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Abstract: A block convergence of a series is the convergence of a subreq of the sequence of partial sums of the series.
Generalized bases are studied in this article, based otyff@sof convergence.
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1 Introduction 2 Block series

. ) A strictly increasing sequence of natural numbers
Basic sequences and block basic sequences are knowy) < n, < n; < ... is fixed, and concepts are introduced

concepts in the theory of bases (sé#).[These concepts  wjith respect to this fixed sequence in this article. The

are studied in this article with a very slight variation. The particular case; =i, Vi, leads to classical concepts.
series 3 (—1)" does not converge in the real line. The Definition 2.1. A sequence (x\)n_, Or (X)) in a
n=1 topological spac is said to block-converge toin X, if

series 3 ((—1)2”+1+ (—1)2”) converges to zero. The the subsequendey, ), converges toin X. A sequence
n=1% , - _(xn) in a metric spac@.(,d) is said to be _bIock—Cauchy ,
series—1+ S ((—1) " (1) ) converges to-1. if d(Xy,Xy) — 0, asi,j — +oe By following [1], let us
: n=1 o : call d : X x X — [0,0) as a semimetric, Iif
So, importance on subsequential limits of partial sums arey X) _ 0,d (x,y) _ d(y,%) and
not taken into account, when it is stated thgt (—1)" d(x:z) < d(x,y)+é(y,£);Vx,y,ze X. A s;aquenceéxn) in
=1

N , : ) ; 1/
does not converge. This article gives importance to thesc%‘1 (I;Sggérg Sgaf;%’ (%l})gr)ﬁime\ﬂ&;h)the iusnggirg't'gygse
subsequential limits and few fundamental results have y y Kkel®

been derived. block-Cauchy, ifd (Xn,Xr;) — O asi, j — co; for every
Block convergence is studied in the next section so thafxed k € I. Similarly, a sequences,) in a TVS (X, 1) is
a concept of block generalized basis can be introduced angid t0 be block-Cauchy, iy );_, is Cauchy. o
studied. The terminology "block basis” was used in the _ NOteé that block-convergence of a sequence implies
article [2]. I. Singer J] suggested that it may be called  Plock-Cauchyness in a uniform space.
block basic sequence”. This concept is different from thepefinition 2.2. A series E X OF 3 X in @ TVS X is said
concept of block generalized basis to be studied. The book n=
[5] of I. Singer may be used for an introduction to block
basic sequences.
All topologies in this article are Hausdorff topologies.
All vector spaces are over the real field. "Topological

vector space’ is abbreviated as 'TVS’, and definitions . . © .
may befgund ing). Similarly, b — nglxn or b— Sx, is used for block

WAL ® .
to block-converge |f< S xi) converges to some in
n=1 /i=1

X. Inthis case, letus writt=b— S Xporx=b—73 Xn.
n=1
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convergence. Other variations will have unambiguousan,+1 = 0,042 = 0,...

meanings .
Remark 2.3.Block convergence of a serigsx, ina TVS

implies the following: withj > i, Z
k=n;+1

X —0asi, j — oo,

Nip1
and Yy
k=n;+1

Xk — 0 asi — oo,

Theorem 2.4.Let (xn) be a sequence in a TV, 1x)
such  that {xnm+1,xnm+2, s X1 is linearly
independent,V m = 0,1,2,..., with np = 0. Under
natural coordinatewise addmon and scalar multipliaatio

let A be a linear space of sequences of scalars, which i®ase {Vh:n=1,2,.

defined by

o () s

To eachJ € 1x such that = U, let
nj

Ay :{(an)eA: Z axx ey, Vv i:1,2,...}.
K=1

Then there is a vector topology on A that makegA, 1a)

into a TVS with a local bas¢A, :0€U € 1x} at 0. If

(X, 1x) is metrizable, therfA, a) is metrizable. If(X, 1x)

is locally convex, thenA 1a) is also locally convex. If
(X,1x) is locally bounded, therfA, 14) is also locally
bounded. If (X,1x) is normable, then(A 174) is also
normable. Above all(A, 14) is complete.

Prooflf U is an open neighbourhood of 0Xq andV is an
open neighbourhood of 0 X such tha +V C U, then,
by definition,Ay + Ay C Ay.

Let us fix (an) € A and a scalan. Again, for a given
open neighbourhood of 0 in X, find an open balanced
nelghbourhoo&’ of 0 such thaV + |a|V +V C U. Since

( S akxk> is Cauchy inX, there is ad € (0,1) such
i=1

that 8 2 oXxk eV,Vi=12,..
=1
Thus, |f(B ) € Ay and|B| < &, then

wn(3

, and whenevef| < d.

nj nj
X+ kak> € Y am+V+alv+V
K=1

N
- z aaxc+U,Vi=12....
K=1

So, (a+B)((an)+(Bn)) € (aan) + Ay, whenever
IB| < 0 and (Bn) € Ay. So, addition and scalar
multiplication are continuous ifA, 7a), when 14 has a

,0n, = 0. Proceeding in this
way, it can be concluded that =0, Vi=12..., soO
that(apn) is the zero element &k This proves thatA, 7a)
is a Hausdorff space and hence itis a TVS.

Suppose(X,1x) is locally bounded, andJ be a
balanced bounded neighbourhood of 0(iy 1x). LetV
be another balanced neighbourhood of XinThen there
is ak > 0 such thattU C V, whenever|t| < k. Then
tAu € Ay whenever|t| < k. Thus Ay is a bounded
neighbourhood of the zero element & and hence
(A, Ta) is also locally bounded.

If (X,1x) is metrizable, and it has a countable local
..} of open sets at 0 inX, then
{Ay,:n=12,. } is a countable local base ifA, 1a)
and hence it is metrizable.

If U is a convex open neighbourhood of 0Xn then
Ay is a convex neighbourhood of zeroAn Thus(A, Ta) is
locally convex, wher({X, 1x) is locally convex. If(X, 1x)
is normable, thelfA, 14) is also normable, because a TVS
is normable if and only if it is locally bounded and locally
convex.

To prove the final part, let us consider a Cauchy

M° \* . S
sequence((an )nzl)i:1 in (A, 1a), for simplicity in

notation. LetJ be a given open neighbourhood of OXn
Let us find a balanced open neighbourhdbdf 0 such
thatV +V C U, whereV is the closure o¥ in X. Then

there is an integer p such that

(aé” - a,ﬁ”) €Ay, Vi,j>p. Then
Nm
> (aﬁ)—aé))xkev (2.1)
K=1

vYm=12... andV¥ i,j > p. So, withng =0,

Nmy-1 . )
(ali” —aﬁ”)xk EVHVCU, Vi,j>p
k=nm+1
andV m=0,1,2,.... So, to each fixedh, the sequence

Nmy+-1 (i) *
Z QX
k=nm+1 i=1

is a Cauchy sequence X1 Now, the linear independence
of {Xnm+1:- - » X | @nd continuity of linear functionals

on finite dimensional TVSs imply tha(alii)).wl is
=
CauchyVk=1,2,....

Let O{S) — ay asi — oo, for every fixedk. If the earlier
relation (2.1) is used again, it can be concluded that

basis{(an) +Ay : 0€ U € 1x, (0n) € A} m o, _
To verify Hausdorffness ofA, 7a), let us fix(an) in A Z (aﬁ” - ak) x eV CU,
such that (an) € Ay, whenever 0c U € 1x. So, k=1
01Xq + 0Xp + -+« + Oy Xny = 0. SINCEX1, X2, X3,.-.. X, Vi >p,andVm=1,2,..., and hence it can be concluded
are independent, thea; = 0,02 = 0,...,an, = 0. So, that (( (i))w )°° converges to(a)>_, in (A, Ta),
Ony+1%n;+1 + ot anyXn, = 0. Sincexn1+1axn1+25 oo Xy k:l i=1 9 k/k=1 A
are linearly independent, then provided(ak),, € A. Let us next show thatoy),_, € A.
(@© 2016 NSP
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For fixed U,V and p as above, findg such that

z ali >xk €V whenever > m> q. Then
k=nm+1

nr nr

alimxk

(ak — aép)) X +
k=nm+1

wheneverr > m > g. So, (Z akxk) is a Cauchy

sequence inX,1x). This proves tha(ork)k 1 € A So,
(A,Ta) is sequentially complete. In the previous
arguments, one may consider a Cauchy netAnta),

V is the closure ofV in (X, 1x).

To prove continuity of T, consider an open
neighbourhoodJ of 0 in (X, 1x). Find a balanced open
neighbourhood of 0 in (X, 1x) such thalv C U; where
If (an) € Ay then

nj _
S oXe € V,V i, and hencéb — 5 anxp € V C U. Thus
k=1

T_(AV) C V C U. This proves thafl is continuous, and
the proof is complete.

Corollary 3.3. Suppose further in the theorem 3.2 that
(X,1x) iIs anF —space. Thefl is a homeomorphism.

Prooflt is a consequence of the open mapping theorem.

instead of a Cauchy sequence, and verify that it converges

in (A,Ta). Thus(A,Ta)
proves the theorem.

is actually a complete TVS. This

Remark 2.5. If (X,1x) in the previous theorem 2.4 is
, then a norm|| ||| on (A, 1a)
that inducega can be written explicitely as it follows:

Zkak i=1,2,...}

This follows from the definition of the Minkowski
functional.

Il (an) |l = SUD{

3 Block generalized bases

Definition 3.1. Let (x5) be a sequence in a TV, 1x).
Then (xn) is said to be a block generalized basis ,
eachx € X, there are unique scalaog,n=1,2,..., such
thatx =b— S,_1 anXs. It is said to be a Schauder block
generalized basis, if, in addition,
functional is continuous orX. If x = b — 3 OnXn and
fj (x) = aj, then the sequendé,) of functionals is called

associated sequence of coefficient functionals, and simply, .,
written as a.s.c.f. Let us observe again that the particular

casen; =i, Vi, leads to the definition of a basis.

The first aim is to prove that every block generalized basis
in anF— space (that is, a complete metrizable TVS) is a

Schauder block generalized basis.

Theorem 3.2. Let (X,1x) be a sequentially complete
TVS with a block generalized bas{,). Let (A, 1a) be a
defined as in the theorem 2.4. Then the mappingy
T :A— X defined by T((an)) = b—Sanx is a
continuous bijective linear transformation.

is a
i=1
Cauchy sequence ifX, x) and it block-converges to a
unique elementx = b — Y anxn in (X,7x). So, T is
defined. If T ((an)) =0, thenb— ¥ anx, = 0, and hence
an = 0,V n, becausdxy) is a block generalized basis in
(X,1x). S0, T is injective. Ifx € X andx = b — S tnXn,
then(an) € AandT ((an)) = x so thatT is bijective.

nj
ProoflLet (o) be fixed inA. Then ( > akxk>
k=1

each coefficient &

Corollary 3.4. Suppose further in the theorem 3.2 that the
given TVS(X, || |) is a Banach space. Then the ndf||
on X defined by

|||x||=sup{ %fk<x>ka:i:1,z,...}

K=1
is equivalent to the norr ||, when(f,) is the a.s.c.f. for
(Xn)-

Lemma 3.5.Let (X, 7x) be a sequentially complete TVS
with a block generalized basig,) with a.s.c.f.(fy). Let

T and(A, 1) be as in the theorem 3.2. If@V € 1%, V is

balanced,V +V C U, and if x € T(Ay), then
Nit+1
S ()% T (Au).¥i=0,1,2,..., with ng=0.

k=n;+1

if to Prooflf xe T (Av), then

)% €T (AY),Vi=12,...

Z fic (x
Then, fori > 1,

N1

z fic (X) X — % fic (%) X«
=1
€ETAV)+T(A)CT(Au).

> 0

k=n+1

Also,

ny

L

Thus

N1
Y (9% ET(A)).Vi=012...,

k=n+1

€T (Ay) CT(AY).

with ng = 0. This proves the lemma.

Theorem 3.6.Suppose(X,1x) be anF— space with a
block generalized basis,) with a.s.c.f.(f,). Then each
fn is continuous.
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ProofLemma 3.5 and corollary 3.3 imply that for each

. Niy1
i =0,1,2... >
k=n;+1
continuous linear transformation frontX,1x) into
(X,1x), with np = 0. Since each linear functional on a
finite dimensional TVS is continuous, eachy is

continuous on(X, 1x), fork=1,2,....

, the mappingx — fu(X)x¢ is a

For a TVSX, the dual linear space of all continuous
linear functionals orX is denoted byK*. Let us recall that
a sequence of pairsq, fn) with xy € X and f, € X* is
called a biorthogonal system, if,(Xm) = dmn, the
Kronecker deltay m,n. A biorthogonal systenix,, f,) of

a TVS X is called a block regular biorthogonal system, if

(Xn) is a block generalized basis affj) is its a.s.c.f..
Theorem 3.7.Let (xn, fn) be a biorthogonal system in an

F—space X such that ( linear span of
{X:k=12...} =)
nj
{ S X ii=1,2,..., anday are scalars} is dense in
k=1
n
X. To eachx € X, let ,(x) = 3 fi (X)x;,¥ n. Then the

i=1

following are equivalent.
() (xn, fn) is a block regular biorthogonal system
(i)lim sy (X) =%,V x e X
|—»00
(iii) {sn, (x) :1=1,2,... } is boundedy x € X
(iv){sy :i1=1,2,...} is an equicontinuous family oX.

Proof(i)=-(ii) = (iii) are trivial implications. The uniform
boundedness principle gives the implication iifiv).
The implication (ii}=(i), follows from the continuity of

Proof.Supposé{y = X;, and letx € X be such thafy (x) =
0, V n. Then nimsn(x) =0 so thatx € X; = Xp. Then
x= lim s, (x) so thatx = 0. This proves one patrt.

|—»00

assume that

0, Vn} = {0}. Letx € X;. Then

Conversely
{xeX:fh(x)=

fi <x— lim s, (x)) = f(X) — fk(x)
|—00
=0, Vk=1,2,...
S0,Xx— lim sy (x) = 0 so thaix € Xp. This proves thaX; =
1—00
Xo.
Definition 3.9. To a given sequences,) in a TVS X, let
[Xn] denote the closure

nj . .
{ S oXii=1,2,... and oy are scalar in X. A
k=1

of

sequencéxy) in a TVS X is called a block generalized
basic sequence, {k,) is a block generalized basis x),
the closure of linear span ¢k, X, ... }.

Theorem 3.10.Let (x) be a block generalized basis of a
Banach spacéX,| ||) and let(f,) be the a.s.c.f.. Then
(fn) is a block generalized basic sequenc&in and the

following relation is true for every
felfn:f :b—_zlf (%) fi

=
ProoflLet s, (X) = Z fi(X)x,Vvn=12,...,andV x e X.

Let 5, be the adjomt of,. Then, forge X* n=12..

fn, V n. Let us now assume that (iv) is true. Observe thatandx € X, it is true that

Sy (p) = pfor p= 2 axc with j < ni and scalarsy.

So, the eqwcontmwty of sy : .} implies that
lims, (x) = xV x e X, because
|—»00

n;

S X ii=1,2,..., anday are scalarsy is dense in

k=1
X. Thus (iv)=(ii) is proved, and this completes the
proof.

Note that the application of the uniform boundedness (9

principle for the implication (iii}= (iv) requires complete
metrizability in the proof of the previous theorem.

Proposition 3.8.Let (xn, fn) be a biorthogonal systemin a
TVS X. Let

XO:{X€X5i|er1i (x):x}

and X {x € X1 lim s (x) exists}, where
1—00

n
s= Y fi(x)x,vn, Vxe X. Then
i=1

{xeX:fa(x)=0,¥Y n=1,2,...} = {0},

if and only if Xg = X3.

(sh(9))(

X)=9 (éfi (X)Xi>
- <§lg<xi> ﬁ) 0

Zlg xi) fi,

vgeX*,andvn=12,....

Thus

Forn>mandg = E B;fj,
=1

with scalars B, it is true that s,(g) = 9. Let

M= sup ||sn || <. Let f € [fn] ande > 0 be fixed.
i=1,2

Find g = 2 Bjf; for somek and for some scalarg;,
=1

such that| f —g| < ML-HL Then
Iss () =] < Hs:: —5, (@)l + |8y (@) 9 + g — flI
<mM—_ 4 &
M+1 M+1
=€
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fori >k Thuss, (f) — f in X* asi — «. On the other
hand, if b - Saf = 0 in X then
i=1

aj=b—-32,aifi(x;)) =0,V j=1,2,... Thus(fn) is a
block generalized basis ¢fy].

Definition 3.11.Let (X,) be a block generalized basis in
TVS X with a.s.c.f.(fy), and(yn) be a block generalized
basisina TVY with a.s.c.f.(gn). Let us write(xn) < (Yn),

if S o1 0nXn block-converges irX, whenevery_; thyn
block-convergesiiiy.

Proposition 3.12.Let (xn) be a block generalized basis in
a Banach spack with a.s.c.f.(f,), and let(yn) be a block
generalized basis in a Banach sp&cwith a.s.c.f.(gn).
Suppos€yn) < (Xn) in X andY. Then(fy) < (gn) in [gn]
and|fp].

ProofLet the mapping : X — Y be defined by

T (b— zaan) = b— zanyn.
By the closed graph theorem, this mappifg is
continuous. So, for the adjoint mappiiig of T,
(T7(9) (xj) = 6i (T (x)))

=ai(yj)

= fi (Xj)v Vl,]
So, T*(gi) = fi, V i=1,23,... This, of course, proves
that(fy) < (gn) in [gn] @nd[fyn]. This proves the result.

The next theorem provides a method to transfer a bloc
generalized basis into a basis. Let us recall the importan

fact that every block generalized basis infeaspace is a
Schauder block generalized basis (Theorem 3.6).

Theorem 3.13.Let (x,) be a block generalized basis in an
F —spaceX with a.s.c.f.(fy). Define

N_{xex:

Let

Nit1
fi(x)=0,Vi=0,12,..., withng=0
j=ni+1

€+1 = Onj+1Xm+1+ O+ 2Xn 42+ -+ + Qni 1 Xni g
satisfying
ani+1+ani+2+"'+ani+l - 1, \V/ | :0,1,2,....

for some scalarg;. ThenN is a closed linear subspace of
X, and(e + N);> , is a basis in the quotient spax¢N

asn— o, Vi=0,1,2... This proves thal is a closed
linear subspace oX. Let Y = X/N, dx be an addition
invariant metric orX that induces the topology ox%, and
dy be the addtion invariant quotient metric defined by

dy (0,x+N) =inf{dx (0,y) : y+ N =x+N}.

=

Vit1= BniJraniJrl + Bni+2Xni+2 +--+ Bni+1Xni+1

such thatBn 1+ Brs2+ -+ Bn,, = 1, theng —y; €N
sothatg 1 +N=vyi 1 +N,Vi=0,1,2 ... Inparticular
@+1+N=xj+Nforn+1<j<n1,Vi=0,1,2,....Let
I1: X — X /N be the natural continuous quotient mapping.
Then for every € X, it is true that (withng = 0)

r <b_-ifi (X)Xi> =b-
=;< " <x>> @+N)
1= J=Ni_1+

To complete the proof, it is to be proved tHat=0, V i,
when

ig fi (X) Il (Xi)

00

Bn(en+N)=0.
n=1

kSuppose§ Bn(en+N)=0inY for some scalar§,. To
n=1

éachxex,and eacm=1,2,..., lets,(x) = % fi (¥)%;.
i=1

Then, by theorem 3.7,{s;:i=12,...} is an
equicontinuous family oiX.

Fix a positive integemand a fix a sequenag > & >
... of positive numbers such thgt & < ﬁl] and such that
i=1

O (0,500 — S () < .

Viji=12,...andVi=12,..., wheneverdy(0,X) < &
in X, for everyk = 1,2,.... This is possible, because
{sn —sn; 1i,§ =1,2,...} is equicontinuous.

Find a sequencg1) <i(2) < ... of positive integers
such that

i(k+1)
ProofSince the coefficient functionalfy are continuous dv (O, Bj (ej+ N)) < &u1, Vk=0,1,2,...
on X, to each i = 0,1,2,... the functional j=i(k)+1
N1 . . . .

y— 3 fj(y)is continuous orX, with no = 0. So, if  with i (0) = 0. Find a sequenca,z,... in X such that

J=mi+l dx(0,ze;1) < & and such that
(x(”)) ) is a sequence i that converges to somein ) i(k+1) Bi( J vk )

n= Mn(zuq) = i(ej+N),vk=0,1,2,... Then
X, then : j=i(zk)+1 JJ

Niy1 ) N1
0= fj (x") — fj (x), 1

j=m+1 ! ( ) j=n+1 : dX (Oas‘li (Zk+1) _S‘lj (Zk+1)) < WJ V k= 07 17 27' s
(@© 2016 NSP
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Vi=12...andV j=12,.... Toeachkk=0,1,2,..., ProofLet (fy) be a.s.c.f. ofxy). Givenx=b— 3 fn(X)Xn,
write by our assumption, it is true that
Y1 = Sy q) (Zer1) — Sy (Zer1)
. ey V1) ™ g et Z fie(X) (X — Yk) z fi(X)Xk|| »
so that k=ni+1 k=ni+1
i(k+1) o ) )
M (Yke1) = Z Bj (ej +N). Y i,j, wheneverj > i, and hence Z fll(X) (X — Yk)
j=i(k)+1

Thenyy_; Yk converges to somenm € X and

block-converges. Define a bounded I|near transformation
T:X— Xby

dx (0,wm) < % dx (0,¥k) =b-— Z fk(¥) (X —Yk), ¥ xe X
K=1
< 1 Also,
m 0
Moreover, [TX]| = H Z ) (% — Yk)
M(wm) =1 o
(Wm) <k:1YK> <alb- z 0%
w k=1
= > Bi(gj+N) = A, xeX.
=1
_ 6 Thus||T||=A < 1sothat(l —T): X — X is invertible.
_n. ' So, there is a bijective homeomorphigm-T) : X — X,
Thus gl fiwn) = 0, Vi =012 Since Which is also a linear transformation such that
i ’ R (1 =T)(X) = Yn, ¥ n. This proves the theorem.
Sy e 1) (Wim) SnggWm) = Vg1 since _ _
(k1) Corollary 4.3. Let (xn) be a block generalized basis for a
MNiyw1) = Y Bj(ej+N) and since eactB;, with Banach spacéX, || ||) with a.s.c.f.(fy) in X*. Suppose
J=i(k)+1 (Yn) is a sequence in X such that
i(k)+1<j<i(k+1),is a fixed finite sum of the form .
(np)+1 SR ) . . A= Z [ falllXn—VYn|| < 1. Then (yn) is a block
|:%+1f' (W), thenfs; =0, for everyj =1,2,3..... This generallzed basis fof that is equivalent tdxy).

proves the theorem.

n
Prooflf x=S cx(X—Yk), then
k=1

4 Perturbation of block generalized bases n
ZCka—Yk Z X) (% — Yk)
It is not being possible to say that all results for bases canlk=1 k=1
be extended to block generalized bases through theorem 0
3.13. There is no immediate application of theorem 3.13 Z () 11 =y

to perturbation of block basis. Two classical results for
perturbation are modified to block generalized bases. The
first result is of Paley-Wiener type.

Definition 4.1. Two block gereralized baség,) and(yn)

of a TVS X is said to be equivalent, if there is a bijective
linear transformationT : X — X such that it is a
homeomorphism and such thex, = yn, V n.

Theorem 4.2.Let (x,) be a block generalized basis for a
Banach spacéX, || ||). Let (yn) be a sequence K and
0 < A<1 be a constant such that

< [I] Z I el 16 = el
k=1

<Al

n
> o=y |-
&

Theorem 4.4.Let (x,) be a block generalized basis for a
Banach spacéX, || ||), with a.s.c.f.(fy) in X*. Let (yn)
be aX-complete sequence K (in the sense that span
) {yl,yz, .} is dense in X) such that

2 [ fallIXn — Ynll < . Then (yn) is a block

generallzed basis that is equivalentxq).

N

k; Ck (X — i)

L

CieX
kZlkk

for any i, and for any scalarsx. Then (yn) is a block
gerenalized basis fof that is equivalent tgxy).

<A
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Proof Define a bounded linear operaibr. X — X by basis,cc =0, k> nj+1. Thus, ifb— § cYk = 0, then
k=1
hd c =0, Vk_1,2, . In particular, if (I — T)(x) = 0,
TO)=b= fa()(—yn), ¥ XEX, k P )
=] thenb — 2 (X )yn = 0 and thenf,(x) =0, Vn, and
when hence x = 0 Thus (I = T) : X — X is a bijective

homeomorphism which is a linear transformation such

T = ‘ that(l — T)(Xn) = Y¥n, V n. This proves the theorem.

b— Z fa(X) (X0 —
Definition 4.5. A subsetA of N, the set of all natural
< Z | (X)] % — Yl numbers, is called a block subsethgfif k € A, whenever
l e Aandn +1 <kl < njq, for somei =0,1,2,...
(with ng = 0).
< |||l Z IfalllIXn — Ynl] Let (xn) be a sequence in a T\}§ and letA be a block
n=1 subset ofN. Puty, = X, if n€ A, and zero otherwise. Let

<AIX||l, xeX. us say that a partial seriey xn block-converges to some
neA

To eachi, define a compact linear operafipr. X — X by elementx <: b—y Xn) in X, if E yn block-converges
neA n=1

toxin X.

Suppose further thdk,) is a block generalized basis
in a TVS X. Let us say tha{x,),. is a partial block
Then||T —Ti|| — 0 asi — « under operator norm. S,  generalized basis in a linear spacé of X, if
is also compact so thaT —1) : X — X has closed range. x, €Y, ¥ ne A and if to eachx € Y, there are unique
Since(l —T)(X)) = Yn, ¥ n, and since spafy;,yz...}  scalarso, forne Asuchthak=b— S anXn.

ka Xk_yk vVxeX.

is dense irX, then(l — T)(X) = X. To prove that — T is neA
1-1, consider an integgrsuch that Theorem 4.6.Let (xn) be a block generalized basis in an
© F—spaceX. LetAbe an infinite block subset &f andB =
> Idllixe—yll < 1. N—A. LetY be the closure of linear span f%, : n € A}.
k=fr1 Let Z be the quotient spacé/Y, and let7 : X — Z be the
natural quotient mappind] (x) = X+ Y. Then(X),ca IS
Then, by the previous corollary, a partial block generalized basis Y{relative toA). The
{X1, X2, -, Xnj,Yn +1,¥n; 42, - } IS @ block generalized  collection (7 (xn)) .5 is also a partial block generalized
basis ofX that is equivalent tdx,). Define basis ofZ(relative toB), whenB is infinite.(If B is finite,

1 (x,) : n€ B} is a Hamel basis df).
X1 = span{xi,Xz,...Xn; }, {17 (%) } )

q ProofLet (f,) be the a.s.c.f. of the bIock generahzed
an basis (x,) in X. To each n = 1,2,..., let
n
Y, = closure of span{yn;+1,Ynj12;--- } - s$(X) = S fix V x € X. By theorem 3.7,
i=1

ThenX = X1 +Y1, X1 Y1 = {0}, andX; andY; are closed  {s, :i=1,2,...} is equicontinuous oiX. To eachi, let
subspaces oX. Consider a relatiob— 3 ¢y, —0inX o denote the restriction of, to Y; with codomainy.

P Z e Tﬁen{éni 1=1,23...}is also equicontinuous ov. So,
for some scalarsy. If ¢, # 0 for somek < nj, then a variation of the theorem 3.7 implies th@é,)

ca is @

partial block generalized basis ¥f with a bior?hogonal

—b 12 system (Xn, fn),ca- TO e€achn € B, define a linear
Ye=Db~— ok i;z. functionalg, onZ by ¢n (x+Y) = fr(x), Vxe X. Then

¢n is a well defined continuous linear functional @n

with z = ¢yy; fori #k, andz, = 0. ThusX = Z; +Y;, when  such that¢n (7 (xm)) is 1 if n=m; and it is zero if

n# me B. Then(I7 (Xn), $n),cg iS a biorthogonal system

Zy=span{ys, Yz, -, Y1 Yks 1o Yy | for Z. If x+Y € Z, thenhlimsni (x) = x, and hence
|—00

becauseZ; +V; is closed inX, andspan{ys,yz,...} is lim I (s, (X)) = x+Y. So, by a variation of theorem 3.7,
dense inX. Sincedimz; < dimX, X =X1+Y1=21+Y,
andX; Y1 = {0}, there is a contradiction. So, = 0 for

any k < nj. Thus (with a natural sense)

0

b - S CkYk — 0. Since  Remark 4.7.When (), IS written as a sequence such
k=nj+1 that order among suffices is preserved, a block
{x1,%, ..., % ¥n;+1,Yn;4+2,..- } is a block generalized generalized basis t& is obtained with respect to a

(I (Xn))neg is a partial block generalized basisf This
completes the proof.
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different (n;). Similarly, Z has a block generalized basis n=1,2,..., lete™ = (ay), whereay = 1 fork = n, and
with respect to a differentn;). These facts can be zero otherwise. To eaah=1,2,..., and(ay) € X, let
extended to unconditional block generalized bases, when n

they are introduced in the following way. s((ay) = Zaie(i)

Definition 4.8. Let 1 : N — N be a bijective mapping. It =

is said to be a block permutation, if = (01,02,...0n,0,0,...),

ﬂ({ni+.1,ni+2,...,ni+l}) i; a finitga sequence of and ta((a)) = (0,0, ...0,dns1,Ans2,...), When zeros
successive elements Nt In this case[l is said to induce occupy the first n-coordinates for. Define

a new block sequencefmy <m <my < ..., when _
Y = {(ax) € X[ty ((ak))[| = O as i— oo}.

Then(Y,|| ||) is a Banach space with a block generalized

with no = 0. " basis(e“‘))oo Jfm =2, Vi, then ((—1)k): €y.
Let (x,) be a sequence in a TV Then S x, is said n=1 =1
n=1

1 ({ng,n1,nz,... 1) = {mo,my,mp,... }

0 M1 P
to block-converge unconditionally, ify ( S X 5 A non-trivial example

i=0 \ j=m+1
converges whenever the block sequenceExample 411 is a natural example of a block generalized
0O=m <M < m < ... is obtained from basis. Lemma 3.5 assures convergence of

0=np < N1 < ny <... by means of a block permutation. (ZE:é-H fk(X)Xk)_ . to 0 in F-spaces; and convergence
A block generalized basisq) in TVS X is called an AR~ :

unconditional block generalized basis, wheneyer,x, OT (f"(,x)xk)k:l to 0 fails to. be true(k|)n the spac¥, || ||)

block-converges unconditionally inX, for every Jivenin Example 4.11, with = €. So, some results

b— ¥ oy € X for classical bases need modifications for extensions. This

N section provides a non-trivial example, which also gives a
Remark 4.9.A seriesy y_; xn of scalars block-converges natural motivation to study block generalized bases.

- . e | n Example 5.1.When a paif(i, j) is used in this example, it
unconditionally if and only if 5 | 5 Xj| CONVerges, s assumed thai and j are natural numbers and
e e 1<j <2t Let us write (i,ji) < (i + 1, jis1), if
whenng = 0. In this case, - =S e e LeLUS e (i,ji) < (41 i),
jit1 = 2j; or 2jj — 1. To each sequencaxr =
© M © M1 (a(11), 0(2,2): 0(2,2), A(31): A(3.2), A(33), U(3.4): A(4,1)5 - - -
Z} Z Xj = Z) Z X ,0(48),0(51)---,0(516),---) Of real scalars, let us define
i=0j=nj+1 i=0j=m+1 Ha”l by ' '
for any block sequence8 my < m; < m, < ... obtained n
from 0 =ngp < np < np < ... through any block |G|1—Sup{sup{ Zl“(im :(17j1)<(27j2)<...<(n,jn)}
permutation. i=

This fact implies the following result.
1<jpn<2™l n=12..}.

Proposition  4.10. Suppose  a  series 3 Xn Let X denote the collection of all sequences

n=1
block-converges unconditionally in a TV®, for which o = (a(l-,1>"") for which|ja||1 < e, and
the points are separated by its dXél Then

n
w N1 © M1 SUD{ D Uiy (Mjm) < (M+1jmyr) < -+ < (n7in)} -0
2 2 Xi=2 > X "
i=0j=ni+1 i=0j=m+1 asm,n — o with m < n. Then (X,|| |1) is a Banach

for any block sequence-8 m < m; < m < ... obtained ~ SPace with respect to natural coordinatewise addition and
from 0=ng < n <Ny < ... through”ény block Scalar multiplication. This space has a block generalized
permutation. basis {(1,0,0,0,...),(0,1,0,0,...),(0,0,1,0,...),... }
withnm=1n=14+2=3n=1+2+22=7n =
Ex?mple 4.11.To each sequence of scaldis), let us 1, 212242815 . Let loy = 0,1, l21) = [0, 1,
efine

l22) = 6[%771]7 l31) 8: o, 3—12] lz2 = [3_227 3—32]
m :
B o l33) = [32:32], l(34) = [3,1],.... be the closed intervals

I(am)ll = SUD{ kzl a|:m=12,... } : associated with a construction of classical Cantor ternary
set S over the interval[0,1]. ThenS= ) J,, where

Let X = {(om) : ||(om)|| < e anday are scalars}. Then n=1

(X,]| ||) is a Banach space with respect to naturalJ = l(11), V) = l2yUl22),

coordinatewise addition and scalar multiplication. Toreac J3 = I(31)Ul32)Ul33Ul3 4+ Let C(S) denote
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the Banach space of all continuous real valued functionsAcknowledgement

on S with the supremum norm defined by
|| ]l = sup{|f(X)| : x€ S}, for f € C(S). To each(i, j),
let F; iJ) denote the characteristic functu)ﬂ defined
on S that is restricted t&. Then

{Fwy:Fe1:Fe2):Fa1,Fe2),FE3), Fea), Fas - - Fas)

,F(571),...,F(5716),...}

is not a block generalized basis(8(S), || ||.) with ny =
Lnpg=1+2=3ng=1+2+22=7n3=1+2+2%+
S =15,.... DefineT : (X, || [l1) = (C(S),]| [l=) b

n 2i 1

T ((a(l’l),...)) = r!mo Z| Z a(,

oo2I1

= Ziz ai.j)F.j)»
i=1j=1

when the limit exists with respect td |«. Since
IT(a)]|o < ||a|l1, for everya € X, T is a continuous
linear transformation. Fixf € C(S). To each(i,j), let

Bij = max{f(x):xeSNl;j}. Then, define
aey = By azy = Bey — 9wy
U2 = 3(2,2) —0ay, d@a = 3(3,1) — 01 —daa,
(32 = (3.2) - Q@ - Oa
(33 = B(3,3) - (22 - d1,1)
a(3.4) = Bey — ez —  au
Oayy = 3(4,1) — Od@y — 021 — Jdaa,
Auz = PBuz — 0@y — 021y — dui,
Oaz = 43 — 0Oaz2 — dein — 0O
Ouas = PBusy — 0@z — 021 — dui,
Ouas = 3(4,5) — Od@g — 0Oeg2 — daai,
Auae) = Bus — 0@z — 022 — dui,
Oarn = 3(4,7) — Od@a — Qg2 — daa,
0{<4’8) = B(478) — 0{<3’4) — 0{< 2) : (1’ Yoo Then
(apy,---) € X, and f = I|_r;rlo §122 ai ) Fi,j in C(S).
i

Thus T is surjective. The above representation fois
true, even if "max” is replaced by "min” in the definition
of Bij- So, T is not injective. Conclusion: Continuous

image of a block generalized basis need not be a block

generalized basis.

6 Conclusion

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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A systematic study has been presented on block
convergence and block generalized bases. A few classical
results for bases have been generalized to block
generalized bases. This includes a generalization: Every
block generalized basis in an F - space is a Schauder
block generalized basis. It is expected that many results
for classical bases can be generalized to block generalized

bases
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