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Abstract: In this present study, the exact traveling wave solutions tothe time fractional generalized Hirota-Satsuma coupled KdV
system are studied by using the direct algebraic method. Theexact and complex solutions obtained during the present investigation are
new, whereas literature survey has revealed generalizations of solutions. The solutions obtained during the present work demonstrate
the fact that solutions to the time fractional Generalized Hirota-Satsuma coupled KdV system can exhibit a variety of behaviors. It is
also exhibited that the proposed method is more effective and general in nature.
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1 Introduction

As is well known, solitons are universal phenomenon,
appearing in a great array of contexts such as, for
example, nonlinear optics, plasma physics, fluid
dynamics, semiconductors and many other systems [1,2,
3].
Studying of nonlinear evolution equations (NLEEs)
modeling various physical phenomena has played a
significant role in many scientific applications such as
water waves, nonlinear optics, plasma physics and solid
state physics [4,5,6,7].
Many powerful methods for finding exact solutions of
NLEEs have been proposed, such as ansatz method and
topological solitons [8,9,10,11], tanh method [12,13],
multiple exp-function method [14], simplest equation
method [15,16,17,18], Hirotas direct method [19,20],
transformed rational function method [21] and so on.
This work aims to find out the solitary and complex wave
solutions to the time fractional Generalized
Hirota–Satsuma coupled KdV system [22] with following
form:

Dα
t u = 1

4uxxx +3uxu+3(−v2+w)x,

Dα
t v = 1

4vxxx −3ux, 0< α ≤ 1,
Dα

t w =− 1
2wxxx −3uwx.

(1)

The Generalized Hirota-Satsuma coupled KdV system is
one of the essential nonlinear equations in mathematics

and physics. Therefore, it is important to find solutions
for this equation. This equation arises as a special case of
the Toda lattice equation, a well- known soliton equation
in one space and one time dimension, which can be used
to model the interaction of neighboring particles of equal
mass in a lattice formation with a crystal. The
Generalized Hirota-Satsuma coupled KdV system has
many applications in many branches of nonlinear science.
One application of the Generalized Hirota-Satsuma
coupled KdV system is that it can be used to describe
generic properties of string dynamics for strings and
multi-strings in constant curvature space. Another
application of the sinh-Gordon equation is in the field of
thermodynamics, where it can be applied to exactly
calculate partition and correlation functions.
The paper is arranged as follows. In Section 2, we
describe briefly the Modified Riemann–Liouville
derivative with properties and simplest equation method.
In Section 3, we apply this method to the time fractional
Generalized Hirota-Satsuma coupled KdV system.

2 Modified Riemann-Liouville derivative
and direct algebraic method

In this section, we first give some definitions and
properties of the modified Riemann–Liouville derivative
which are used further in this paper. [23,24,25]
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Assume thatf : R → R,x → f (x) denote a continuous
(but not necessarily differentiable) function. The Jumarie
modified Riemann–Liouville derivative of orderα is
defined by the expression

Dα
x f (x)=























1
Γ (−α)

x
∫

0
(x− ξ )−α−1 [ f (ξ )− f (0)]dξ ,α ≺ 0

d
dx

Γ (1−α)

x
∫

0
(x− ξ )−α [ f (ξ )− f (0)]dξ ,0≺ α ≺ 1

( f (n)(x))(α−n) n ≤ α ≤ n+1,n ≥ 1
(2)

Some properties of the fractional modified Riemann-
Liouville derivative were summarized and three useful
formulas of them are

Dα
x xy =

Γ (1+ γ)
Γ (1+ γ −α)

xγ−α
,γ ≻ 0 (3)

Dα
x (u(x)v(x)) = v(x)Dα

x u(x)+ u(x)Dα
x v(x), (4)

Dα
x [ f (u(x))] = f ′(u)Dα

x u(x) = Dα
x f (u)(u′x)

α
, (5)

Which are direct consequences of the equalitydαx(t) =
Γ (1+α)dx(t).
Next, let us consider the time fractional differential
equation with independent variablesx = (x1,x2, ...,xm, t)
and a dependent variableu,

F(u , Dα
t u,ux1,ux2,ux3...

, D2α
t u,ux1x1,ux2x2,ux3x3, ...) = 0. (6)

Using the variable transformation

u(x1,x2, ...,xm, t) =U(ξ ),

ξ = x1+ l1x2+ ...+ lm−1xm +
λ tα

Γ (1+α)
β , (7)

wherek, li andλ are constants to be determined later; the
fractional differential equation (6) is reduced to a nonlinear
ordinary differential equation

H = (U(ξ ),U ′(ξ ),U ′′(ξ ), ...), (8)

Where ”′” = d
dξ .

We assume that Eq. (8) has a solution in the form

u(ξ ) =
n

∑
i=0

aiF
i(ξ ), (9)

Whereai(i = 1,2, ..,n) are real constants to be determined
later.F(ξ ) expresses the solution of the auxiliary ordinary
differential equation

F ′(ξ ) = b+F2(ξ ), (10)

Eq. (10) admits the following solutions:

F(ξ ) =
{

−
√
−b tanh(

√
−bξ ), b ≺ 0

−
√
−bcoth(

√
−bξ ), b ≺ 0

F(ξ ) =
{√

b tan(
√

bξ ), b ≻ 0
−
√

bcot(
√

bξ ), b ≻ 0
F(ξ ) =− 1

ξ , b = 0

(11)

Integer n in (9) can be determined by considering
homogeneous balance [8] between the nonlinear terms
and the highest derivatives ofu(ξ )in Eq. (8).
Substituting (9) into (8) with (10), then the left hand side
of Eq. (8) is converted into a polynomial inF(ξ ),
equating each coefficient of the polynomial to zero yields
a set of algebraic equations forai,k,c. Solving the
algebraic equations obtained and substituting the results
into (9), then we obtain the exact traveling wave solutions
for Eq. (1).

3 Application to the time fractional
Generalized Hirota–Satsuma coupled KdV
system:

Next, we study Eq. (1). Considering the following complex
transformation:

u(x, t) = 1
λ U2(ξ ),

v(x, t) =−λ +U(ξ ),
w(x, t) = 2λ 2−2λU(ξ ),

(12)

andξ = x− λ tα

Γ (1+α) .

Substituting Eq. (12) into Eq. (1), we can know that Eq.
(12) is reduced into ordinary differential equations:

λ (Uξ )
2+λUUξ ξ +3U4−4λ 2U2+6λ 4+2λ 2R = 0,

(13)
and

λUξ ξ +2U3−2λ 2U = 0, (14)

whereRis an integration constant to be determined later.

Case 1:BalancingUUξ ξ with U4 in Eq. (13) givesn = 1.
Therefore, we may choose

U = a1F + a0, (15)

Substituting Eq. (15) along with Eq. (9) in Eq. (13) and
setting all the coefficients of powersF to be zero, then we
obtain a system of nonlinear algebraic equations and by
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solving it, we obtain

a1 =±
√

2
4

√
4b+3,

a0 =±
√

2
24

√
9−16b2,

λ =− 4b+3
8 ,

R =− 1
4b+3

(

3
8(4b+3)2+ (4b+3)2

1152 (9−16b2)−
1

6912(9−16b2)2 + 4b+3
16 (4b+3)b2

)

(16)

From (11),(15) and (16), we obtain the solitary wave
solutions of (13) as follows

U1 = ±
√

2
4

√
4b+3[

√
−b tanh

√
−b(x+

4b+3tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2, (17)

Whereb ≺ 0andk is an arbitrary real constant. From (12)
we have

u1(x, t) = −
8

4b+3
(−

b
8
(4b+3)

× tanh2
√
−b(x+

(4b+3)tα

8Γ (1+α)

±
1
24

√

(4b+3)(9−16b2)

× [
√
−b tanh

√
−b(x+

(4b+3)tα

8Γ (1+α)
)]

+
1

288
(9−16b2))

v1(x, t) =
8

4b+3
±

√
2

4

√
4b+3[

√
−b

× tanh
√
−b(x+

(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2,

w1(x, t) = 2(
8

4b+3
)2−2(

8
4b+3

)[±
√

2
4

√
4b+3[

√
−b

× tanh
√
−b(x+

(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2

And

U2 = ±
√

2
4

√
4b+3[

√
−bcoth

√
−b(x+

(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2,

So

u2(x, t) = −
8

4b+3
(−

b
8
(4b+3)

× coth2
√
−b(x+

(4b+3)tα

8Γ (1+α)
)

±
1
24

√

(4b+3)(9−16b2)

× [
√
−bcoth

√
−b(x+

(4b+3)tα

8Γ (1+α)
)]

+
1

288
(9−16b2)).

v2(x, t) =
8

4b+3
±

√
2

4

√
4b+3[

√
−b

× coth
√
−b(x+

(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2,

w2(x, t) = 2(
8

4b+3
)2−2(

8
4b+3

)

× [±
√

2
4

√
4b+3[

√
−b

× coth
√
−b(x+

(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2],

Whereb ≺ 0andk is an arbitrary real constant.

U3 = ±
√

2
4

√
4b+3[

√
b tan

√
b(x+

(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2, (18)

Therefore

u3(x, t) =− 8
4b+3

(

b
8 (4b+3)tan2

√
b
(

x+ (4b+3)tα

8Γ (1+α)

)

± 1
24

√

(4b+3)(9−16b2)×
[√

b tan
√

b( x+ (4b+3)tα

8Γ (1+α))
]

+ 1
288

(

9−16b2
))

,

v3(x, t) =
8

4b+3
±

√
2

4

√
4b+3[

√
b

× tan
√

b(x+
(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2,
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w3(x, t) = 2(
8

4b+3
)2−2(

8
4b+3

)[±
√

2
4

√
4b+3[

√
b

× tan
√

b(x+
(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2

Figure 1: Complex solitary waves described by solution;
case1,v3(x, t) for b = 1,α = 1.

Figure 2: solitary waves described by solution; case1,
u3(x, t) for b = 1,α = 1.

Whereb ≻ 0andk is an arbitrary real constant. And

U4 = ±
√

2
4

√
4b+3[−

√
b tan

√
b(x+

(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2, (19)

Now,

u4(x, t) = −
8

4b+3
[±

√
2

4

√
4b+3[−

√
b

× cot
√

b(x+
(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2]2,

v4(x, t) =
8

4b+3
±

√
2

4

√
4b+3[−

√
b

× cot
√

b(x+
(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2,

w4(x, t) = 2(
8

4b+3
)2−2(

8
4b+3

)

× [±
√

2
4

√
4b+3[−

√
b

× cot
√

b(x+
(4b+3)tα

8Γ (1+α)
)]

±
√

2
24

√

9−16b2],

Whereb ≻ 0andk is an arbitrary real constant. Forb = 0

U5 =∓
2
√

6Γ (1+α)

8xΓ (1+α)+3tα ±
√

2
8

Substituting in (12) we have

u5(x, t) =− 8
4b+3

[

∓ 2
√

6Γ (1+α)
8xΓ (1+α)+3tα ±

√
2

8

]2
=

− 192
4b+3(

Γ (1+α)
8xΓ (1+α)+3tα )

2∓
√

3Γ (1+α)
8xΓ (1+α)+3tα + 1

32,

v5(x, t) =−λ ∓ 2
√

6Γ (1+α)
8xΓ (1+α)+3tα ±

√
2

8 ,

w5(x, t) =
(4b+3)2

32 + 4b+3
4

(

∓ 2
√

6Γ (1+α)
8xΓ (1+α)+3tα ±

√
2

8

)

,

Case 2:BalancingUξ ξ with U3 in Eq. (14) gives N= 1.
Therefore, we may choose

U = a1F + a0, (20)

Substituting Eq. (20) along with Eq. (10) in Eq. (14) and
setting all the coefficients of powersF to be zero, then we
obtain a system of nonlinear algebraic equations and by
solving it, we obtain

a1 =±
√

− b
5,

a0 =± 2
√

3bi
15 ,

λ = b
5

(21)
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From (11),(20) and (21), we obtain the complex travelling
wave solutions of (13) as follows

U1=±
√

−
b
5

[√
−b tanh

√
−b( x−

btα

5Γ (1+α)
)

]

±
2
√

3bi
15

,

Substituting in (12) we have

u1(x, t) = (−
b
5
)[
√
−b tanh

√
−b(x−

btα

5Γ (1+α)
)]2

±
4bi
15

√

−
3b
5
[
√
−b tanh

√
−b(x−

btα

5Γ (1+α)
)]

−
4
75

v1(x, t) = −
b
5
+[±

√

−
b
5
[
√
−b tanh

√
−b(x−

btα

5Γ (1+α)
)]

±
2
√

3bi
15

],

w1(x, t) =
2b
25

− [±
2b
5

√

−
b
5
[
√
−b tanh

√
−b(x−

btα

5Γ (1+α)
)]

±
4
√

3b2i
75

],

Figure 3: Complex solitary waves described by solution;
case2,u1(x, t) for b =−1,α = 1.

Figure 4: Complex solitary waves described by solution;
case2,w1(x, t) for b =−1,α = 1, .
Whereb ≺ 0 andk is an arbitrary real constant. And

U2 = ±
√

−
b
5
[
√
−bcoth

√
−b(x−

btα

5Γ (1+α)
)]

±
2
√

3bi
15

,

So

u2(x, t) = (− b
5)
[√

−bcoth
√
−b( x− btα

5Γ (1+α))
]2

±
4bi
15

√

− 3b
5

[√
−bcoth

√
−b( x− btα

5Γ (1+α)
)
]

− 4
75,

v2(x, t) = −
b
5
+[±

√

−
b
5
[
√
−bcoth

√
−b(x−

btα

5Γ (1+α)
)]

±
2
√

3bi
15

],

w2(x, t) =
2b
25

− [±
2b
5

√

−
b
5
[
√
−bcoth

√
−b(x−

btα

5Γ (1+α)
)]

±
4
√

3b2i
75

],

Whereb ≺ 0andk is an arbitrary real constant.

U3 =±
√

−
b
5

[√
b tan

√
b( x−

btα

5Γ (1+α)
)

]

±
2
√

3bi
15

,

Now

u3(x, t) = (− b
5)
[√

b tan
√

b( x− btα

5Γ (1+α))
]2
±

4bi
15

√

− 3b
5

[√
b tan

√
b( x− btα

5Γ (1+α)
)
]

− 4
75,
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v3(x, t) = −
b
5
+[±

√

−
b
5
[
√

b tan
√

b(x−
btα

5Γ (1+α)
)]

±
2
√

3bi
15

],

w3(x, t) =
2b
25

− [±
2b
5

√

−
b
5
[
√

b tan
√

b(x−
btα

5Γ (1+α)
)]

±
4
√

3b2i
75

],

Figure 5: solitary waves described by solution; case2
u3(x, t) for b = 1,α = 1.
Whereb ≻ 0andk is an arbitrary real constant.

U4 =±
√

−
b
5

[

−
√

bcot
√

b( x−
btα

5Γ (1+α)
)

]

±
2
√

3bi
15

,

and

u4(x, t) = (−
b
5
)[−

√
bcot

√
b(x−

btα

5Γ (1+α)
)]2

±
4bi
15

√

−
3b
5
[−

√
bcot

√
b(x−

btα

5Γ (1+α)
)]−

4
75

,

v4(x, t) = −
b
5
+±

√

−
b
5
[−

√
bcot

√
b(x−

btα

5Γ (1+α)
)]

±
2
√

3bi
15

,

w4(x, t) =
2b
25

−±
2b
5

√

−
b
5
[−

√
bcot

√
b(x−

btα

5Γ (1+α)
)]

±
4
√

3b2i
75

,

Whereb ≻ 0 andk is an arbitrary real constant. For
b = 0 don’t have any solution.

4 Conclusion

In this present work we deduce that the referred method
can be extended to solve many systems of nonlinear
partial differential equations which are arising in the
theory of solitons and other areas such as physics,
biology, and chemistry. With the help of symbolic
computation (Maple), a rich variety of exact solutions are
obtained by applying direct algebraic method, and the
method can be applied to other nonlinear evolution
equations.
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