7 = —bp (I—V>
6 o 5\ X 3 Nh
_ V3CA1d4 (We -+ W7) + Vgbws > 0 The variational matrix corresponding to the systeB))(&t
A

the equilibrium poin€; (0,0,0,0,4-,0,0) is given b
Thus, the following result is established. a P 1( da ) 9 Y

Theorem 2.The model exhibits backward bifurcation at —(d+m g 0 0O 0 O 0
Ro = 1 whenever a; is positive. m -db 0O 0 O O 0
0 0 -db 0O 0 O 0
M; = 0 0O 0 -d3 0 O 0
4 Stability Analysis and Numerical 8 8 b% g —8'4 _ES 8
. . —ky
Simulation 0 0 0 0 0 pr —(dath)
4.1 Sability Analysis Here five roots of the characteristic polynomial

. o ) corresponding to the matrix M; are
The local stability results of the equilibria are estal#idh —(dg+11), —da, —dz, —dp and—ky = —(ds + ds + 7) and

using'variational matrix method and are stated in theginer two roots are given by the roots of the following
following theorem. quadratic equation,

Theorem 3.The equilibrium point E4(0,0,0,0, d44,0, 0) is
locally asymptotically stable if da(d; + m) > gm. The
equilibrium  point - E, (L\’;,Nj = mg,0,0,4.0, O) IS From the above quadratic equation, it is clear this
locally asymptotically stable if (d + 2aLy + m)dy > gm. equilibrium pointE; is stable ifdy(dy + m) > gm.

The disease free equilibrium point The variational matrix at the equilibrium point
Es (L\’;, N, 0, P*, dA4,o, O) is locally asymptotically stable  E; (L\’;, mb—z,o, 0, dA4,o, 0) is given by

AZ 4 (dg+ dz +m)A 4 {dz(d; +m) —gm} = 0.
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—(dh+2aLli+m) g 0 —yiy 0 O 0
m o 0 0 0 0 0
0 00-dpb 0 0 0 0 where
My = 0 0 0 —-d3 0 0 0 .
0 0 0 0 -dg-ds O h1= —[f11+d2+d3—kyLy],
o 0 b8 0 0 -k O R i} -
0 0 0 0 pr —(dgthy) = —da(kyLy — d3) + [ fa(kyLy — dg) + ky*L;P7]
Here also flve roots of the characteristic polynomial of 4 f11dp — Mg

this variational matrix are-(ds + |1), —ds, —d3, —d, and s .

—k1 = —(d4+ ds+ 1) and other two roots are given by the hg = —ky?doLyP" + (kyLy — dg)(f120> — mg).

roots of the following quadratic equation, By Routh Hurwitz criteria, roots of this cubic equation
will have negative real parts ihih, — hg is positive.
Hence the equilibrium poins is locally asymptotically

2 .
AT H(dh+dz+2aLy + M)A stable providedRy < 1 & hihy > hs .

+{(d1+2aLy+m)d,—gm} = 0. The variational matrix at the equilibrium point
From above quadratic equation, it is clear that theBa (Lv, NG, 13, P* N5, 1, Ry) is given by
b11 g 0 -ybv 0 0 0
equilibrium pointE; is locally asymptotically stable if m-dy 0 o o0 0 0
(d1+2aLy+m)dx > gm. 0 bgp —bgp—dp 0  bgs b 0
Mg=| kP 0 0 kyly—ds O 0 0
The variational matrix at the equilibrium point 'E) § b?(} (2 [,%;‘ bﬁ;ﬂskl 327|
Es (L\’;,N\’;,O,P*,%,0,0) is given by where pT —(dath)
-fn g 0 -y O 0 0
m —d 0 0 0 ONV 0 b1 = —(d1+2aLy+m+ yP),
0 0 -d O 0 cBf|— 0 Ih+
Ms = : 5(x) brz = cp (7).
kP O O kyly—d3 O 0 0 h
0 0 0 0 —d —d 0 _
0 0B 0 0 kg 0 bes = B (W)
0o 00 0 o0 oT  —(datly) N2
where f11 = (di + 2aLy + m+ yP*). Clearly two )
eigenvalues of this matrix are(ds +11), and—ds. Two  bgg = cf3 < V),
of the remaining five eigenvalues are the eigenvalues of N
the following matri h—Ih—
wing ix beszbﬁ( u Rh>7
h
—dyc I I
( 2 CB ) bGSZbB((HZeh)v)’
bp —k1 N
The two eigenvalues of this matrix are given by be7 — —b v
following quadratic equation Np /'
) beB2N; The eigenvalues of this variational matrix are given by the
A%+ (d2 ko)A + doky — == = 0. roots of the following two equations iA: A3+ giA2+
h goA + g3 =0andA?+uiA3+ upA 2+ uzA +us = 0 which
Substituting the values d; andN;, the above equation aré the characteristic equations of the following matrices
becomes respectively:
bCB2A1d4 —f —vL*
2 _ 0P Aatay 11 9 yLy
A+ (da+kp)A + dokg <1 Akad, 0. m —d, 0 7
: : : . kyP* 0 kyLy—
So roots of this quadratic have negative real parts provided
the basic reproduction numbig < 1. bas bae b O
The remaining three eigenvalues of the mawixare 0 ok 0
the eigenvalues of the following matrix 47
bs3 b5 bes be7
_fll g _y]_\’; 0 O pT b77
m —dp 0 . where
kyP* 0 kylL:—
! g1 = —[f1a+dz+dg— kyLy),

The three eigenvalues of this matrix are given by theg = —dy(kyL} —d3)+[—f11(kyL*—d3)+ky2L*P*]
following cubic equation im, o Vmg v v
1102 — Mg,

A2+ hiA% A +h3=0, s = —ky?doLyP* + (KyLy — da)( f1202 — mg),
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Table 2: Parameter Values and References

Parameter Baseline value Reference
g 30 (23]

k 0.0005 R3]

a 0.001 Assumed
m 1/16 23]

y 0.0005 Assumed
B 0.25 Assumed
b 0.5 [23]

c 0.5 [23]

A 0.5 [24]

P 0.01 23]

Iy 0.014 Assumed
T 0.1 Assumed
di 0.1 [23]

dy 0.1 [23]

ds3 1/365 R3]

da 1/(70x 365) [23,24]

ds 10/(70x 365  Assumed

U1 = baz— ds + bes + b77,

U — b3z bss| | |—ds —ds| | |bees bs7 n b33 bss
2 0 —ds| ' |bes bss p b77] ' |be3 bss
—ds O bsz O
Tl o by 0 by’
b33 b3s bze| |[b3zhbze O b3z bss O
Uz =| 0 —ds —ds|+ |bez bss be7|+| O —ds O
be3 bss bes 0 pt byy 0 1 brr
—ds —ds O
+| bes bss be7|,
0 pt1 byy
baz b3s bz O
|0 —di—ds 0
4~ | bs3 bes bes bs7 |’
0O O pT b77

By Routh Hurwitz criteria, roots of this cubic equation
will have negative real parts iy > 0, i = 1,3,4
& UplpUz > US4+ u2uy. Hence the equilibrium poiriy is
locally asymptotically stable provided
O > Oa 0192 — O3 > Oa u > Oa i = 17374
& UplpUg > U3+ U2Uy.

4.2 Numerical simulation

3 are showing the backward bifurcation. Figure 3 is
showing the effect of rate of treatmenbn the dynamics

of this disease. From the Figure 3, it can be observed that
there is a shift in the backward bifurcation curves with the
increase in the value df, i.e., the increase in the rate of
treatment is causing the backward bifurcation curve to
shift to right, which leads to increase in i (the
critical value of theRp). From this figure it is easy to
visualize that the further increase incan forceRj to
shift towards 1. As in the case of backward bifurcation,
one need to lower thd&y, value belowRj to get the
disease-free equilibrium to be stable, so increase in it
showing the positive impact of the treatment. The
biological interpretation of this is that the increase ie th
rate of treatment can lead to disappearance of the
backward bifurcation curve and in this case lowerig
below one will be sufficient to eliminate the disease from
the population. So if the rate of treatment is high enough,
we will have only forward bifurcation and loweringo
below one would be sufficient to make the disease-free
equilibrium to be globally stable. This fact is
demonstrated in Figure 4, where the rate of treatrmést
taken as 1 and we have only the forward bifurcation. The
system P) is simulated for various set of parameters
satisfying the conditions of local asymptotic stability of
different equilibria E; and E, by fourth order
Runge—Kutta method. To exhibit the stability of the DFE
E; we considered the parametgrs- 10,3 = 0.14 and all

the other parameters are taken from Table 2. In a similar
way to show the stability of EEE,, we considered the
parameterg) = 10 and all the other parameters are taken
from Table 2. The stability of these equilibria are
demonstrated in Figures 5, 6, 7 & 8.

5 The Optimal Control Model

Here in this section we have extended the basic mddel (
to optimal control model by introducing the time
dependent variableu(t) which is representing the

At first we demonstrate the backward bifurcation for the insecticide control. We shall use Pontryagin’s Maximum

model @) by considering3 as the bifurcation parameter.

Principle (see35,42,43,44), etc.) to analyze this model.

All other parameter values are as in Table 2. TheOur aim is to find the minimal effort required to decrease

bifurcation diagram is obtained by varyin@ and
corresponding values &%, is placed along the x-axis for

the mosquitoes population considering the cost of
insecticide application, while minimizing the cost of

better visualization of this phenomenon. Here Figures 2 &implementation of such measures. The optimal control

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1902

S. Athithan, M. Ghosh: Stability Analysis and Optimal Cahiwf a Malaria Model...

1500 : . .
Stable EE
1000 | /
_5
Unstable E
500 |-
o Stable DFE Unstable DFE
o) 0.5 1 1.5
|:20

Fig. 2: Variation of the equilibrium level ofy, with B8 showing the backward bifurcation of the mod2) where all the other parameters

are given in Table 2.

1500 : . .
Stable EE
1000 | 7
T=0.1 >
= — 1=0.5
Unstable EE
500 |-
o Stable DFE Unstable DFE
o) 0.5 1 1.5
Ro

Fig. 3: Effect of r on the backward bifurcation curve where all the other patarseare given in Table 2.
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Fig. 4. Variation of the equilibrium level ofi, with 3 showing the forward bifurcation of the mode) for the parameter values = 0.9,
k=0.0010171 =1 and all the other parameters are given in Table 2.
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Fig. 5: Variation of I, andR,, with time showing the stability of the disease-free Equilim whenRy < 1 for the parameter values
g= 10,3 = 0.14 and all the other parameters are given in Table 2.
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Fig. 6: Variation ofLy, Ny andl, with time showing the stability of the disease-free Equilim whenRy < 1 for the parameter values
g= 10,8 = 0.14 and all the other parameters are given in Table 2.
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Fig. 7: Variation of I, andR;, with time showing the stability of endemic equilibrium whigg > 1 for the parameter valugs= 10 and
all the other parameters are given in Table 2.
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Fig. 8: Variation ofLy, Ny andly with time showing the stability of endemic equilibrium whBg > 1 for the parameter values g = 10
and all the other parameters are given in Table 2.

model to be optimized is given below: represent, respectively, the weight constants of the
;o _ 2 B susceptible and infected mosquito populations. On the
Ly =g\, —dily (IaLVRh)mLV yLP (82) other handCs izs weight constant for mosquito control.
h+ The term Csu describes the cost associated with
=mLy—cfS,— —(d t 8b 3
S v BS Nh (G +u(b)S, (8) mosquito control.
(In+Rn)
= CBS/Th — (d2+u(t))lv, (8c) The Lagrangian of this problem is given by
P = kyL,P—d3P, (8d)
|
S = A —bBSC — S+ [(1- )Tl +1Ry, (80) L
| h L(S,Iv,u) = C1S,+ Coly + Ec3u2. (10)
Ih = bBSh - — (da+0s+ Dy, (8
h
Ry = pTlh— (da+11)Ry, (89)

Here insecticide contral(t) is applied only to adult form  Next we form the Hamiltonian H for our problem as
of mosquitoes assuming that this control is effective onlyfollows:

in the adult stage and not in the aquatic phase. The

objective (cost) functional corresponding to this optimal

control model 8) is given by

dLy ds, dly dpP

T 1 H=L(S,I AM—— +Ao—— +Az3— + Ag—
J(u):/ (CS/+Caly+ 5Ca?)alt, ) (S vy ) Mg - Ao~ + A+ Aa e
0 ds, diy dRy
subject to the state system given I8Y.( +)‘5E +)‘6E +’\7F’
Our objective is to 'find a controb* such that
J(u) = min - J(u) where
Q = {u:is measurable andQu(t) <1} fort € [0,T] is
the set for the control. where A, i = 1,...,7 are the adjoint variables or the

Here, the valueu(t) = 1 represents the maximal co-state variables and can be determined by solving the
control due to insecticide effect. The quantiti®sandC, following system of differential equations:
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With the help of Pontryagin’s Maximum Principl&][we
/ oH now state and prove the following theorem.

v Theorem 5.Theoptimal control u* which minimizes J over
+Aom+AgkyP, (11a)  theregion Q isgiven by
oH I +
Ay = 35, = Ao[—¢ [3( h R“) — (dz+u(t))] u* = max{min(d,1),0} (13)
I where
+)\3B(h+Rh) (11b) S
o h 0= )\23/+/\3|v
Ay = —op = sl u(t)) - )\5bBNi +/\6bﬁNi(11c) Cs
/ 0I-\|/ " " Proof.Using the optimality condition
A= =55 = —Myly+Adlkyly — dgl, (11d) M
P L [bB——d]+)\ [bB . (e au
5= ﬁSn 4 6
A = _OH _/\Z[CB_] +)\3[c3_] S+ Asly,
6 dly Nh Nh u= 7(:3 (=0).
+As5[(1—p)1] —As(da+ds+ T) + A7(pT), 11f , ) )
;I[-E P)T] = As(da+ds+ 1) + Ar(pT) (119 This control is bounded with upper and lower bounds as 0
)\; = = —)\z[CBi] +)\3[Cﬁi] and 1 respectively,ee u=0ifl<Oandu=1ifld>1
ORy h Nh otherwiseu = (. Hence for this contro{u*), we get the
+Asly — Az(dg +17). (11g)  optimum value of the functional given by equation9).

Let%,S,. 17, P, S, ik andR, be the optimum values of Hence the theorem.
Ly, S, Iv,P. S In ~an~d R, respectively. Also let
{A1,A2,A3,A4,A5,A6,A7} be the solutions of the system

(11). 5.1 Numerical Smulation for the optimal
We now state and prove the following theorem by control problem
following [45].
Theorem 4.There exists optimal controls u* € Q such [N this section the effect of optimal control by introducing
that insecticide controli(t) on the basic model2j has been
J(ut) = min - J(u) shown through simulation. The parameters used for the
. ueQ simulation purpose are as stated in Table 2, except the
subject to the system (8). parameteg which is 33. Moreover, the time interval for

Proof.We use §5] to prove this theorem. Here the control Which the optimal control is applied is taken as 100 days.
and the state variables are nonnegative values. Th¥/e compared the results of optimal control mod@) (
necessary convexity of the objective functionalunis ~ With the results of model2). The optimality system in
satisfied for this minimizing problem. The control Section5 is solved by iterative method with the help of
variable setu € Q is also convex and closed by Runge—Kutta fourth order procedure (see Jung et@).[
definition. The optimal system is bounded which Lenhart and Workma#d[/], etc.). At first we solve the
determines the compactness needed for the existence tate equations by the forward Runge—Kutta fourth order
the optimal control. In addition, the integrand in the procedure for the time interval [0, 100] starting with an
functional @), C;S, + Coly + 1C3u2 is convex on the initial guess for the adjoint variables. Then we use the
control setO and the state variables are bounded. Thisbackward Runge—Kutta fourth order procedure to solve
completes the proof of this theorem. the adjoint variables in the same time interval with the
help of the solutions of the state variables and the
transversal conditions. From Figure 9, it is evident that
the control takes the highest value 1 in the beginning and
it has to be maintained up to 20 days then the usage of
insecticide can be relaxed but to be maintained at certain
level then it has to be reached to the minimum value O at
the final timeT = 100 days. From these we conclude that

Since there exists an optimal control for minimizing
the functional subject to equation8) (and (1), we use
Pontryagin’s Maximum Principle to derive the necessary:
conditions to find the optimal solution as follows:

If (x,u) is an optimal solution of an optimal control
problem, then there exists a non trivial vector function

A=Az, +An) satisfying the following equalities. 0 nsecticide control is to be maintained at certain level
dx _ OH(txUA) up to certain days according to the duration of the optimal
dt — aH(td;(\uA)’ strategy period to get the desired optimal value for the

0= (12)  functional ). Figures 10-14 represent the plots of
A= 75*'&0);“ . Ih, lv, Lv, Nn, Ny and R, with and without optimal
(@© 2015 NSP
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Fig. 9: Control profile of the parametext) (insecticide control) of the mode8) for the parameter values= 3.3, 3 = 0.3 and all the
other parameter values are as given in Table 2.
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Fig. 10: Simulations of the malaria model showing the effect of thinoal control strategy of,.
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Fig. 11: Simulations of the malaria model showing the effect of thrnoal control strategy of,.
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Fig. 12: Simulations of the malaria model showing the effect of thnoal control strategy ohy,.
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Fig. 13: Simulations of the malaria model showing the effect of thnoal control strategy oiN,.
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Fig. 14: Simulations of the malaria model showing the effect of thénoal control strategy oM.
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Fig. 15: Simulations of the malaria model showing the effect of thnoal control strategy ofy,.
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Fig. 16: Plots of the adjoint variables;, j = 1,2...4.
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Fig. 17: Plots of the adjoint variablek;, j = 5,6,7.

control respectively. From these figures it is evident thatonly forward bifurcation and in this case reducifRg

the implementation of optimal control strategies producesbelow 1 becomes sufficient to eliminate the disease from

better results in the sense that it decreases théhe population.

infected/infectious population. Further the basic model is extended to an optimal

From Figures 16 & 17 it is evident that the adjoint control problem to study the dynamics of the disease by

variables are directly related to the change of the value ofntroducing the insecticide control parameter.

the Hamiltonian as the time derivatives of the adjoint Pontryagin's maximum principle is used to solve this

variables are negative of the corresponding partialoptimal control problem. Later, numerical simulation is

derivatives of the Hamiltoniay with respect to the state performed to see the effect of optimal control on the

variables. dynamics of this disease. Simulation results predict that
the optimal control model gives better results compared to
the model without optimal control.

6 Conclusion
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