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Abstract: The aim of the present paper is to obtain the solution of oentéegral equations by using,-transform. The concept of
Py-transform is introduced by Kumadf f]. The Py-transform is binomial type containing many classes of¢fams including the
Laplace transform. We have found the solution of fractiov@terra equation with Caputo fractional derivative usidgtransform.
Also the solution of non-homogeneous time fractional hgaiagion in spherical domain with Caputo derivative has Heend. The
results for the classical Laplace transform are retrieyelétting a — 1.
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1 Introduction

The subject of fractional calculus deals with the invegiayaof integrals and derivatives of any arbitrary real omgbex
order, which unify and extend the notations of fractionalesrderivative and n-fold integral. Fractional calculusdsv
considered as a partial technique in many branches of sietuding physics (Oldham and Spani@g]). Recently
Srivastava el.atj0] gave the model of under-actuated mechanical system vatiiémal order derivative and Sharma el
at. [24] studied advanced generalized fractional kinetic equaticAstrophysics.

In an integral equation, an unknown function to be deterchia@pears under one and more integral signs. The integral
equation has been a subject of interest of mathematicianglhas physicists and engineers also. The development of
integral equation has led to the formation of many real waltgineering and physical problems and also in
mathematical physics models, such as scattering in quamteamanism, diffraction problem, conformal mapping and
water waves. A large number of initial and boundary valuebfgms can be converted into Volterra integral equation.
The Volterra’s population growth model, biological spediging together, the heat transformation and heat rauficdre
many areas which are described by integral equations. Meieytsfic problems give rise to integral equations often
arises in low frequency electromagnetic problems, elstdti@, electromagnetic scattering problems and elastives/
and many more €]. The fractional order integral equations has numeroudiejons in porous media, rheology,
control, electro chemistry, viscoelasticity, electrometism fluid structure, coupling and particle mechanicse( seg.
[16], [22], [26], [27)).

The general form of integral equation (Wazwé) is given by

h(x)
u(x) = f(x) + 2 /g ) Koetut (L)
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whereg(x) andh(x) are the limits of integratior) is a constant parameter, akdx,t) is called thekernelor thenucleus

of the integral equation. The functiarix) to be determined appears under the integral sign. The k&rixel) and the

function f (x) in equation 1) are given and the limits of integratigix)andh(x) may be both variables, constant or mixed.
The general form of Volterra integral equations (Rahma#g])[is

u(x) = f(x) 4+ /a “K(x Hu(t)dt, @)

where the limits of integration are functionsénd the unknown function(x) appears linearly under the integral sign.
Abel’s integral equation (Gorenflo and Vess&la][ Kilbas and Saigoq]) is given by

A tou(r)
ft:—/idr,0< <1 3
O =T Jo wop " 0K ©
The Riemann-Liouville fractional integral of order> 0 is defined by Kilba®t. al.in [3] as:
_ 1/t f(u
a _ a _
1950 =aD (0 = 75 | et @)

where—co <a <t < oo,
The Riemann-Liouville fractional derivatives of order> 0 and where-o < a <t < w is defined by Kilba®t. al.in [3]

o dm m—a 1 dm t m-1-a
— il f(t):mw/é‘(t—s) f(s)ds 5)

Forn € N, we denote byAC"[a, b], the space of real valued functioh@&) which have continuous derivatives up to order
n— 1 onJa,b] such thatf ("~ (t) belongs to the space of absolutely continuous functk@ig, b]:

D7 (1)

n—1

AC"[a,b] = {f ([a,b] = R: vt

f(x) € ACa, b]} .
The Caputo derivative of order > 0,m= [a] andf € AC"M[a,b] is defined as 1]

dm t dm
D 1(0) =12 G 10 = gy [, =9 o g5 f(9)ds. ©

The Laplace transform is a valuable tool to deal with proldémvolving integral- differential equations, difference
equations, partial differential equations and fractiatifierential equation 14]. The classical Laplace transfornid] of
a functionf (t) of a real variable, which is denoted by [f(t); 9], is a functionF (s) of a complex variable defined as

L[f(t):9) :F(s):/ et (t)dt, O(s) > 0 @)
0
whenever it exists. The inverse Laplace transfarmiF (s) is given by
f(t Lo e'F(s)d 8
()—ﬁciiw (s)ds (8)

The Laplace Transform of the Riemann-Liouville fractiodealivative in equations) is given by Samket. al.in [29] as
n-1
LoD f(t) 18] =" f(s) - gs"*“f<k> 0), €)
k=

where(n—1) < a <n.

After the development of the Laplace transform many tramsfowere derived by a number of authors which are
applicable in many practical situations.

In this paper we solve integral equations By-transform of pathway type which is introduced by Dilip Kum§l1]
which is motivated by the non-extensive statistical medasimtroduced by Tsallis ], [8]) and the pathway model
introduced by Mathai in 2005 4], [5]).

Pathway model is based on the principle of switching amomgettdifferent families of functions, say generalized
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extended type-1 beta family, type-2 beta family and gammailya This type of switching property can be used in
practical situations where one needs to fit a parametriclyaofidistributions to experimental data or to switch among
three different functional forms. When the pathway paramit allowed to vary, we get three different forms. In real
scaler case, the pathway model is defined as

f(x) =co|X¥[1—a(l—a)x%Ta, 1-a(l-a)x®>0,a<1
—coIXY[1+ala—1)|X°] 7T, —0<x<ooa>1 (10)

_ 5
:C3|X| ye an|x| ,

—o<X<oo,d—1

wherea> 0, >0,y > 0,n > 0.c1,c andcs are the normalizing constants if we consider each of thentadistical
density. Three different functional forms are, generalif@m extended type-1 beta, type-2 beta form respectividig.
Tsallis statistics (f], [8]) and superstatistics are covered by the pathway modekdant years, the pathway model
and Tsallis statistics have been applied in many areasHiertonuclear reaction rate theory in astrophysit8]([17],
[18]) and in applied analysisZ], [10], [12]) by Kumar and co-workers. In 2011, the Kumar introducedsational type
integral transform calle®- transform or pathway transform defined by

(POPaF) / DY t)dt,x > 0, (11)

whereD; g( ) denotes the function

ol

Pl i
Dya0) = [ 77y a-a-apflfee Y dyx> 0 (12)
0
withveC,>0,0>0a>0a<1lor
D‘“’ /y" MN+a(a—-1)y°]" Tae Y Pdyx>0 (13)

forveC,p>0,a>0,pcRa>1 WhenD” g( ) takes the from 12) or (13), the transform will be called as type-1
or type-2 P- transform, respectively, wh|ch are defined mdpace., (0,) consisting of the Lebesgue measurable

complex valued functiori for which
1
* dt) v
Il ={ [ 1r0r g} <o a9

for 1 <r < o,v € R TheP-transform and th&,-transform both are based on pathway idea butRh¢ransform deals
the problem with much easy comparedtdransform.

ThePy, - transform of a functiorf (t) of a real variablé denoted byP, [ (t); § is a functionF (s) of a complex variable
s, valid under certain conditions dit), (given in Lemmal) is defined by Kumarl1] as

Po,[f(t);s]:F(s)=/Om[1+(a—1)s]‘a_31f(t)dt,a>1 (15)

Here I|m [1+ (a—-1)g" 1= (15) defines a class of transforms. All these transforms aredliesgoing from the

b|nom|al form[1+ (a—1)g~ @1 tothe exponential frore S, In P, — transform the variableis shifted from the binomial

factor[1+ (a — 1)5]‘ﬁ to the exponent and hence this form is more suitable for pipigitranslation, convolution etc.
But, of course, when the pathway parametgoes to 1P, — transform will go to the exponential form eventually leaglin
to the Laplace transformi.e,

lim Pa[f(t);s] = L[f(t):9] (16)

The convergence conditions for tRg— transform of a functiorf (t) to exist are given by the following results.

Lemmal[11If f (t)is integrable over any finite intervah, b), 0 < a < t < b, there exists a real number ¢ such that,
(i) for any arbitrary b> 0, jb e %f(t)dt tends to a finite limit ap — o
(ii) for any arbitrary a> 0, [|f(t)dt| tends to a finite limit ay — O+,

then the R-transform B [f(t); 5| exists forQ (W) > c forse C.
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Theorem 1.[11] If

(i) f(t) is integrable over a finite limifa,b), 0 <a <t <b,

(ii) for arbitary positive a, the integraf | f (t)|dt tends to a finite limit ag — 0+

(iii) f (t) = O(e™), c> 0ast— o where -) is the standard big O notation which mean@)fis of order not exceeding
e™,

then the R-transform defined in1(5) converges absolutely [if (w >c,a> 1

If instead of conditior(iii ), we have the condition(f) = O(t¥), O(y+ 1) > 0 as t — o, then the pathway-Laplace
transform converges absolutely fdr (W) > 0.

Corollary 1.If conditions of Theorerh are satisfied andr — 1, then the Laplace transform obtained ﬁml Pa[f(t);s] =
a—

L[f(t);s| defined in 15) converges absolutelyli(s) > c. Moreover instead of condition (iii) if(f) = O(tY), O(y+1) >0
as t— oo, then the Laplace transform obtained ﬁml[f(t);s] = L[f(t);s] converges absolutely fai(s) > 0.
a—

Theorem 2.[11] (Convolution Theorem for f2transform) If Ks) and G(s) are the B- transform of the functions(f)
and dt), respectively, then the produc{§G(s) is the R - transform of the functiorfy f (t — 7)g(t)d. Thatis

F(s)G(s) = Py

[ e r>g<r>dr:s] — Pu[(t); SPulg(1): . 17)

Lemma 2[11] For v € C, %i(v) > Oand fora > 1, we have

Pa o0 £0:8 = { gy | Pelf039 (18)

where,D; " is Riemann-Liouville fractional integral defined in equoati(4).

Theorem 3.[11] If f (t) and its derivatives up to order n are of exponential order anel R;-transformable and if t)
and its derivatives up tén— 1)th order are continuous with the exception of the origin ahath derivative 7 (t) is at
least piecewise continuous and i[P(t);s| = F(s) then

Pa[f M (t): 5 — {M}”F@_ i {w}nmﬂmn(m), (19)
m=1

o—1 a—1
where f(0+) = lim f(0+¢).
£—0
Motivated by the work of Kumar, in the present paper we findRhdransform of Caputo fractional derivatives and
derivePy-transform for Volterra and Abel integral equation. Furtlie Section 3 we find the solution of fractional Volterra

integral equation. We discuss its application for solviimgalar integral equation having Bessel function in itsriedr
The solution of non homogeneous time fractional heat equati a spherical domain has been discussed in Section 4.

2 Main Results

Theorem 4.1f Caputo fractional derivatives of functior(tf) of orderv exist and are p- transformable and if P (t); 5 =
F(s), then fora > 1, we have

_ v n-1 B v—k-1
Py [SDY (1);9] = {m[lz(fall)s]} F(s)—kzo{m[lz(fall)s]} £ (0) (20)

wheren-1<v <n.

Proof: Using the fact tha§DY f (t) = oD} "(f™(t)) = oDy ") (£( (1)), Lemma @) gives,

a—1 n-v )
) S]} Pa (F7(1)). (21)

Py [§DY f(t);s] = {W
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So
Pa 50103 = { PELETPI ) @2)
Applying Theorem 8), we get
R e M e BT
_%{mu a-1s ]} k‘lf@(o)l
Finally ,
- N1+ (a—1)s " L+ (@ -1
Py [thf(t);S]:{T} F(s)—kZ{T} f(0). (23)

1

Theorem 5.The solution of Volterra integral equatior2)(using R -transform is given by p* {m} = (x), where

Pa
PaK(X) # 4,0 > 1
Proof: Apply R - transform on both side of2f and using Theoren®}, we obtain

Po {U(X)} = Pa { (%)} + APa {K(X) } P {U(x) }
Let the B- transform of x) and K(x—t) be U(s) and K(s), respectively, then by TheoreR),(
U(s) =F(s)+AK(s)U(s)

Hence

and inverse transform gives

ux):/oxq,l(x—t)f(t)dt

where it is assumed thagP { WlaK(x)} = Y(x).
The expressior2() is the solution of second kind Volterra integral equatidrconvolution type.

Theorem 6.For a > 1and0 < u < 1, then the solution of the Abel integral equati@®) is given by

smnu H-1G(1) dr,

whereG(t) = P, ! {F (s) (7In[lf(c_xj;l)s]) }
Proof: The Abel integral equation is given by
_ [t
f(t) = /O Todnt>0

Applying thePy-transform on both side of equatio2d) and using Theorem, we get

Pa{f(t)} = Pa{u(t)}Pa{t™*}

If we takeP, {f(t)} = F(s), Py{u(t)} = U(s) and using formula oP,-transform for power functio
Eq. 32], we get
In[1+ (a—1)g | **
a—-1 }

H$=U@Fﬂ—m{

(24)

(25)

(26)

(27)

(28)

(29)

(30)

n given in Kumat],

(31)
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Which leads to

U(s F(s) e R )
- _ p-1" In[1+(a—1)s | ¥
r(l—u){ln[lffgl 1)3}} ,—(1_“){ n[ +a<gl )s]}
Using duplication formula for Gamma function (Rainvilieq) and [11, Eq. 32], we get
1 t(H-1) sinru
Pyt it = = b (33)
In[1+(a—1)s | ¥ ra—wr
F(l—u){W} 1-pr(p m
Finally, Theoren® gives
S'”"“ 1)h-1G(1) dr, (34)
whereG(t) = P, ! {F(s) (7"1[1&0{1 5 ]) }
3 Solution of fractional Volterraintegral equation by using P, - transform
Theorem 7.Consider fractional Volterra singular integral equatiofthe form
+o00
SDYf(x) = g(x) + A K(x—t)f(t)dt, f(0)=0, (35)

X

in which K(x,t) = K(x—t) is the kernel, ¢x) satisfies all conditions of Lemma)(@nd0 < v < 1, then @5) has solution
of the form

1 [ytie G(s)

t
— 1+ (a—1)go1 > ds 36
2710 Jy—jo AK(—s) — { In[1+(a—1)g }V [1+( )s] (36)

f(x) =

a-1

Proof. Apply Py -transform on both sides of Eq3%) denotePy [f(X)] = F(S), Px[g(X)] = G(s). Let K(—s) be thePy,-
transform ofK (x). Then by using Theorer? we obtain

v
{W} F(9) = G(S) + AK(—9F(9) (37)
which gives,
—G(s)
F(s) = v (38)
MK () - { e e
and consequently by Bromwich’s integral we get the follogwialation,
y+ico
(0=o [ Gf:[)mmm] S[1+ (@ — 195 bds (39)
e AK(=s) - {?}
which can be solved by the use of Residue theorem (see Broav@lanrchill [20]).
Here, we illustrate the application of the above theorenmidifig solutions of some singular integral equations:
(i) Consider singular integral equation having Bessel fiomcJy(2+/(x—t) as its kernel
+
SDt"f(x):e‘aXJr)\/ Jo(20/x—))F(t)dt, f(0)=0,0<v<1 (40)
X
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In view of (39), one can obtain solution o#(Q) as

Ly [t (e bs) of e
a_
fx) = >— ds (41)
271 Jy-ico e vl
({ In[l—z(gl—l)s] } +a)(A e{ a-1 } 4 { In[l—;(t_x;l)s]} )

By settinga — 1in Eq. @1), we obtain the corresponding results for the classicaldagptransform as follows:
1 [yHie se~
21 Jy-io (s+a)(Aes + V1)

(i) Takingv = 0.5in Eq. @1), we obtain an interesting result:
Solution of integral equation

(%) ds (42)

+00
SDY3f (x) = e‘ax+)\/ Jo(2y/(x—t)f(t)dt, f(0)=0,0<v <1 (43)
X
is given by
y+ico X
(9= 5 s wa)
21 Jy-w /A(A+a)(AeRA 2 +1)
whereA — { @1
Proof: We apply thé>;-transform of convolution of function and using the factttha
1 X ga(n—x)
Pl —— L=/ = _d 45
Hanra) b “o

and also the following relationship

Pa_l{mﬁ} = Pa_l{l— (Ae%A—%) 4 (AeiA—S)z_m}
A

e 3K
=Pt 1+ Y (DA keﬁA‘7} (46)

whereA = {W} From equations4b) and @6), one gets the formal solution of equatiatB) as follows:

3k—2

X oA(N—X) o0 -2
f(X)={/O ea\/nn—x d”}*{‘S(XHkZl(_l)kAk(E) |3¥(2\/B<)}.

(iii) The solution of the following system of fractional gjolar integral equations of the form,

SOV =909~ [ Kx—Det

oo (47)
CDY (x) = h(X) + A / K(x— ) @(t)dt,
with conditionsg(0) =0, ¢(0) = 0 and 0< v < 1, is given by
1 v AVG(S) + AK(—S)H(S)
N =55 i A2(K(—8))2+ A% ¢ds (48)

1 e AVH()+ AK(—9)G(S) ax
R My v er e~
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_ JIn[14(a-1
whereA = w

Proof. Multiplying second equation ofi(7) by i and adding to the first equation leads to
§DY = (g+ih)(x) +iA /Xm k(x—t)(@+iy)(t)dt. (49)
Now let (@ +ig)(x) = {(x), (g+ih)(x) = f(x),iA = &, then we can rewrite the above equation in the form
Cpy — f(x)+£/xook(x—t)6(t)dt. (50)

In view of (39), one can obtain solution 05Q) as below:
Taking py transform of equations() leads to

{W} B(s) = F(5) +EK(=9)(s) P

where®(s), F(s),K(s) arePy-transform of the functiong(x), f (x),k(x), respectively.
Hence we get the following relationship

_ A'G(s) +AK(—=s)H(s) .AH(s)+AK(—-5)G(s)

PO = KA T ARK (s A (52)
G(s),H(s) beingPy - transform, ofg(x), h(x), respectively. So we get
p(s) AYG(s) +AK(—s)H(s) () — AYH(s) + AK(—s)G(s)
P = gAY T TR K (e 2 AT
Finally, applying the complex inversion formula, the s@atof (47) is obtained as
1 e AVG(S) + AK(—S)H(S) ax
PN =55 ) K92 AT s -
W(x) - 1 yHe AVH(s) + AK(—s)G(s) Ms
o 270 y—ioo )\Z(K(—S))2+A2V
whereA — In[1+(a1—1)s]
T
(iv) Solution of the fractional Volterra singular integedjuation of the form,
X
5017000 = 10+ A [ In(x-t)g(t)at, @(0)=0,0< v <1, (54)
is given by
1y AF (s)e’
PN =55 )y AT AE TIA) S (°5)
whereA — In[1+(a1—1)s]
T (-
Proof: After takingP, - transform of above integral equatiosdj and simplifying, one gets
g sF(s)
Pal @08 = Ty e 7 inm) (56)
in which & ~ 0.577 is Euler constant. Applying complex inversion formwldtie above relation leads to
1 vt AF(s)e™
o0 . 57

T 27 Jyiw ATIEA(E+INA)

whereA = {7'”[”(“’1)3] }

a-1
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4 Non-Homogeneous Time fractional Heat Equation in a Spherical Domain

Theorem 8.Let f(t) be R - transformable function. Fob <r < 1,t > 0,0 < a < 1, the solution of the non-homogeneous
time fractional heat equation

)—/\u(r,t)—f(t), t>0 (58)

22u(r,t)  2au(rt
ChHVv _ ) & 3

satisfying the boundary conditioﬂimo|u(r,t)| < o, Ur(1,t) = 1 and the initial conditions (r,0) = 0, f(0)=0,
r—

is given by
y+ico inhrv/A + AV
urt) = - L (sinhr VA +A7) _FO ) s (59)
r2m Jy-io \ A(A+Acosh(vA +A”) —sinh(VA +AY)) A +AY
Proof. Let us define(r,t) = ru(r,t). Then equationg8) becomes
2%v(r,t
SDYv(r,t) = dr(z )—)\v(r,t)—rf(t) (60)
By taking theP,- transform of equation 60) with respect to variableand applying boundary conditions, we get
In[1+ (a—1)g)" _dWV(r,9) B
{T V(r,s) = ar? —AV(r,s)—rF(s),f(0)=0 (61)
whereV (r,s) = Py [v(r,t)].
or
d2Vv(r,s) In[1+(a—1I\",,
> _<)‘+{—a—1 } )V_rF(s) (62)
with the boundary conditions
1

lim|V(r,s)| =0, and {(1,s) —V(1,s) = —-.
r—0 S
Equation 62) is second order ordinary differential equation. Its soluis given by

V(s = (sinhrvA +AV) F(s) (63)
"7 A(A +AVcosh(vA +A) —sinh(vA T AV)) A +AY

whereA = {w } By using Bromwich'’s integral and taking inverBg- transform we get

1 [ytie (sinhrv/A +AV) F(s)
t) = — _ estd 64
v(r,t) 2710 Jy—iw <S()\ —l—ACOSh(«/)\ +Av) —sinh( /A LAY —l—AV)) A+ AV S (64)
and hence we obtain
11 yytie (sinhrv/A +AY) F(s)
=-5- - e’d 65
u(r,t) r2m Jy-io (s()\ +Acosh(vA +AY) —sinh(vVA +AY)) A +AY s (65)

TheP,- transforms are useful when the boundary conditions are tiependent. Now consider the case when one of
the boundary is moving. This type of problem arises in cortibngroblems where the boundary moves due to the
burning of the fuel 9].

Example Consider the following time dependent heat equation

ou_ o0

i a E (66)
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whereft < x < o, t > 0, B € R and subject to the initial condition(x,0) = 0, 0 < x < « and boundary conditions
W06 ) gt = (), Jim [u(xt)| < o0, t > 0.

Then the solution ofg6) is given by

“B(x_By [t
u(x,t) =e 22 ft—1)®P(x—B1,7)d1 (67)
0
where®(x — fBt,t) is given by
1 —BexBY n Bt Bl p) n Bt
— a _ a _ e
Z[e 282 erfC(Za\/t_ 2a>+e 2a? erfC(Za\/t—Jr a3 (68)

Proof: By introducing the new coordinate= x — 3t, the problem can be reformulated as

du du ,0%
E_B%_ad—r]z (69)

where 0< n < o, t > 0 and subject to the boundary conditions
U(0.t) = £(1), lim Ju(n.t)] <e.t>0

and the initial conditiomu(n,0) =0, 0 < n < .
Taking theP,- transform of the equatior6@) with respect ta and denotind, [u(n,t)] = U (n,s) we obtain

d®U(n,s) Bdu(n,s) (In[l+(a—-1)g) 1 B
dan? 2 dn —{ a1 };U(n,S)—O (70)

with

U0,9) =F(s), lim JU(n,s)] <eo

The solution to the differential equationd) is
1+(a—1)g

— 2
u(n,s = F(s)exp( zgg - T\/A+ 4%2) (71)
|
whereA = { Il -

Referring the result by Duffyq, p.89, Eq. (2.274)], correspondingly fBg-transform, we have

Pa[®(n,1)] = exp _n A+ B—Z (72)
’ a 4a?
whered®(n,t) is given by
1[ =8 n_ Bvty & n_ B
- a2 . Ty a2 L -y
5 {ez erfC(Za\/f 2 >+e2 erfc<2aﬁ+ a (73)
by taking inversd®,- transform of {1) and applying the convolution theorem, we get
—pn ot
un.t=e=t [ f(t-no(m,nar (74)
0
and hence
-B(x-By) ft
uxt) —e 22 / f(t — 1) d(x— BT, T)dT. (75)
0
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5 Conclusion

This paper provides some new results in the areas of singuiégyral equations and fractional calculus. Furthermibre,
implementation of the new integral transforRy {transform) for solving certain integral equation haverbdiscussed.

The importance of using,-transform method is that we get a wider class of integratging from binomial to
exponential function and it is very efficient technique farding exact solution for certain singular integral equagio
The method could lead to a promising approach for many agtjdics in applied sciences.
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