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Abstract: An idealI on a nonempty setX is a subfamily ofP(X) which is closed under finite unions and subsets. The purpose of this
paper is to introduceδI −neighborhood in anI−proximity spaceand provides an alternative description to the study ofI−proximity
spaces. Moreover, a new topologyτ∗

U
via ideal and uniform space(X,U) is introduced. On comparing with an old topology, it is found

that the present one is finer.
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1 Introduction

The fundamental concept ofEfremovǐc proximity space
has been introduced by Efremovi ˇc [2]. In addition, Leader
[13,14] and Lodato [15,16] have worked with weaker
axioms than those of Efremovi ˇc proximity space enabling
them to introduce an arbitrary topology on the underlying
set. Furthermore,proximity relationsare useful in solving
problems based on human perception [20] that arise in
areas such as image analysis [5] and face recognition [3].
Cyclic contraction and best proximity point are among
the popular topics in the fixed point theory and many
results have been obtained, for instance, [1,8,9,24]. For
further results and applications of proximity relations.
(See [12,11,21,22,19].)

The notion of ideal topological spaceswas first
studied by Kuratowski [7] and Vaidyanathaswamy [25].
Compatibilityof the topology with an idealI was first
defined by Njastad [17]. In 1990, Jankovic and Hamlett
[6] investigated further properties of ideal topological
spaces. Zhan [27] introduced the uncertainties of ideal
theory on hemirings.

This paper is an attempt to induce a new proximity
relation via uniformity and ideal. In Section 2, all
preliminaries and theorems ofI−proximity structures,
uniformity and ideals which will be needed in the sequel
are briefly mentioned. In Section 3,δI −neighborhood in
an I−proximity space and provides an alternative

description to the study ofI−proximity spaces. In
Section 4, the operator∗ on P(X) with respect to an ideal
and uniformity U on X is introduced and various
properties of it are investigated. Moreover, the new
generated uniformity via ideal is presented which
generates a topologyτ∗

U
finer than the old one.

Furthermore,τ∗
U
= τδI

is proved.

2 Preliminaries and basic definitions

Let (X,τ) be a topological space. For a subsetA of X, A
andAo denote the closure and the interior ofA in (X,τ),
respectively.

Definition 2.1. [6] A nonempty collectionI of subsets of
a setX is called anideal on X, if it satisfies the following
assertions:

1. A∈ I andB∈ I ⇒ A∪B∈ I ,

2. A∈ I andB⊆ A⇒ B∈ I .

That is,I is closed under finite unions and subsets.

An ideal topological spaceis a topological space
(X,τ) with an idealI on X and is denoted by(X,τ,I ) .
For a subsetA ⊆ X, A∗(I ,τ) := {x ∈ X : A∩U 6∈ I for
every open setU containingx} is called thelocal function
of A with respect toI andτ. (See [6,7,23].) We simply
write A∗ instead ofA∗(I ,τ) in case there is no chance for
confusion.
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Proposition 2.2.[6] Let (X,τ) be a topological space and
I be an ideal onX. Then the operator

Cl∗ : P(X)→ P(X)

defined by:
Cl∗(A) = A∪A∗ (2.1)

satisfies Kuratwski’s axioms and induces a topologyτ∗ on
X given by

τ∗ = {A⊆ X : Cl∗(Ac) = Ac}. (2.2)

WhereAc denotes the complement ofA.

Indeed, for every ideal topological space(X,τ,I ),
there exists a topologyτ∗ finer than τ. For a subset
A⊆ X, Cl∗(A) andInt∗(A) will denote the closure and the
interior ofA with respect toτ∗, respectively.

Definition 2.3. [10] Let I be an ideal on a nonempty set
X. A binary relationδI onP(X) is called anI−proximity
relationonX if δI satisfies the following conditions:

(IP1) AδI B⇒ BδI A,

(IP2) AδI (B∪C)⇔ AδI B or AδI C,

(IP3) A6δI B∀ A∈ I , B∈ P(X),

(IP4) A∩B 6∈ I ⇒ AδI B,

(IP5) A6δI B⇒∃ C,D ⊆ X such thatA6δI Cc
, Dc6δI B and

C∩D ∈ I .

An I−proximity spaceis a pair(X,δI ) consisting of
a setX and anI−proximity relationonX. We shall write
AδI B if the setsA,B ⊆ X areδI −related, otherwise we
shall writeA6δI B.

δI is said to beseparated, if it satisfies:

(IP6) xδI y⇒ x= y.

Lemma 2.4.[10] If AδI B, A⊆C, andB⊆D, thenCδI D.

Theorem 2.5.[10] Let (X,δI ) be anI−proximity space
andAδI = {x∈ X : xδI A}. Then

AδI −BδI ⊆ (A−B)δI .

Theorem 2.6.[10] Let (X,δI ) be anI−proximity space.
Then the operator

ClδI : P(X)→ P(X)

defined by
ClδI (A) = A∪AδI (2.3)

satisfies Kuratwski’s axioms and induces a topology onX
calledτδI

given by:

τδI
= {A⊆ X : ClδI (Ac) = Ac}. (2.4)

Theorem 2.7. [10] Let (X,δI ) be an I−proximity
space. Then the closure operator defined in (2.3) has the
following property:

B6δI A⇔ B6δI ClδI (A). (2.5)

Definition 2.8. [10] A topological space(X,τ) is called
∗−normal spaceif ∀ F1,F2 ∈ τ∗c

such thatF1 ∩F2 ∈ I
then∃ H,G∈ τ such thatF1 ⊆ H, F2 ⊆ G andH∩G∈I ,
whereτ∗c

is the family of allτ∗−closed sets.
Theorem 2.9.[10] Let (X,τ) be a∗−normal space and
δI be a relation onP(X) defined as:

AδI B⇔Cl∗(A)∩Cl∗(B) 6∈ I ∀ A,B⊆ X. (2.6)

ThenδI is anI−proximity relation onX.
Definition 2.10. [10] A topological space(X,τ) is called
an I−proximizable space, denoted byτ ≈ δI , if there
existsI−proximity relationδI such thatτδI

= τ∗.
Theorem 2.11.[10] Let I be an ideal on a nonempty set
X, (X,τ) be a∗−normalT1 space andδI is the formula
(2.6). Thenτ ≈ δI .
Definition 2.12.[18] Let X be a nonempty set,A⊆ X and
R⊆ X×X. Then

R[A] = {y∈ X : (x,y) ∈ R for somex∈ A}. Forx∈ X,
R[x] = R[{x}].

Definition 2.13. [18] A uniform structureor (uniformity)
U on a setX is a collection of subsets ofX×X satisfying
the following conditions:

1. EveryR∈ U contains the diagonal∆ = {(x,x) : x ∈
X},

2. If R1 ∈ U andR2 ∈ U, thenR1∩R2 ∈ U,
3. GivenR1 ∈U, there exists aR2 ∈U such thatR2◦R2 ⊆

R1,
4. If R1 ∈ U andR1 ⊆ R2, thenR2 ∈ U,
5. If R∈ U, thenR−1 ∈ U.

The pair(X,U) is called anuniform space.
Theorem 2.14.[18] Let (X,U) be a uniform space. Then
βx = {R[x] : R ∈ U} is a neighborhood filter and
Nx = {V ⊆ X : B⊆Vfor someB∈ βx} is aneighborhood
system at x. Furthermore,
τU = {G ⊆ X : ∀ x ∈ G ∃ V ∈ Nx such thatV ⊆ G} is a
topology onX.
Theorem 2.15.[18] Let (X,U) be a uniform space. Then
the closure ofτU defined as

Cl(A) = ∩R∈UR[A]. (2.7)

Definition 2.16. [4] Let (X,τ,I ) be a topological space
with an idealI andA⊆ X. ThenA is calledI−compact
if for every open cover{H j : j ∈ J} of A, there exists a
finite subcover{Hi : i = 1, ...,n} such that(A−∪i=n

i=1Hi) ∈
I .

3 I− proximal neighborhood structures

Definition 3.1. A subsetB of an I−proximity space
(X,δI ) is a δI−neighborhood of A (in symbols
A≪I B) if and only if A6δI Bc.
Theorem 3.2. Let (X,δI ) be anI−proximity space.
Then
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1. A≪I B impliesClδI (A)≪I B,

2. A≪I B impliesA≪I intδI (B).

Proof.

1. Let A ≪I B. Then A 6 δI Bc. Hence Theorem 2.7
impliesClδI (A)6δI Bc; that is,ClδI (A)≪I B.

2. A 6 δI Bc implies A 6 δI ClδI (Bc). Equivalently,
A6δI (intδI (B))c, i.e.A≪I intδI (B).

Theorem 3.3. Let (X,δI ) be anI−proximity space.
Then the relation≪I satisfies the following properties:

1. X ≪I X,

2. A≪I B impliesA∩Bc ∈ I ,
3. A⊆ B≪I C⊆ D impliesA≪I D,

4. A≪I Bi for i = 1,2, ...,n if and only if A≪I ∩n
i=1Bi ,

5. A≪I B impliesBc ≪I Ac,

6. If A∈ I or B∈ I , thenA≪I Bc,
7. A ≪I B implies ∃ C,D ⊆ X such that

A≪I C,Dc ≪I B andC∩D ∈ I ,

8. If δI is a separated I−proximity, then
x 6= y⇒ x≪I {y}c.

Proof.

1. (IP3) and Definition 2.1 indicateX 6δI /0. HenceX ≪I

X.

2. If A≪I B, then(IP4) impliesA∩Bc ∈ I .
3. If A 6≪I D, then AδI Dc. Lemma 2.4 implies that

BδI Cc, i.e.B 6≪I C, which is contradiction.
4. It suffices to considern = 2. A ≪I B1 and

A ≪I B2 ⇔ A6δI Bc
1 andA6δI Bc

2 ⇔ A6δI (Bc
1 ∪Bc

2) ⇔
A6δI (B1∩B2)

c ⇔ A≪I (B1∩B2).

5. A ≪I B implies A6 δI Bc and(IP1) implies Bc 6 δI A,
i.e. Bc ≪I Ac.

6. LetA∈I . Hence(IP3) impliesA6δI B. It follows that
A≪I Bc. Similarly, if B∈ I .

7. A ≪I B implies A 6 δI Bc. (IP5) implies ∃ C,D such
thatA6δI Cc, Bc6δI Dc andC∩D∈I ; that is,A≪I C,
Dc ≪I B andC∩D ∈ I .

8. x 6= y⇒ x6δI y by (IP6)⇒ x≪I {y}c.

Corollary 3.4. Ai ≪I Bi for i = 1,2, ...,n implies

∩n
i=1Ai ≪I ∩n

i=1Bi and∪n
i=1Ai ≪I ∪n

i=1Bi.

Theorem 3.5.If ≪I is a binary relation onX satisfying
(1)− (7) in Theorem 3.3 andδI is defined by

A6δI B⇔ A≪I Bc
, (3.1)

then δI is an I−proximity relation on X. B is a
δI −neighborhood of A if and only if A ≪I B.
Moreover, if≪I also satisfies(8) in Theorem 3.3, then
δI is separated.

Proof.

(IP1) A 6 δI B implies A ≪I Bc. By Theorem 3.3(5),
B≪I Ac, and henceB6δI A.

(IP2) (A ∪ B) 6 δI C implies (A ∪ B) ≪I Cc. Then by
Theorem 3.3(3), A≪I Cc andB≪I Cc, i.e.A6δI C
andB6δIC. Conversely, ifA6δI C andB6δI C then by
part (1), C 6 δI A and C 6 δI B; that is,C ≪I Ac and
C ≪I Bc. thus by Theorem 3.3(4), C ≪I (Ac∩Bc),
i.e.C≪I (A∪B)c. HenceC6δI (A∪B).

(IP3) If A∈ I . Then Theorem 3.3(6) impliesA≪I Bc.
HenceA6δI B. Similarly if B∈ I .

(IP4) If A6δI B, thenA≪I Bc. From Theorem 3.3(2) we
haveA∩B∈ I .

(IP5) SupposeA6δI B, i.e.A≪I Bc. By Theorem 3.3(7),
∃C,D⊆X such thatA≪I C,B≪I D andC∩D∈I .
Thus∃C,D such thatA6δI Cc, A6δI Dc andC∩D∈I .

(IP6) Let x 6= y. Then Theorem 3.3(8) impliesx≪I {y}c.
Thusx6δI y. HenceδI is separated.

Theorem 3.6.If A≪I B andB∈ I , thenA∈ I .

Proof. A ≪I B implies A 6 δI Bc. (IP4), B ∈ I and
Definition 2.1 imply(A∩Bc)∪B∈ I ; that is,A∪B∈ I .
Then Definition 2.1 impliesA∈ I .

Theorem 3.7.A≪I B ∀ B⊆ X if and only if A∈ I .

Proof. Let A≪I B ∀ B⊆ X. It follows thatA≪I /0, i.e.
A6δI X. Thus by(IP4), A∈ I . Conversely, ifA∈ I then
(IP3) implies thatA6δI Bc ∀ B⊆ X. So,A≪I B∀ B⊆ X.
Theorem 3.8.Let I be an ideal on a nonempty setX, δI

be anI−proximity on X and (X,τ) be a∗−normalT1
space such thatτ ≈ δI . If A is I−compact,B is closed
set inτ∗ andA∩B∈ I , thenAδI 6δBδI .

Proof. For all a ∈ A, if a ∈ B. It follows that {a} ∈ I ,
and hence(IP3) impliesa6δI B. Also, if a 6∈ B, B is closed,
hencea6δI B. This result implies there existsE ⊆ X such
that a6 δI Ec andE 6 δI B; that is,a ≪I E andE ≪I Bc.
Theorem 3.2 part(2) impliesa≪I intδI (E)⊆E ≪I Bc.
Let Na = intδI (E). HenceNa6δI B. Now{Na : a∈A} is an
open cover ofA. SinceA is I−compact, there is a finite
subcover{Nai : i = 1,2, ...,n} such that(A−∪i=n

i=1Nai )∈I .
Let N = ∪i=n

i=1Nai . Then(IP2) impliesN 6δI B. This result,
combined with Theorem 2.7, impliesClδI (N)6δI B. Since
(A−N) ∈ I , hence Theorem 2.5 and(IP3) imply AδI −

NδI ⊆ (A−N)δI = /0. Therefore,AδI ⊆NδI ⊆ClδI (N).
This result, combined with Lemma 2.4 andB is closed,
impliesAδI 6δBδI .

4 I−proximity spaces induced by
uniformity

Theorem 4.1.Let (X,U) be a uniform space. For allR1 ∈
U andx,y∈ X such thaty∈ R1[x]. Then there exists aR2 ∈
U such thatR1[y]⊆ R2[x].
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Proof. Let R1 ∈ U andx,y∈ X such thaty∈ R1[x] and let
z∈ R1[y]. It follows that (x,y) ∈ R1 and (y,z) ∈ R1, and
hence(x,z) ∈ R1 ◦R1. This result, combined withU as a
uniformity, implies there exists aR2 ∈ U such thatR1 ◦
R1 ⊆ R2. Consequently,(x,z) ∈ R2; that is,z∈ R2[x]. Then
the result.

Theorem 4.2.Let (X,U) be a uniform space andI be an
ideal onX. Then the operator

∗: P(X)→ P(X)

defined by

A∗
U = {x∈ X : R[x]∩A 6∈ I f or all R∈ U} (4.1)

satisfies the following:-

1. /0∗
U
= /0,

2. If A⊆ B, thenA∗
U
⊆ B∗

U
,

3. (A∪B)∗
U
= A∗

U
∪B∗

U
,

4. (A∗
U
)∗ ⊆ A∗

U
,

5. If I ⊆ J , thenA∗
U
(J )⊆ A∗

U
(I ).

Proof.

1. The formula (4.1) and /0∈ I imply /0∗
U
= /0.

2. Letx∈ A∗
U

. ThenR[x]∩A 6∈I ∀ R∈ U. HenceA⊆ B,
combined with Definition 2.1, impliesR[x]∩B 6∈ I ∀
R∈ U. Sox∈ B∗

U
. Then the result.

3.

(A∪B)∗U ={x∈ X : R[x]∩ (A∪B) 6∈ I ∀ R∈ U}

={x∈ X : ((R[x]∩A)∪ (R[x]∩B)) 6∈ I

∀ R∈ U}

={x∈ X : R[x]∩A 6∈ I ∀ R∈ U} or

{x∈ X : R[x]∩B 6∈ I ∀ R∈ U}

=A∗
U∪B∗

U.

4. Letx∈ (A∗
U
)∗. It follows thatR[x]∩A∗

U
6∈ I ∀ R∈ U,

and henceR[x] ∩ A∗
U
6= /0 ∀ R ∈ U. Therefore, there

exists y ∈ R[x] and y ∈ A∗
U

such thaty ∈ R[x] and
R[y] ∩ A 6∈ I ∀ R ∈ U. This result, combined with
R[y]⊆ R[x] and Definition 2.1, impliesR[x]∩A 6∈ I ∀
R∈ U. Hencex∈ A∗

U
. Then the result.

5. Let x ∈ A∗
U
(J ). ThenR[x]∩A 6∈ J ∀ R∈ U. Since

I ⊆J , henceR[x]∩A 6∈I ∀ R∈ U. So,x∈ A∗
U
(I ).

Then the result.

Corollary 4.3. Let (X,U) be an uniform space andI be
an ideal onX. Then the operator

−: P(X)→ P(X)

defined by
A= A∪A∗

U (4.2)

satisfies Kuratwski’s axioms and induces a uniform
topology onX calledτ∗(U) given by

τ∗(U) = {A⊆ X : Ac = Ac}. (4.3)

Proof. The result is a direct consequence of Theorem 4.2.
Theorem 4.4.τ∗(U) is finer thanτ(U).

Proof. To prove the theorem, it suffices to show that∀ A⊆
X, A⊆Cl(A). Let x∈ A. It follows thatx∈ A or x∈ A∗

U
. If

x∈A, hence the result. Now, letx∈A∗
U

. ThenR[x]∩A 6∈I
∀ R∈ U. This indicates thatR[x]∩A 6= /0 ∀ R∈ U. Also
R−1[x]∩A 6= /0 ∀ R∈ U. Hence there existsy∈ X such that
y∈ R−1[x] ∀ R∈U andy∈A. Hence(y,x) ∈R∀ R∈U and
y∈ A. It follows that there existsy∈ A such thatx∈ R[y];
that isx∈ ∩R∈UR[A]. then the result.

The following two theorems indicate that every
uniform space(X,U) has an associatedI−proximity
relation.

Theorem 4.5.Let I be an ideal on a nonempty setX and
δI be a binary relation onP(X) defined as:

AδI B⇔ R[A]∩B 6∈ I ∀ R∈ U. (4.4)

ThenδI is anI−proximity relation onX.

Proof. First we prove that δI satisfies (IP2), ∀
A,B,C ∈ P(X), (A ∪ B)δI C ⇔ R[(A ∪ B)] ∩ C 6∈
I for all R∈ U⇔ (R[A]∪R[B])∩C 6∈ I for all R∈ U⇔
((R[A]∩C)∪ (R[B]∩C)) 6∈ I for all R∈ U⇔ R[A]∩C 6∈
I for all R∈ U or R[B]∩C 6∈ I for all R∈ U⇔ AδI C or
BδI C. Similarly, AδI (B∪C) ⇔ AδI B or AδI C. For
(IP1), let AδI B. Hence (IP2) and A ⊆ R−1[A] imply
R−1[A]δI B. HenceR[R−1[A]]∩B 6∈ I for all R∈ U. This
result, combined withR[R−1[A]] ∩ B ⊆ A∩ B, implies
A∩B 6∈ I . HenceA∩ B ⊆ A∩R[B] and Definition 2.1
imply A∩R[B] 6∈ I . Consequently,BδI A. For (IP3), let
AδI B. Hence(IP2) andA⊆ R−1[A] imply R−1[A]δI B. It
follows thatR[R−1[A]]∩B 6∈ I for all R∈ U. This result,
combined withR[R−1[A]]∩B ⊆ A∩B and Definition 2.1,
implies A∩B 6∈ I for all R∈ U. This shows thatA 6∈ I
andB 6∈ I . For (IP4), let A∩B 6∈ I . Then Definition 2.1
implies R[A] ∩ B 6∈ I for all R ∈ U; that is, AδI B. To
check thatδI also satisfies condition(IP5), let A6δI B. It
follows that R[A] ∩ B ∈ I for someR ∈ U. By taking
C = R[A] and D = (R[A])c, we have the required
properties.

Theorem 4.6.Let I be an ideal on a nonempty setX and
δI be a binary relation onP(X) defined as:

AδI B⇔ R[A]∩R[B] 6∈ I f or all R∈ U. (4.5)

ThenδI is anI−proximity relation onX.

Proof. It is clear thatδI satisfies(IP1). For (IP2), ∀
A,B,C ∈ P(X) (A ∪ B)δI C ⇔ R[(A ∪ B)] ∩ R[C] 6∈
I for all R∈ U ⇔ (R[A]∪R[B])∩R[C] 6∈ I for all R∈
U ⇔ ((R[A] ∩ R[C]) ∪ (R[B] ∩ R[C])) 6∈ I for all
R ∈ U ⇔ R[A] ∩ R[C] 6∈ I for all R ∈ U or
R[B] ∩ R[C] 6∈ I for all R ∈ U⇔ AδI C or BδI C. For
(IP3), let AδI B. Hence (IP1), (IP2), and B ⊆ R−1[B]
imply that AδI R−1[B]. Hence
R[A] ∩ R(R−1[B]) 6∈ I for all R ∈ U. This result,
combined with R[A] ∩ R(R−1[B]) ⊆ R[A] ∩ B and
Definition 2.1, impliesR[A]∩B 6∈ I for all R∈ U. This

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.4, No. 2, 79-84 (2016) /www.naturalspublishing.com/Journals.asp 83

shows thatB 6∈ I . Similarly A 6∈ I . For (IP4), let
A ∩ B 6∈ I . Then Definition 2.1 implies
R[A]∩R[B] 6∈ I for all R∈ U; that is, AδI B. To check
that δI also satisfies condition(IP5), let A 6δI B. It
follows thatR[A]∩R[B] ∈ I for someR∈ U. By taking
C = (R[B])c and D = R[B], we have the required
properties.

Theorem 4.7.Let (X,U) be a uniform space,I be an ideal
on X andA,B are subsets ofX. Then the following two
I−proximity relations onX are equivalent

1. Aδ 1
I B⇔ R[A]∩B 6∈ I ∀ R∈ U,

2. Aδ 2
I B⇔ R[A]∩R[B] 6∈ I ∀ R∈ U.

Proof. To prove the theorem, it suffices to show that
Aδ 1

I B ⇔ Aδ 2
I B. Let Aδ 1

I B. ThenR[A]∩B 6∈ I ∀ R∈ U

and hence Definition 2.1 impliesR[A] ∩ R[B] 6∈ I ∀
R∈ U; that is,Aδ 2

I B. On the other hand, supposeAδ 2
I B.

This result, combined withB ⊆ R−1[B] and Lemma 2.4
imply Aδ 2

I R−1[B]; that is,R[A]∩R[R−1[B]] 6∈ I ∀ R∈ U.
Definition 2.1 andR[R−1[B]] ⊆ B imply R[A]∩B 6∈ I ∀
R∈ U. This shows thatAδ 1

I B. Then the result.

The following theorem shows that the topology
generated by the closure operator defined in (4.2)
coincide with the topology generated by the closure
operator defined in (2.3).

Theorem 4.8Let (X,U) be a uniform space andδI is the
formula (4.4). Then

τ∗(U) = τδI
.

Proof. To prove the theorem, it suffices to show that∀
A ⊆ X, A = Clδ (A). This follows from the fact that
x ∈ Clδ (A) ⇔ x ∈ A or x ∈ AδI ⇔ x ∈ A or xδI A ⇔ x ∈
A or R[x]∩A 6∈ I ∀ R∈ U⇔ x∈ A or x∈ A∗

U
⇔ x∈ A.

Corollary 4.9. Let (X,U) be a uniform space andδI is
the formula (4.5). Then

τ∗(U) = τδI
.

Proof. The result is a direct consequence of Theorem 4.7
and Theorem 4.8.

5 Conclusion

A set X with a nearness relationbetween its subsets is
called aproximity spaceand every such structure induces
a topologyon X defined via the closure operator: we say
that a pointx lies in the closure of a subsetA if the subset
{x} is nearA. It appears that the same topology onX may
correspond in this way to different proximities. Moreover
many topological results may be inherited from statements
concerning proximity spaces. It has to be recalled that in
the same manner the proximity structure is induced by the
uniform relationintroduced by A. Weil [26].

In this paper, a new approaches ofproximity relations,
I−proximity relation, via ideals and uniform relations

have been introduced.δI−neighborhood in an
I−proximity relation has been introduced. This provides
an alternative description to the study ofI−proximity
spaces. Furthermore, the operator∗ on P(X) with respect
to an ideal and uniformityU on X has been presented and
various properties of it are investigated. The new
generated uniformity via ideal is mentioned which
generated a topologyτ∗(U) finer than the old one. In
addition,τ∗(U) = τδI

is proved.
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