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Abstract: The aim of the present paper is to obtain the solution of certain integral equations by usingPα-transform. The concept of
Pα -transform is introduced by Kumar [11]. The Pα -transform is binomial type containing many classes of transforms including the
Laplace transform. We have found the solution of fractionalVolterra equation with Caputo fractional derivative usingPα -transform.
Also the solution of non-homogeneous time fractional heat equation in spherical domain with Caputo derivative has beenfound. The
results for the classical Laplace transform are retrieved by letting α → 1.
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1 Introduction

The subject of fractional calculus deals with the investigation of integrals and derivatives of any arbitrary real or complex
order, which unify and extend the notations of fractional order derivative and n-fold integral. Fractional calculus isnow
considered as a partial technique in many branches of science including physics (Oldham and Spanier [22]). Recently
Srivastava el.at [30] gave the model of under-actuated mechanical system with fractional order derivative and Sharma el
at. [24] studied advanced generalized fractional kinetic equation in Astrophysics.
In an integral equation, an unknown function to be determined, appears under one and more integral signs. The integral
equation has been a subject of interest of mathematicians aswell as physicists and engineers also. The development of
integral equation has led to the formation of many real worldengineering and physical problems and also in
mathematical physics models, such as scattering in quantummechanism, diffraction problem, conformal mapping and
water waves. A large number of initial and boundary value problems can be converted into Volterra integral equation.
The Volterra’s population growth model, biological species living together, the heat transformation and heat radiation are
many areas which are described by integral equations. Many scientific problems give rise to integral equations often
arises in low frequency electromagnetic problems, electrostatic, electromagnetic scattering problems and elastic waves
and many more [6]. The fractional order integral equations has numerous applications in porous media, rheology,
control, electro chemistry, viscoelasticity, electromagnetism fluid structure, coupling and particle mechanics ( see e.g.
[16], [22], [26], [27]).

The general form of integral equation (Wazwaz [6]) is given by

u(x) = f (x)+λ
∫ h(x)

g(x)
K(x, t)u(t)dt, (1)
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whereg(x) andh(x) are the limits of integration,λ is a constant parameter, andK(x, t) is called thekernelor thenucleus
of the integral equation. The functionu(x) to be determined appears under the integral sign. The kernelK(x, t) and the
function f (x) in equation (1) are given and the limits of integrationg(x)andh(x) may be both variables, constant or mixed.

The general form of Volterra integral equations (Rahman [23]) is

u(x) = f (x)+λ
∫ x

a
K(x, t)u(t)dt, (2)

where the limits of integration are functions ofx and the unknown functionu(x) appears linearly under the integral sign.
Abel’s integral equation (Gorenflo and Vessela [25], Kilbas and Saigo [1]) is given by

f (t) =
λ

Γ (µ)

∫ t

0

u(τ)
(t − τ)µ dτ, 0< µ < 1 (3)

The Riemann-Liouville fractional integral of orderα > 0 is defined by Kilbaset. al. in [3] as:

Iα
a+ f (t) = aD−α

t f (t) =
1

Γ α

∫ t

a

f (u)
(t −u)1−α du, (4)

where−∞ ≤ a< t ≤ ∞.
The Riemann-Liouville fractional derivatives of orderα > 0 and where−∞ ≤ a< t ≤ ∞ is defined by Kilbaset. al. in [3]
as:

aDα
t f (t) =

dm

dtm
Im−α
a+ f (t) =

1
Γ (m−α)

dm

dtm

∫ t

a
(t − s)m−1−α f (s)ds. (5)

For n∈ N, we denote byACn[a,b], the space of real valued functionsf (t) which have continuous derivatives up to order
n−1 on[a,b] such thatf (n−1)(t) belongs to the space of absolutely continuous functionsAC[a,b]:

ACn[a,b] =

{

f : [a,b]→ R :
dn−1

dxn−1 f (x) ∈ AC[a,b]

}

.

The Caputo derivative of orderα > 0, m= ⌈α⌉ and f ∈ ACm[a,b] is defined as [21]

C
aDα

t f (t) = Im−α
a+

dm

dtm
f (t) =

1
Γ (m−α)

∫ t

a
(t − s)m−1−α dm

dsm f (s)ds. (6)

The Laplace transform is a valuable tool to deal with problems involving integral- differential equations, difference
equations, partial differential equations and fractionaldifferential equation [14]. The classical Laplace transform [19] of
a function f (t) of a real variablet, which is denoted byL[ f (t);s], is a functionF(s) of a complex variablesdefined as

L[ f (t);s] = F(s) =
∫ ∞

0
e−st f (t)dt, ℜ(s)> 0 (7)

whenever it exists. The inverse Laplace transformL−1F(s) is given by

f (t) =
1

2π i

∫ c+i∞

c−i∞
estF(s)ds, (8)

The Laplace Transform of the Riemann-Liouville fractionalderivative in equation (5) is given by Samkoet. al. in [29] as

L[0Dα
t f (t) : s] = sα f (s)−

n−1

∑
k=0

sα−k−1 f (k)(0), (9)

where(n−1)< α ≤ n.
After the development of the Laplace transform many transforms were derived by a number of authors which are
applicable in many practical situations.
In this paper we solve integral equations byPα -transform of pathway type which is introduced by Dilip Kumar [11]
which is motivated by the non-extensive statistical mechanics introduced by Tsallis ([7], [8]) and the pathway model
introduced by Mathai in 2005 ([4], [5]).
Pathway model is based on the principle of switching among three different families of functions, say generalized
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extended type-1 beta family, type-2 beta family and gamma family. This type of switching property can be used in
practical situations where one needs to fit a parametric family of distributions to experimental data or to switch among
three different functional forms. When the pathway parameter is allowed to vary, we get three different forms. In real
scaler case, the pathway model is defined as

f (x) =c1|x|γ [1−a(1−α)|x|δ ]
η

1−α , 1−a(1−α)|x|δ > 0,α < 1

=c2|x|γ [1+a(α −1)|x|δ ]−
η

α−1 , −∞ < x< ∞,α > 1

=c3|x|γ e−aη|x|δ
, −∞ < x< ∞,α → 1

(10)

wherea> 0, δ > 0, γ > 0, η > 0. c1,c2 andc3 are the normalizing constants if we consider each of them as statistical
density. Three different functional forms are, generalized form extended type-1 beta, type-2 beta form respectively.The
Tsallis statistics ([7], [8]) and superstatistics are covered by the pathway model. In recent years, the pathway model
and Tsallis statistics have been applied in many areas like thermonuclear reaction rate theory in astrophysics ([13], [17],
[18]) and in applied analysis ([2], [10], [12]) by Kumar and co-workers. In 2011, the Kumar introduced a fractional type
integral transform calledP- transform or pathway transform defined by

(Pρ ,β ,α
ν f )(x) =

∫ ∞

0
Dν,α

ρ ,β (xt) f (t)dt,x> 0, (11)

whereDν,α
ρ ,β (x) denotes the function

Dν,α
ρ ,β (x) =

∫ [ 1
a(1−α)

]
1
ρ

0
yν−1[1−a(1−α)yρ]

1
1−α e−xy−β

dy,x> 0 (12)

with ν ∈C,β > 0,ρ > 0,a> 0,α < 1 or

Dν,α
ρ ,β (x) =

∫ ∞

0
yν−1[1+a(α −1)yρ ]−

1
1−α e−xy−β

dy,x> 0 (13)

for ν ∈C,β > 0,a> 0,ρ ∈ R,α > 1. WhenDν,α
ρ ,β (x) takes the from (12) or (13), the transform will be called as type-1

or type-2 P- transform, respectively, which are defined in the spaceLν,r(0,∞) consisting of the Lebesgue measurable
complex valued functionf for which

|| f ||ν,r =
{

∫ ∞

0
|tν f (t)|r dt

t

}
1
r

< ∞ (14)

for 1≤ r < ∞,ν ∈ R. TheP-transform and thePα-transform both are based on pathway idea but thePα-transform deals
the problem with much easy compared toP-transform.

ThePα - transform of a functionf (t) of a real variablet denoted byPα [ f (t);s] is a functionF(s) of a complex variable
s, valid under certain conditions onf (t), (given in Lemma1) is defined by Kumar [11] as

Pα [ f (t);s] = F(s) =
∫ ∞

0
[1+(α −1)s]−

t
α−1 f (t)dt,α > 1 (15)

Here lim
α→1+

[1+(α −1)s]−
t

α−1 = e−st (15) defines a class of transforms. All these transforms are the paths going from the

binomial form[1+(α−1)s]−
t

α−1 to the exponential frome−st. In Pα− transform the variablet is shifted from the binomial
factor [1+(α −1)s]−

t
α−1 to the exponent and hence this form is more suitable for obtaining translation, convolution etc.

But, of course, when the pathway parameterα goes to 1,Pα− transform will go to the exponential form eventually leading
to the Laplace transform i.e,

lim
α→1

Pα [ f (t);s] = L[ f (t);s] (16)

The convergence conditions for thePα− transform of a functionf (t) to exist are given by the following results.

Lemma 1.[11] If f (t) is integrable over any finite interval(a,b), 0< a< t < b, there exists a real number c such that,
(i) for any arbitrary b> 0,

∫ ρ
b e−ct f (t)dt tends to a finite limit asρ → ∞

(ii) for any arbitrary a> 0,
∫ a

ν | f (t)dt| tends to a finite limit asν → 0+,

then the Pα-transform Pα [ f (t);s] exists forℜ
(

ln[1+(α−1)s]
α−1

)

> c for s∈ C.
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Theorem 1.[11] If
(i) f(t) is integrable over a finite limit(a,b), 0< a< t < b,
(ii) for arbitary positive a, the integral

∫ a
ν | f (t)|dt tends to a finite limit asν → 0+

(iii) f (t) = O(ect), c> 0 as t→ ∞ where O(·) is the standard big O notation which means f(t) is of order not exceeding
ect,

then the Pα-transform defined in (15) converges absolutely ifℜ
(

ln[1+(α−1)s]
α−1

)

> c, α > 1.

If instead of condition(iii ), we have the condition f(t) = O(tγ ), ℜ(γ + 1) > 0 as t→ ∞, then the pathway-Laplace

transform converges absolutely forℜ
(

ln[1+(α−1)s]
α−1

)

> 0.

Corollary 1.If conditions of Theorem1 are satisfied andα → 1, then the Laplace transform obtained aslim
α→1

Pα [ f (t);s] =

L[ f (t);s] defined in (15) converges absolutely ifℜ(s)> c. Moreover instead of condition (iii) if f(t) =O(tγ), ℜ(γ+1)> 0
as t→ ∞, then the Laplace transform obtained aslim

α→1
[ f (t);s] = L[ f (t);s] converges absolutely forℜ(s)> 0.

Theorem 2.[11] (Convolution Theorem for Pα -transform) If F(s) and G(s) are the Pα- transform of the functions f(t)
and g(t), respectively, then the product F(s)G(s) is the Pα- transform of the function

∫ t
0 f (t − τ)g(τ)dτ. That is

F(s)G(s) = Pα

[

∫ t

0
f (t − τ)g(τ)dτ;s

]

= Pα [ f (t);s]Pα [g(t);s]. (17)

Lemma 2.[11] For ν ∈C, R(ν)> 0 and forα > 1, we have

Pα
[

0D−ν
t f (t);s

]

=

{

α −1
ln[1+(α −1)s]

}ν
Pα [ f (t);s] (18)

where0D−ν
t is Riemann-Liouville fractional integral defined in equation (4).

Theorem 3.[11] If f (t) and its derivatives up to order n are of exponential order andare Pα-transformable and if f(t)
and its derivatives up to(n−1)th order are continuous with the exception of the origin and if nth derivative f(n)(t) is at
least piecewise continuous and if Pα [ f (t);s] = F(s) then

Pα [ f
(n)(t);s] =

{

ln[1+(α −1)s]
α −1

}n

F(s)−
n

∑
m=1

{

ln[1+(α −1)s]
α −1

}n−m

f (m−1)(0+), (19)

where f(0+) = lim
ε→0

f (0+ ε).

Motivated by the work of Kumar, in the present paper we find thePα -transform of Caputo fractional derivatives and
derivePα-transform for Volterra and Abel integral equation. Further, in Section 3 we find the solution of fractional Volterra
integral equation. We discuss its application for solving singular integral equation having Bessel function in its kernel.
The solution of non homogeneous time fractional heat equation in a spherical domain has been discussed in Section 4.

2 Main Results

Theorem 4.If Caputo fractional derivatives of function f(t) of orderν exist and are Pα- transformable and if Pα [ f (t);s] =
F(s), then forα > 1, we have

Pα
[C

0Dν
t f (t);s

]

=

{

ln[1+(α −1)s]
α −1

}ν
F(s)−

n−1

∑
k=o

{

ln[1+(α −1)s]
α −1

}ν−k−1

f (k)(0) (20)

where n−1< ν ≤ n.

Proof: Using the fact thatC0Dν
t f (t) = 0Dν−n

t ( f (n)(t)) = 0D−(n−ν)
t ( f (n)(t)), Lemma (2) gives,

Pα
[C
0Dν

t f (t);s
]

=

{

α −1
ln[1+(α −1)s]

}n−ν
Pα( f (n)(t)). (21)
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So

Pα
[C

0Dν
t f (t);s

]

=

{

ln[1+(α −1)s]
α −1

}ν−n

Pα( f (n)(t)) (22)

Applying Theorem (3), we get

Pα
[C

0Dν
t f (t);s

]

=

{

ln[1+(α −1)s]
α −1

}ν−n[{ ln[1+(α −1)s]
α −1

}n

F(s)

−
n−1

∑
k=0

{

ln[1+(α −1)s]
α −1

}n−k−1

f (k)(0)

]

Finally ,

Pα
[C
0Dν

t f (t);s
]

=

{

ln[1+(α −1)s]
α −1

}ν
F(s)−

n−1

∑
k=o

{

ln[1+(α −1)s]
α −1

}ν−k−1

f (k)(0). (23)

Theorem 5.The solution of Volterra integral equation (2) using Pα-transform is given by P−1
α

{

1
1−λ PαK(x)

}

=ψ(x), where

PαK(x) 6= 1
λ , α > 1

Proof: Apply Pα - transform on both side of (2) and using Theorem (2), we obtain

Pα {u(x)}= Pα { f (x)}+λPα {K(x)}Pα {u(x)} (24)

Let the Pα- transform of u(x) and K(x− t) be U(s) and K(s), respectively, then by Theorem (2),

U(s) = F(s)+λK(s)U(s) (25)

Hence

U(s) =
F(s)

1−λ (K(s))
;K(s) 6= 1

λ
(26)

and inverse transform gives

u(x) =
∫ x

0
ψ(x− t) f (t)dt (27)

where it is assumed that P−1
α

{

1
1−λ PαK(x)

}

= ψ(x).

The expression (27) is the solution of second kind Volterra integral equation of convolution type.

Theorem 6.For α > 1 and0< µ < 1, then the solution of the Abel integral equation (3) is given by

u(t) =
sinπµ

π

∫ t

0
(t − τ)µ−1G(τ) dτ, (28)

whereG(t) = P−1
α

{

F(s)
(

α−1
ln[1+(α−1)s]

)}

.

Proof: The Abel integral equation is given by

f (t) =
∫ t

0

u(τ)
(t − τ)µ dτ, t > 0 (29)

Applying thePα-transform on both side of equation (29) and using Theorem4, we get

Pα{ f (t)} = Pα{u(t)}Pα{t−µ} (30)

If we takePα{ f (t)}= F(s), Pα{u(t)}=U(s) and using formula ofPα -transform for power function given in Kumar [11,
Eq. 32], we get

F(s) =U(s)Γ (1− µ)
{

ln[1+(α −1)s]
α −1

}µ−1

(31)
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Which leads to

U(s) =
F(s)

Γ (1− µ)
{

ln[1+(α−1)s]
α−1

}µ−1 =

{

ln[1+(α−1)s]
α−1

}

F(s)

Γ (1− µ)
{

ln[1+(α−1)s]
α−1

}µ (32)

Using duplication formula for Gamma function (Rainville [15]) and [11, Eq. 32], we get

P−1
α











1

Γ (1− µ)
{

ln[1+(α−1)s]
α−1

}µ ; t











=
t(µ−1)

Γ (1− µ)Γ (µ)
=

sinπµ
π

tµ−1 (33)

Finally, Theorem2 gives

u(t) =
sinπµ

π

∫ t

0
(t − τ)µ−1G(τ) dτ, (34)

whereG(t) = P−1
α

{

F(s)
(

α−1
ln[1+(α−1)s]

)}

.

3 Solution of fractional Volterra integral equation by using Pα - transform

Theorem 7.Consider fractional Volterra singular integral equation of the form

C
0Dν

t f (x) = g(x)+λ
∫ +∞

x
K(x− t) f (t)dt, f (0) = 0, (35)

in which K(x, t) = K(x− t) is the kernel, g(x) satisfies all conditions of Lemma (1) and0< ν ≤ 1, then (35) has solution
of the form

f (x) =
1

2π i

∫ γ+i∞

γ−i∞











G(s)

λK(−s)−
{

ln[1+(α−1)s]
α−1

}ν [1+(α −1)s]
t

α−1











ds. (36)

Proof: Apply Pα -transform on both sides of Eq. (35) denotePα [ f (x)] = F(s), Pα [g(x)] = G(s). Let K(−s) be thePα-
transform ofK(x). Then by using Theorem2, we obtain

{

ln[1+(α −1)s]
α −1

}ν
F(s) = G(s)+λK(−s)F(s) (37)

which gives,

F(s) =
−G(s)

λK(−s)−
{

ln[1+(α−1)s]
α−1

}ν , (38)

and consequently by Bromwich’s integral we get the following relation,

f (x) =
1

2π ı

∫ γ+i∞

γ−i∞











G(s)

λK(−s)−
{

ln[1+(α−1)s]
α−1

}ν [1+(α −1)s]
t

α−1











ds (39)

which can be solved by the use of Residue theorem (see Brown and Churchill [20]).
Here, we illustrate the application of the above theorem in finding solutions of some singular integral equations:

(i) Consider singular integral equation having Bessel function J0(2
√

(x− t) as its kernel

C
0Dν

t f (x) = e−ax+λ
∫ +∞

x
J0(2

√

(x− t)) f (t)dt, f (0) = 0, 0< ν ≤ 1 (40)
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In view of (39), one can obtain solution of (40) as

f (x) =
1

2π i

∫ γ+i∞

γ−i∞

{

ln[1+(α−1)s]
α−1

}

e

{

ln[1+(α−1)s]
α−1

}

x

(
{

ln[1+(α−1)s]
α−1

}

+a)(λe

1
{

ln[1+(α−1)s]
α−1

}

+
{

ln[1+(α−1)s]
α−1

}ν+1
)

ds (41)

By settingα → 1 in Eq. (41), we obtain the corresponding results for the classical Laplace transform as follows:

f (x) =
1

2π i

∫ γ+i∞

γ−i∞

sesx

(s+a)(λe
1
s + sν+1)

ds (42)

(ii) Taking ν = 0.5 in Eq. (41), we obtain an interesting result:
Solution of integral equation

C
0D0.5

t f (x) = e−ax+λ
∫ +∞

x
J0(2

√

(x− t) f (t)dt, f (0) = 0, 0< ν ≤ 1 (43)

is given by

f (x) =
1

2π i

∫ γ+i∞

γ−∞

eAx

√
A(A+a)(λe

1
A A− 3

2 +1)
ds (44)

whereA=
{

ln[1+(α−1)s]
α−1

}

Proof: We apply thePα-transform of convolution of function and using the fact that

P−1
α

{

1√
A(A+a)

}

=
∫ x

0

ea(η−x)
√

πx
dx, (45)

and also the following relationship

P−1
α

{

1

1+λe
1
A A− 3

2

}

= P−1
α

{

1−
(

λe
1
A A− 3

2

)

+
(

λe
1
A A− 3

2

)2
− ...

}

= P−1
α

{

1+
∞

∑
k=1

(−1)kλ ke
k
A A− 3k

2

}

= δ (x)+
∞

∑
k=1

(−1)kλ k
(x

k

) 3k−2
4

I 3k−2
2
(2
√

kx)

(46)

whereA=
{

ln[1+(α−1)s]
α−1

}

. From equations (45) and (46), one gets the formal solution of equation (43) as follows:

f (x) =

{

∫ x

0

ea(η−x)
√

πx
dη

}

∗
{

δ (x)+
∞

∑
k=1

(−1)kλ k
(x

k

) 3k−2
4

I 3k−2
2
(2
√

kx)

}

.

(iii) The solution of the following system of fractional singular integral equations of the form,

C
0Dν

t (x) = g(x)−λ
∫ +∞

x
k(x− t)ψ(t)dt

C
0Dν

t (x) = h(x)+λ
∫ +∞

x
k(x− t)φ(t)dt,

(47)

with conditionsφ(0) = 0, ψ(0) = 0 and 0≤ ν ≤ 1, is given by

Φ(x) =
1

2π i

∫ γ+i∞

γ−i∞

AνG(s)+λK(−s)H(s)
λ 2(K(−s))2+A2ν eAxds,

ψ(x) =
1

2π i

∫ γ+i∞

γ−i∞

AνH(s)+λK(−s)G(s)
λ 2(K(−s))2+A2ν eAxds.

(48)
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whereA=
{

ln[1+(α−1)s]
α−1

}

Proof: Multiplying second equation of (47) by i and adding to the first equation leads to

C
0Dν

t = (g+ ih)(x)+ iλ
∫ ∞

x
k(x− t)(φ + iψ)(t)dt. (49)

Now let (φ + iψ)(x) = ζ (x), (g+ ih)(x) = f (x), iλ = ξ , then we can rewrite the above equation in the form

C
0Dν

t = f (x)+ ξ
∫ ∞

x
k(x− t)ζ (t)dt. (50)

In view of (39), one can obtain solution of (50) as below:
Takingpα transform of equation (50) leads to

{

ln[1+(α −1)s]
α −1

}ν
Φ(s) = F(s)+ ξ K(−s)Φ(s) (51)

whereΦ(s),F(s),K(s) arePα -transform of the functionsζ (x), f (x),k(x), respectively.
Hence we get the following relationship

Φ(s) =
AνG(s)+λK(−s)H(s)

λ 2(K(−s))2+A2ν + i
AνH(s)+λK(−s)G(s)

λ 2(K(−s))2+A2ν (52)

G(s),H(s) beingPα - transform, ofg(x),h(x), respectively. So we get

φ̃(s) =
AνG(s)+λK(−s)H(s)

λ 2(K(−s))2+A2ν , ψ̃(s) =
AνH(s)+λK(−s)G(s)

λ 2(K(−s))2+A2ν

Finally, applying the complex inversion formula, the solution of (47) is obtained as

Φ(x) =
1

2π i

∫ γ+i∞

γ−i∞

AνG(s)+λK(−s)H(s)
λ 2(K(−s))2+A2ν eAxds,

ψ(x) =
1

2π i

∫ γ+i∞

γ−i∞

AνH(s)+λK(−s)G(s)
λ 2(K(−s))2+A2ν eAxds

(53)

whereA=
{

ln[1+(α−1)s]
α−1

}

.

(iv) Solution of the fractional Volterra singular integralequation of the form,

C
0Dt

νφ(x) = f (x)+λ
∫ x

0
ln(x− t)φ(t)dt, φ(0) = 0, 0≤ ν ≤ 1, (54)

is given by

φ(x) =
1

2π i

∫ γ+i∞

γ−i∞

AF(s)eAx

Aν+1+λ (ξ + lnA)
ds (55)

whereA=
{

ln[1+(α−1)s]
α−1

}

.

Proof: After takingPα - transform of above integral equation (54) and simplifying, one gets

Pα [Φ(x);s] =
sF(s)

sA+1+λ (ξ + lnA)
(56)

in which ξ ≈ 0.577 is Euler constant. Applying complex inversion formula to the above relation leads to

φ(x) =
1

2π i

∫ γ+i∞

γ−i∞

AF(s)eAx

Aν+1+λ (ξ + lnA)
ds (57)

whereA=
{

ln[1+(α−1)s]
α−1

}

.
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4 Non-Homogeneous Time fractional Heat Equation in a Spherical Domain

Theorem 8.Let f(t) be Pα - transformable function. For0≤ r < 1, t > 0,0< α ≤ 1, the solution of the non-homogeneous
time fractional heat equation

C
0Dν

t u(r, t) =
∂ 2u(r, t)

∂ r2 +
2
r

∂u(r, t)
∂ r

−λu(r, t)− f (t), t > 0 (58)

satisfying the boundary conditionslim
r→0

|u(r, t)|< ∞, ur(1, t) = 1 and the initial conditions u(r,0) = 0, f(0)=0,

is given by

u(r, t) =
1
r

1
2π i

∫ γ+i∞

γ−i∞

(

(

sinhr
√

λ +Aν
)

A
(

λ +Acosh
(√

λ +Aν
)

− sinh
(√

λ +Aν
)) − F(s)

λ +Aν

)

estds. (59)

Proof. Let us defineν(r, t) = ru(r, t). Then equation (58) becomes

C
0Dν

t v(r, t) =
∂ 2ν(r, t)

∂ r2 −λ ν(r, t)− r f (t) (60)

By taking thePα- transform of equation (60) with respect to variablet and applying boundary conditions, we get
{

ln[1+(α −1)s]
α −1

}ν
V(r,s) =

d2V(r,s)
dr2 −λV(r,s)− rF (s), f (0) = 0 (61)

whereV(r,s) = Pα [ν(r, t)].
or

d2V(r,s)
dr2 −

(

λ +

{

ln[1+(α −1)s]
α −1

}ν)

V = rF (s) (62)

with the boundary conditions

lim
r→0

|V(r,s)|= 0, and Vr(1,s)−V(1,s) =
1
s
.

Equation (62) is second order ordinary differential equation. Its solution is given by

V(r,s) =

(

sinhr
√

λ +Aν
)

A
(

λ +Aν cosh
(√

λ +Aν
)

− sinh
(√

λ +Aν
)) − F(s)

λ +Aν (63)

whereA=
{

ln[1+(α−1)s]
α−1

}

. By using Bromwich’s integral and taking inversePα- transform we get

v(r, t) =
1

2π i

∫ γ+i∞

γ−i∞

(

(

sinhr
√

λ +Aν
)

s
(

λ +Acosh
(√

λ +Aν
)

− sinh
(√

λ +Aν
)) − F(s)

λ +Aν

)

estds, (64)

and hence we obtain

u(r, t) =
1
r

1
2π i

∫ γ+i∞

γ−i∞

(

(

sinhr
√

λ +Aν
)

s
(

λ +Acosh
(√

λ +Aν
)

− sinh
(√

λ +Aν
)) − F(s)

λ +Aν

)

estds. (65)

ThePα- transforms are useful when the boundary conditions are time dependent. Now consider the case when one of
the boundary is moving. This type of problem arises in combustion problems where the boundary moves due to the
burning of the fuel [9].

Example: Consider the following time dependent heat equation

∂u
∂ t

= a2 ∂ 2u
∂x2 (66)
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whereβ t < x < ∞, t > 0, β ∈ R and subject to the initial conditionu(x,0) = 0, 0 < x < ∞ and boundary conditions
u(x, t)|x=β t = f (t), lim

x→∞
|u(x, t)|< ∞, t > 0.

Then the solution of (66) is given by

u(x, t) = e
−β(x−β t)

2a2

∫ t

0
f (t − τ)Φ(x−β τ,τ)dτ (67)

whereΦ(x−β t, t) is given by

1
2

[

e
−β(x−β t)

2a2 er f c

(

η
2a

√
t
− β

√
t

2a

)

+e
β(x−β t)

2a2 er f c

(

η
2a

√
t
+

β
√

t
2a

)]

(68)

Proof: By introducing the new coordinateη = x−β t, the problem can be reformulated as

∂u
∂ t

−β
∂u
∂η

= a2 ∂ 2u
∂η2 (69)

where 0< η < ∞, t > 0 and subject to the boundary conditions

u(0, t) = f (t), lim
η→∞

|u(η , t)|< ∞, t > 0

and the initial conditionu(η ,0) = 0, 0< η < ∞.
Taking thePα- transform of the equation (69) with respect tot and denotingPα [u(η , t)] =U(η ,s) we obtain

d2U(η ,s)
dη2 +

β
a2

dU(η ,s)
dη

−
{

ln[1+(α −1)s]
α −1

}

1
a2U(η ,s) = 0 (70)

with

U(0,s) = F(s), lim
η→∞

|U(η ,s)|< ∞

The solution to the differential equation (70) is

U(η ,s) = F(s)exp

(

−β η
2a2 − η

a

√

A+
β 2

4a2

)

(71)

whereA=
{

ln[1+(α−1)s]
α−1

}

.

Referring the result by Duffy [9, p.89, Eq. (2.274)], correspondingly forPα -transform, we have

Pα [Φ(η , t)] = exp

(

−η
a

√

A+
β 2

4a2

)

(72)

whereΦ(η , t) is given by

1
2

[

e
−βη
2a2 er f c

(

η
2a

√
t
− β

√
t

2a

)

+e
βη
2a2 er f c

(

η
2a

√
t
+

β
√

t
2a

)]

(73)

by taking inversePα- transform of (71) and applying the convolution theorem, we get

u(η , t) = e
−βη
2a2

∫ t

0
f (t − τ)Φ(η ,τ)dτ (74)

and hence

u(x, t) = e
−β(x−β t)

2a2

∫ t

0
f (t − τ)Φ(x−β τ,τ)dτ. (75)
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5 Conclusion

This paper provides some new results in the areas of singularintegral equations and fractional calculus. Furthermore,the
implementation of the new integral transform (Pα-transform) for solving certain integral equation have been discussed.

The importance of usingPα-transform method is that we get a wider class of integrals varying from binomial to
exponential function and it is very efficient technique for finding exact solution for certain singular integral equations.
The method could lead to a promising approach for many applications in applied sciences.
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