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Abstract: We discuss the convergence of the moments of intermedidier statistics under power normalization. The moments
convergence is established for four p-max-stable lawsrdogpto conditions imposed on the considered distribuéind on the rank
sequence.
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1 Introduction

Let X3, X, ..., Xn be independent random variables (rv's) with the same Higion function (df)F (x) and letXy.n < Xon <
... < Xnn be the corresponding order statistics. We ¢&l., and X .n the upper and lower intermediate order statistics,
respectively, ifky =n—r,+1,0 — 0, as n— . Asequencgry} is said to satisfy Chibisov’s condition, if

alv

i, (Vi — Vi) = 7 1> ®

for any sequencegz,} of integer-values, wherelzj‘—% —V, asn— o (0< a < 1andv is any arbitrary real number).
n

As Chibisov in B] himself noted, the condition (1) implies thﬁ — 2, asn — oo. It is noteworthy to mention that the
latter condition implies Chibisov’s condition (se€l] [and [3]), which means that the class of intermediate rank
sequences which satisfy the Chibisov condition is a veryevaidss. Chibisov4] showed that, whenevdir,} satisfies
(1), the possible nondegenerate types of the limiting idistion of the lower intermediate terrd; ., under linear
normalization arés; g(x) = A (vi(X; B)) = A (Blogx), x>0, Gyg(X) = A (V2(X,B)) = A (—Blog|x), x< 0, and
G3(x) = A (v3(x)) = A (x), where.#(.) stands for the standard normal distribution. The corredpmnpossible
nondegenerate limiting distributions for the upper intediate termXy ., are H.g(x) = 1 — A (Vi(—x,B)), i =1,2,3
(note that¥s.5(x) = 1— A (v3(—x))). Clearly, ¥y.5 = G5, Y553 = G1,5 and¥s5 = Gz 5. Therefore, we havé G5,
i=123}= {LIJI;B, i=1,2,3}. The intermediate order statistics have many applicatibns.example, intermediate
order statistics can be used to estimate probabilitiestoféuextreme observations and to estimate tail quantiléleof
underlying distribution that are extremes relative to thailable sample size. Pickands] has shown that intermediate
order statistics can be used in constructing consisteimatgirs for the shape parameter of the limiting extremal
distribution in the parametric form. Many authors, eXf][and [5], have also found estimators that are based, in part, on
intermediate order statistics.

During the last two decades E. Pancheva and her collaber@ar., see §-[ 10]) developed the extreme value theory
under nonlinear monotone increasing normalizing mappimgsder to get a wider class of limit laws, which can be used
in solving approximation problems. Barakat and On#($ee also3]) showed that the possible nondegenerate types of
the limit df of the lower intermediate order statistiXs., under the power normalizatidi(x) = a, | X |bn sign(x), an, bn >
0, are

L1g(x) = A" (Bloglogx), x> 1; Lyg(x) = A (—Blog(—logx)), 0 <x<1;
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Lap(x) = A (Blog(—log|x])), —1<x<0; Lap(x)=.4"(—Bloglog|x|), x < —1;
Ls.g(X) = Ls(x) = A" (logx), x> 0; Lgpg(X) = Ls(x) = A4 (—log|x|), x<O0.

The corresponding types of the upper intermediate ordéistita areHy.3(x) = 1 —.4"(Blog((log | x))), x < —1;

Hop(x) = A (Blog(—log | x [)), —1 < x < 0; Hagp(x) = 1 — A (Blog(—logx)), 0 < x < 1;
Hap(X) = A (Blog(logx)), X > 1; Hs.g(X) = Hs(x) = 4" (—log | x|), x < 0; andHgg(x) = Hs(x) = -4 (logx), x > 0.
Although, in general, we havd; g # Lg, i = 1,2,...,6, we note that the two classes of possible limit laws of lowet an

upper intermediate order statistics under power normidiza shows that they coincide, i.e.,
{Hi;Ba i= 1,2,...,6,} = {Li;p, i= 1,2,...,6,}.

2 Moment convergence of the intermediate order statistics

Recently, the moment convergence of the extremes undenpmmmalization have been studied W]. In this section,
we study the moments convergence of the intermediate otatisties under power normalization, i.e., for some suéab
normalizing constanta,, b, > 0, and for some positive integ&r

lim E (T L (Xen)) < = lim E<| Xowin | sign(X,. n))kz/m“ﬁ)xkdl_iﬁ(x),i €{1.2,...6),
n—oo n—oo an [(Liﬁ) ?

wherel(F) = inf{x: F(x) > 0} andr( ) =sup{x: F(x) < 1} are the left and right end-points for the Elfrespectively.
Obviously, for every integek > 0, j/ 'B)xkd( Lig(x)),i € {2,3,5,6}, converges (for being(L; g) andr(L; g),i = 2,3,

are finite, whileLs g (x) = Ls(X )ande( ) = Lg(x) are a log-normal and a negative log-normal df’s, respelgti®nce
Li5(X) is a log-log-normal df, thenJﬂ(Lll,;f; Xd(Lyg(X) = Jo'x¥d(Lyg(x)) = E(€7) wheren has a log-normal
distribution. On the other hand, the expected vali€'E is not defined for any positive value of the argumeas the

)

defining integral diverges. Thereforql;((tllf) xkd(Lm(x)) is divergent. Moreover, sincé,pg(X) is a negative

log-log-normal df, i.e.L.4.3(x) = 1 —L1,3(—X), we deduce thafer(t‘f)) xkd(L475 (x)) is also divergent for every positive

Barakat and Omad] found the domains of attraction of all possible limit lawiglee df of the power normalized lower
intermediate order statistic;” ( .n). In Theorem 2.1 we present the resultsBfdnly for the four remaining cases (i.e.,
forLi g(x)),i = 2,3,5,6) because these results are essential in the study of mawrarérgence. Throughout this theorem,
we writeF € Dp(L) to indicate thaF belongs to the domain of attraction of the lawunder power normalization. Also,
for any nondecreasing functidhwe writeF ~ (y) = inf{x: F(x) > y}.

Theorem 2.1.

1.AdfF € Dp(Lyg) if and only if £(F) = 0 and for anyr > 0,
lim F(exp(tx)) —F(exp(x))
ST F(exp)| 7

We may se, = 1 andb, = —log(F~(%2)) — co.
2.A df F € Dp(Lzp) if and only if 3, such that~(—e ) = 0. Moreover,F(—e 0 +¢) > 0, Ve > 0 (i.e., —» <
{(F) = —e " < 0). Moreover, for anyr > 0,

F(—exp(— (%, +x1))) —F(—exp—(%+X)) _ ,ra

-1
—émB logT.

lim P = Blogr.
o [F(—exp(— (% +)] 7%

In this case we may seh = e * andb, = —(log(—F ~(*2)) + Xo) — co.
3.A df F € Dy(Ls) if and only if £(F) > 0 and the sequendgs,} defined as the smallest numbers for whige?) <
K<F(eh+0) (i.e., By =IlogF~(¥) — log/(F)), satisfies the condition

jim Pz =P v @)

n—reo Bn+zn (n) — B H
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for all sequence$z,(t)},t € R, satisfying-= = ) —t,asn— .
(Tn+f)
We may set in this casa = &b = F~('2) andbn = Iog?r)—.

4.AdfF € Dp(Le) ifand only if £(F) < 0 and the sequendg;}, defined as the smallest numbers for whiigh-eAn) <
In < F(—e P +0), satisfies the condition (2)

In this case we may sef = e P andb, = \/_ Iog rnir\;r)n_

Theorem 2.2 (the main result).
(a)Under the conditions of Theorem 2.1, Part (1) (or Pait (¢ have

. Xepn L k_ rig) o .
im (1 7% 1 signx,n) ) = L. e (23] )

n—oo

if rn ~ ¢2n® andF are such tha{,an — 0, asn — o, and

/ y* (1 - F(y))dy < o, for somee > 0.
1

(b)Under the conditions of Theorem 2.1, Part (3) (or Pa}t, (#¢ have

Xenn K rLip) | )

tm e (172 5 signkn) ) = L. € (56
if r(F) =sup{x: F(x) <1} < o.

Proof. LetFr :n(Tn(X)) = P(T; 2 (Xe,n) < X) =P (X, < an | X |27 sign(x)) = Ie(Ta(x)) (n;N—Tn+1), where k (a,b) =

% JEta1(1—t)P-1dt, a,b > 1, is the incomplete beta function. Clearly, for aly> 0 andi € {2,3,5,6},
we get

’E (an | X [P0 sign(Xrn:n)) - /_0:0 X“dL g (x)

—M -M
< [ b eRan(-aa )+ | [ g

M M
- ‘/ | XdFin(an | x 7 signi) - [ *edl g0

+ / XA (80 + / XdL; 5 (x).
M M

Moreover, in view of the conditions of Theorem 2.1, we getas oo,

M M
/ xdern;n(an|x|b”sign(x))—>/ XdL; 5(x),i =2,35,6.
-M -M '

Therefore, in order to prove Theorem 2.2 fet 2,3,5,6, we have to prove

k bny _
gm lim | |><| dFryn(—an [ x[™) =0 4)
and -
lim lim [ xR .n(ax®) = 0. (5)

M—s00N—00 J

Clearly, (4) holds, for ali= 2, 3,5 andi = 6, sincel(F) = ¢(F:n) andl{(F) =0,4(F) > —c,¢(F) > 0and 0> ¢(F) >
—oo fori = 2,3,5 andi = 6, respectively. On the other hand, by using Fubini’'s theonsenget

/\/I deI‘n n anX / / kyk 1ddernn anX )
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0 M 0 X
B / / kyk_lddern;n(anXb”) —|—/ / kyk_lddern:n(anxbn)
M JO M JM

— M(L Fryn(@M™) + [ "KL~ Fin(a)dy = An(M) + Bo(M). ©

Now, under the conditions of Theorem 2.1, we 4gtM) = MX(1—F; .n(aaMP)) — MK(1—L; g(M)), i € {2,3,5,6}.
Since thekth momentk = 1,2, ..., of the limit lawsL; g(x), i € {2,3,5,6} exist, we get

m lim An(M) :,\LiTka(l—LLB(M)):O. 7)

li
M —00 N—00

Thus, in view of (6) and (7), the proof of theorem follows if weove limy_« ,!iﬂl,B”(M) = 0. For the casé = 5,6,

the proof follows immediately from the imposed conditidif ) < «. On the other hand, for the cases 2 and for
allM > 1, we get

k

B(M) = o [y (A= Fan))dy < - [ ym A= Fnly))d,
Bn Jmbn bn J1

sinceb, — . On the other hand the beta functiBp g(x) = x"*l(l—x)ﬁfl, a,B>1 0<x<1, hasits maximum
atxg = B%EZ’ we get

n'k ® kg ! rn— n—rnp
Bn(M) < (rn—l)!(n—rn)!bn/l yon /F(y)t L(1—t)" "dtdy
<Co [Ty LRy <G [y - Fiy)dy ®

sinceby, — o, where

c_ n'k m—1\""/n_r,\""n
" (r—1)!(n—rp)lby \ n—1 n—1 '

Now, upon using Stirling’s formula, we get
kn
~N ——— 9

Ca Wi 9)
Therefore, by combining (8) and (9), the proof of (3) for 2, under the stated conditions, follows immediately.
Since, fori = 3, a, = € X is a positive constant arig — o, asn — o, then the proof of this case is exactly the same
as the case= 2, with only the obvious changes.O
Remark 2.1. Clearly if r(F) < oo, (5) will be satisfied for the casés= 2,3. Moreover, the conditior@,n“—\/r_n — 0, as

. . -9
n — oo, can be written in the fornﬂw2 — 0, asn — o,

3 Conclusion

In the statistical modeling of order statistics values Hase p-max-stable distributions. Two common approaches for
statistical estimation are the method of moments and thbadeaif maximum likelihood. The former estimation method
involves moments, so it is important to know conditions unakich the convergence of moments holds. In this paper,
we study moments convergence of the intermediate ordéstgtatunder power normalization. We show that, among the
possible nondegenerate limiting distributions, for theempintermediate order statistics, only four of them have
convergent moments. Therefore, we discuss the convergehtiee moments of these‘four limiting distributions
according to conditions imposed on the considered digtabwand on the rank sequence.
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