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1 Introduction

Basic sequences and block basic sequences are known
concepts in the theory of bases (see: [5]). These concepts
are studied in this article with a very slight variation. The

series
∞
∑

n=1
(−1)n does not converge in the real line. The

series
∞
∑

n=1

(

(−1)2n+1+(−1)2n
)

converges to zero. The

series−1+
∞
∑

n=1

(

(−1)2n+(−1)2n+1
)

converges to−1.

So, importance on subsequential limits of partial sums are

not taken into account, when it is stated that
∞
∑

n=1
(−1)n

does not converge. This article gives importance to these
subsequential limits and few fundamental results have
been derived.

Block convergence is studied in the next section so that
a concept of block generalized basis can be introduced and
studied. The terminology ”block basis” was used in the
article [2]. I. Singer [4] suggested that it may be called ”
block basic sequence”. This concept is different from the
concept of block generalized basis to be studied. The book
[5] of I. Singer may be used for an introduction to block
basic sequences.

All topologies in this article are Hausdorff topologies.
All vector spaces are over the real field. ’Topological
vector space’ is abbreviated as ’TVS’, and definitions
may be found in [3].

2 Block series

A strictly increasing sequence of natural numbers
n1 < n2 < n3 < .. . is fixed, and concepts are introduced
with respect to this fixed sequence in this article. The
particular caseni = i, ∀ i, leads to classical concepts.
Definition 2.1. A sequence (xn)

∞
n=1 or (xn) in a

topological spaceX is said to block-converge tox in X, if
the subsequence(xni )

∞
i=1 converges tox in X. A sequence

(xn) in a metric space(X,d) is said to be block-Cauchy ,
if d

(

xni ,xn j

)

→ 0, asi, j → +∞ By following [1], let us
call d : X × X → [0,∞) as a semimetric, if
d (x,x) = 0,d (x,y) = d (y,x), and
d (x,z) ≤ d (x,y)+d (y,z) ;∀x,y,z∈ X. A sequence(xn) in
a uniform space

(

X,(dk)k∈I

)

, in which the uniformity is
induced by a family of semimetrics(dk)k∈I , is said to be
block-Cauchy, ifdk

(

xni ,xn j

)

→ 0 as i, j → ∞; for every
fixed k ∈ I . Similarly, a sequence(xn) in a TVS (X,τ) is
said to be block-Cauchy, if(xni )

∞
i=1 is Cauchy.

Note that block-convergence of a sequence implies
block-Cauchyness in a uniform space.

Definition 2.2. A series
∞
∑

n=1
xn or ∑xn in a TVSX is said

to block-converge if

(

ni

∑
n=1

xi

)∞

i=1
converges to somex in

X. In this case, let us writex= b−
∞
∑

n=1
xn or x= b−∑xn.

Similarly, b −
∞
∑

n=1
xn or b − ∑xn is used for block
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convergence. Other variations will have unambiguous
meanings .

Remark 2.3.Block convergence of a series∑xn in a TVS

implies the following: withj > i,
n j

∑
k=ni+1

xk → 0 asi, j →∞,

and
ni+1

∑
k=ni+1

xk → 0 asi → ∞.

Theorem 2.4.Let (xn) be a sequence in a TVS(X,τX)
such that

{

xnm+1,xnm+2, . . . ,xnm+1

}

is linearly
independent,∀ m = 0,1,2, . . . , with n0 = 0. Under
natural coordinatewise addition and scalar multiplication,
let A be a linear space of sequences of scalars, which is
defined by

A=

{

(αn) :

(

ni

∑
k=1

αkxk

)∞

i=1

is Cauchy in X

}

.

To eachU ∈ τX such that 0∈U , let

AU =

{

(αn) ∈ A :
ni

∑
k=1

αkxk ∈U, ∀ i = 1,2, . . .

}

.

Then there is a vector topologyτA onA that makes(A,τA)
into a TVS with a local base{AU : 0∈U ∈ τX} at 0. If
(X,τX) is metrizable, then(A,τA) is metrizable. If(X,τX)
is locally convex, then(A,τA) is also locally convex. If
(X,τX) is locally bounded, then(A,τA) is also locally
bounded. If (X,τX) is normable, then(A,τA) is also
normable. Above all,(A,τA) is complete.

Proof.If U is an open neighbourhood of 0 inX, andV is an
open neighbourhood of 0 inX such thatV +V ⊆U , then,
by definition,AV +AV ⊆ AU .

Let us fix (αn) ∈ A and a scalarα. Again, for a given
open neighbourhoodU of 0 in X, find an open balanced
neighbourhoodV of 0 such thatV + |α|V +V ⊆U . Since
(

ni

∑
k=1

αkxk

)∞

i=1
is Cauchy inX, there is aδ ∈ (0,1) such

that β
ni

∑
k=1

αkxk ∈ V,∀ i = 1,2, . . . , and whenever|β | < δ .

Thus, if (βn) ∈ AV and|β |< δ , then

(α +β )

(

ni

∑
k=1

αkxk+
ni

∑
k=1

βkxk

)

∈
ni

∑
k=1

ααkxk+V + |α|V +V

⊆
ni

∑
k=1

ααkxk+U,∀ i = 1,2, . . . .

So, (α +β )((αn)+ (βn)) ∈ (ααn) + AU , whenever
|β | < δ and (βn) ∈ AV . So, addition and scalar
multiplication are continuous in(A,τA), when τA has a
basis{(αn)+AU : 0∈U ∈ τX ,(αn) ∈ A}.

To verify Hausdorffness of(A,τA), let us fix(αn) in A
such that (αn) ∈ AU , whenever 0∈ U ∈ τX . So,
α1x1 + α2x2 + · · · + αn1xn1 = 0. Sincex1,x2,x3, . . . ,xn1
are independent, thenα1 = 0,α2 = 0, . . . ,αn1 = 0. So,
αn1+1xn1+1 + · · ·+αn2xn2 = 0. Sincexn1+1,xn1+2, . . . ,xn2

are linearly independent, then

αn1+1 = 0,αn1+2 = 0, . . . ,αn2 = 0. Proceeding in this
way, it can be concluded thatαi = 0, ∀ i = 1,2, . . . , so
that(αn) is the zero element ofA. This proves that(A,τA)
is a Hausdorff space and hence it is a TVS.

Suppose(X,τX) is locally bounded, andU be a
balanced bounded neighbourhood of 0 in(X,τX). Let V
be another balanced neighbourhood of 0 inX. Then there
is a k > 0 such thattU ⊆ V, whenever|t| ≤ k. Then
tAU ⊆ AV whenever |t| ≤ k. Thus AU is a bounded
neighbourhood of the zero element inA, and hence
(A,τA) is also locally bounded.

If (X,τX) is metrizable, and it has a countable local
base {Vn : n= 1,2, . . .} of open sets at 0 inX, then
{AVn : n= 1,2, . . .} is a countable local base in(A,τA)
and hence it is metrizable.

If U is a convex open neighbourhood of 0 inX, then
AU is a convex neighbourhood of zero inA. Thus(A,τA) is
locally convex, when(X,τX) is locally convex. If(X,τX)
is normable, then(A,τA) is also normable, because a TVS
is normable if and only if it is locally bounded and locally
convex.

To prove the final part, let us consider a Cauchy

sequence
((

α(i)
n

)∞

n=1

)∞

i=1
in (A,τA), for simplicity in

notation. LetU be a given open neighbourhood of 0 inX.
Let us find a balanced open neighbourhoodV of 0 such
thatV +V ⊆ U , whereV is the closure ofV in X. Then
there is an integer p such that
(

α(i)
n −α( j)

n

)

∈ AV , ∀ i, j ≥ p. Then

nm

∑
k=1

(

α(i)
k −α( j)

k

)

xk ∈V, (2.1)

∀ m= 1,2, . . . , and∀ i, j ≥ p. So, withn0 = 0,

nm+1

∑
k=nm+1

(

α(i)
k −α( j)

k

)

xk ∈V +V ⊆U, ∀ i, j ≥ p

and∀ m= 0,1,2, . . . . So, to each fixedm, the sequence
(

nm+1

∑
k=nm+1

α(i)
k xk

)∞

i=1

is a Cauchy sequence inX. Now, the linear independence
of
{

xnm+1, . . . ,xnm+1

}

, and continuity of linear functionals

on finite dimensional TVSs imply that
(

α(i)
k

)∞

i=1
is

Cauchy,∀ k= 1,2, . . . .

Let α(i)
k → αk asi → ∞, for every fixedk. If the earlier

relation (2.1) is used again, it can be concluded that
nm

∑
k=1

(

α(i)
k −αk

)

xk ∈V ⊆U,

∀ i ≥ p, and∀ m= 1,2, . . . , and hence it can be concluded

that
((

α(i)
k

)∞

k=1

)∞

i=1
converges to(αk)

∞
k=1 in (A,τA),

provided(αk)
∞
k=1 ∈ A. Let us next show that(αk)

∞
k=1 ∈ A.
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For fixed U,V and p as above, findq such that
nr

∑
k=nm+1

α(p)
k xk ∈V wheneverr > m≥ q. Then

nr

∑
k=nm+1

αkxk =
nr

∑
k=nm+1

(

αk−α(p)
k

)

xk+
nr

∑
k=nm+1

α(p)
k xk

∈V +V ⊆U,

wheneverr > m ≥ q. So,

(

ni

∑
k=1

αkxk

)∞

i=1
is a Cauchy

sequence in(X,τX). This proves that(αk)
∞
k=1 ∈ A. So,

(A,τA) is sequentially complete. In the previous
arguments, one may consider a Cauchy net in(A,τA),
instead of a Cauchy sequence, and verify that it converges
in (A,τA). Thus(A,τA) is actually a complete TVS. This
proves the theorem.

Remark 2.5. If (X,τX) in the previous theorem 2.4 is
normable with a norm‖ ‖, then a norm‖| ‖| on (A,τA)
that inducesτA can be written explicitely as it follows:

‖|(αn)‖|= sup

{∥

∥

∥

∥

∥

ni

∑
k=1

αkxk

∥

∥

∥

∥

∥

: i = 1,2, . . .

}

This follows from the definition of the Minkowski
functional.

3 Block generalized bases

Definition 3.1. Let (xn) be a sequence in a TVS(X,τX).
Then (xn) is said to be a block generalized basis , if to
eachx∈ X, there are unique scalarsαn,n= 1,2, . . . , such
that x = b−∑∞

n=1αnxn. It is said to be a Schauder block
generalized basis, if, in addition, each coefficient
functional is continuous onX. If x = b− ∑αnxn and
f j (x) = α j , then the sequence( fn) of functionals is called
associated sequence of coefficient functionals, and simply
written as a.s.c.f. Let us observe again that the particular
caseni = i, ∀ i, leads to the definition of a basis.
The first aim is to prove that every block generalized basis
in anF− space (that is, a complete metrizable TVS) is a
Schauder block generalized basis.

Theorem 3.2. Let (X,τX) be a sequentially complete
TVS with a block generalized basis(xn). Let (A,τA) be a
defined as in the theorem 2.4. Then the mapping
T : A → X defined by T ((αn)) = b − ∑αnxn is a
continuous bijective linear transformation.

Proof.Let (αn) be fixed in A. Then

(

ni

∑
k=1

αkxk

)∞

i=1
is a

Cauchy sequence in(X,τX) and it block-converges to a
unique elementx = b − ∑αnxn in (X,τX). So, T is
defined. IfT ((αn)) = 0, thenb−∑αnxn = 0, and hence
αn = 0,∀ n, because(xn) is a block generalized basis in
(X,τX). So,T is injective. If x ∈ X andx = b−∑αnxn,
then(αn) ∈ A andT ((αn)) = x so thatT is bijective.

To prove continuity of T, consider an open
neighbourhoodU of 0 in (X,τX). Find a balanced open
neighbourhoodV of 0 in (X,τX) such thatV ⊆ U ; where
V is the closure ofV in (X,τX). If (αn) ∈ AV then
ni

∑
k=1

αkxk ∈ V,∀ i, and henceb− ∑αnxn ∈ V ⊆ U . Thus

T (AV) ⊆ V ⊆ U . This proves thatT is continuous, and
the proof is complete.

Corollary 3.3. Suppose further in the theorem 3.2 that
(X,τX) is anF−space. ThenT is a homeomorphism.

Proof.It is a consequence of the open mapping theorem.

Corollary 3.4. Suppose further in the theorem 3.2 that the
given TVS(X,‖ ‖) is a Banach space. Then the norm‖| |‖
onX defined by

‖|x‖|= sup

{∥

∥

∥

∥

∥

ni

∑
k=1

fk (x)xk

∥

∥

∥

∥

∥

: i = 1,2, . . .

}

is equivalent to the norm‖ ‖, when( fn) is the a.s.c.f. for
(xn).

Lemma 3.5.Let (X,τX) be a sequentially complete TVS
with a block generalized basis(xn) with a.s.c.f.( fn). Let
T and(A,τA) be as in the theorem 3.2. If 0∈V ∈ τX , V is
balanced, V + V ⊆ U , and if x ∈ T (AV), then

ni+1

∑
k=ni+1

fk (x)xk ∈ T (AU) ,∀ i = 0,1,2, . . . , with n0 = 0.

Proof.If x∈ T (AV), then

ni

∑
k=1

fk (x)xk ∈ T (AV) ,∀ i = 1,2, . . .

Then, fori ≥ 1,

ni+1

∑
k=ni+1

fk (x)xk =
ni+1

∑
k=1

fk (x)xk−
ni

∑
k=1

fk (x)xk

∈ T (AV)+T (AV)⊆ T (AU) .

Also,

n1

∑
k=1

fk (x)xk ∈ T (AV)⊆ T (AU) .

Thus

ni+1

∑
k=ni+1

fk (x)xk ∈ T (AU) ,∀ i = 0,1,2, . . . ,

with n0 = 0. This proves the lemma.

Theorem 3.6.Suppose(X,τX) be anF− space with a
block generalized basis(xn) with a.s.c.f.( fn). Then each
fn is continuous.

c© 2016 NSP
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Proof.Lemma 3.5 and corollary 3.3 imply that for each

i = 0,1,2. . . , the mappingx 7−→
ni+1

∑
k=ni+1

fk (x)xk is a

continuous linear transformation from(X,τX) into
(X,τX), with n0 = 0. Since each linear functional on a
finite dimensional TVS is continuous, eachfk is
continuous on(X,τX), for k= 1,2, . . . .

For a TVSX, the dual linear space of all continuous
linear functionals onX is denoted byX∗. Let us recall that
a sequence of pairs(xn, fn) with xn ∈ X and fn ∈ X∗ is
called a biorthogonal system, iffn (xm) = δm,n, the
Kronecker delta,∀ m,n. A biorthogonal system(xn, fn) of
a TVSX is called a block regular biorthogonal system, if
(xn) is a block generalized basis and( fn) is its a.s.c.f..
Theorem 3.7.Let (xn, fn) be a biorthogonal system in an
F−space X such that ( linear span of
{xk : k= 1,2, . . .} =)
{

ni

∑
k=1

αkxk : i = 1,2, . . . , andαk are scalars

}

is dense in

X. To eachx ∈ X, let sn (x) =
n
∑

i=1
fi (x)xi ,∀ n. Then the

following are equivalent.

(i)(xn, fn) is a block regular biorthogonal system
(ii)lim

i→∞
sni (x) = x,∀ x∈ X

(iii) {sni (x) : i = 1,2, . . .} is bounded,∀ x∈ X
(iv){sni : i = 1,2, . . .} is an equicontinuous family onX.

Proof.(i)⇒(ii)⇒(iii) are trivial implications. The uniform
boundedness principle gives the implication (iii)⇒(iv).
The implication (ii)⇒(i), follows from the continuity of
fn, ∀ n. Let us now assume that (iv) is true. Observe that

sni (p) = p for p =
j

∑
k=1

αkxk with j ≤ ni and scalarsαk.

So, the equicontinuity of{sni : i = 1,2, . . .} implies that
lim
i→∞

sni (x) = x,∀ x ∈ X, because
{

ni

∑
k=1

αkxk : i = 1,2, . . . , andαk are scalars

}

is dense in

X. Thus (iv)⇒(ii) is proved, and this completes the
proof.

Note that the application of the uniform boundedness
principle for the implication (iii)⇒ (iv) requires complete
metrizability in the proof of the previous theorem.
Proposition 3.8.Let (xn, fn) be a biorthogonal system in a
TVS X. Let

X0 =

{

x∈ X : lim
i→∞

sni (x) = x

}

and X1 =

{

x∈ X : lim
i→∞

sni (x) exists

}

, where

sn =
n
∑

i=1
fi (x)xi ,∀ n, ∀ x∈ X. Then

{x∈ X : fn (x) = 0,∀ n= 1,2, . . .}= {0} ,

if and only if X0 = X1.

Proof.SupposeX0 = X1, and letx∈X be such thatfn (x) =
0, ∀ n. Then lim

n→∞
sn (x) = 0 so thatx ∈ X1 = X0. Then

x= lim
i→∞

sni (x) so thatx= 0. This proves one part.

Conversely assume that
{x∈ X : fn (x) = 0, ∀ n}= {0}. Let x∈ X1. Then

fk

(

x− lim
i→∞

sni (x)

)

= fk (x)− fk (x)

= 0, ∀ k= 1,2, . . .

So,x− lim
i→∞

sni (x) = 0 so thatx∈ X0. This proves thatX1 =

X0.

Definition 3.9. To a given sequence(xn) in a TVS X, let
[xn] denote the closure of
{

ni

∑
k=1

αkxk : i = 1,2, . . . andαk are scalars

}

in X. A

sequence(xn) in a TVS X is called a block generalized
basic sequence, if(xn) is a block generalized basis in[xn],
the closure of linear span of{x1,x2, . . .}.

Theorem 3.10.Let (xn) be a block generalized basis of a
Banach space(X,‖ ‖) and let ( fn) be the a.s.c.f.. Then
( fn) is a block generalized basic sequence inX∗, and the
following relation is true for every

f ∈ [ fn] : f = b−
∞
∑
i=1

f (xi) fi .

Proof.Let sn (x) =
n
∑

i=1
fi (x)xi ,∀ n= 1,2, . . . , and∀ x∈ X.

Let s∗n be the adjoint ofsn. Then, forg ∈ X∗,n = 1,2. . . ,
andx∈ X, it is true that

(s∗n (g)) (x) = g

(

n

∑
i=1

fi (x)xi

)

=

(

n

∑
i=1

g(xi) fi

)

(x) .

Thus

s∗n (g) =
n

∑
i=1

g(xi) fi ,

∀ g∈ X∗, and∀ n= 1,2, . . . . For n≥ m andg=
m
∑
j=1

β j f j ,

with scalars β j , it is true that s∗n (g) = g. Let
M = sup

i=1,2,...
‖sni‖ < ∞. Let f ∈ [ fn] and ε > 0 be fixed.

Find g =
nk

∑
j=1

β j f j for somek and for some scalarsβ j ,

such that‖ f −g‖< ε
M+1. Then

∥

∥s∗ni
( f )− f

∥

∥ ≤
∥

∥s∗ni
( f )− s∗ni

(g)
∥

∥+
∥

∥s∗ni
(g)−g

∥

∥+ ‖g− f‖

≤ M
ε

M+1
+

ε
M+1

= ε
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Natural Sciences Publishing Cor.



J. Ana. Num. Theor.4, No. 1, 61-69 (2016) /www.naturalspublishing.com/Journals.asp 65

for i ≥ k. Thuss∗ni
( f ) → f in X∗ as i → ∞. On the other

hand, if b −
∞
∑

i=1
αi fi = 0 in X∗, then

α j = b−∑∞
i=1 αi fi (x j) = 0,∀ j = 1,2, . . . Thus( fn) is a

block generalized basis of[ fn].

Definition 3.11.Let (xn) be a block generalized basis in
TVS X with a.s.c.f.( fn), and(yn) be a block generalized
basis in a TVSY with a.s.c.f.(gn). Let us write(xn)≺ (yn),
if ∑∞

n=1αnxn block-converges inX, whenever∑∞
n=1 αnyn

block-converges inY.

Proposition 3.12.Let (xn) be a block generalized basis in
a Banach spaceX with a.s.c.f.( fn), and let(yn) be a block
generalized basis in a Banach spaceY with a.s.c.f.(gn).
Suppose(yn) ≺ (xn) in X andY. Then( fn) ≺ (gn) in [gn]
and[ fn].

Proof.Let the mappingT : X →Y be defined by

T
(

b−∑αnxn
)

= b−∑αnyn.

By the closed graph theorem, this mappingT is
continuous. So, for the adjoint mappingT∗ of T,

(T∗ (gi)) (x j) = gi (T (x j))

= gi (y j)

= fi (x j) , ∀ i, j

So,T∗ (gi) = fi , ∀ i = 1,2,3, . . . This, of course, proves
that( fn)≺ (gn) in [gn] and[ fn]. This proves the result.

The next theorem provides a method to transfer a block
generalized basis into a basis. Let us recall the important
fact that every block generalized basis in anF−space is a
Schauder block generalized basis (Theorem 3.6).
Theorem 3.13.Let (xn) be a block generalized basis in an
F−spaceX with a.s.c.f.( fn). Define

N=

{

x∈ X :
ni+1

∑
j=ni+1

f j (x) = 0,∀ i = 0,1,2, . . . , with n0 = 0

}

Let

ei+1 = αni+1xni+1+αni+2xni+2+ · · ·+αni+1xni+1

satisfying

αni+1+αni+2+ · · ·+αni+1 = 1, ∀ i = 0,1,2, . . . .

for some scalarsα j . ThenN is a closed linear subspace of
X, and(ei +N)∞

i=1 is a basis in the quotient spaceX/N

Proof.Since the coefficient functionalsf j are continuous
on X, to each i = 0,1,2, . . . the functional

y 7−→
ni+1

∑
j=ni+1

f j (y) is continuous onX, with n0 = 0. So, if
(

x(n)
)∞

n=1
is a sequence inN that converges to somex in

X, then

0=
ni+1

∑
j=ni+1

f j

(

x(n)
)

→
ni+1

∑
j=ni+1

f j (x) ,

asn → ∞,∀ i = 0,1,2. . . This proves thatN is a closed
linear subspace ofX. Let Y = X/N, dX be an addition
invariant metric onX that induces the topology onX, and
dY be the addtion invariant quotient metric defined by

dY (0,x+N) = inf {dX (0,y) : y+N = x+N} .

If

yi+1 = βni+1xni+1+βni+2xni+2+ · · ·+βni+1xni+1

such thatβni+1+βni+2+ · · ·+βni+1 = 1, thenei − yi ∈ N
so thatei+1+N = yi+1+N,∀ i = 0,1,2, . . . In particular
ei+1+N= x j +N for ni+1≤ j ≤ ni+1,∀ i =0,1,2, . . . . Let
Π : X →X/N be the natural continuous quotient mapping.
Then for everyx∈ X, it is true that (withn0 = 0)

Π

(

b−
∞

∑
i=1

fi (x)xi

)

= b−
∞

∑
i=1

fi (x)Π (xi)

=
∞

∑
i=1

(

ni

∑
j=ni−1+1

f j (x)

)

(ei +N).

To complete the proof, it is to be proved thatβi = 0, ∀ i,
when

∞

∑
n=1

βn (en+N) = 0.

Suppose
∞
∑

n=1
βn (en+N) = 0 in Y for some scalarsβn. To

eachx∈ X, and eachn= 1,2, . . . , let sn (x) =
n
∑
j=1

f j (x)x j .

Then, by theorem 3.7, {sni : i = 1,2, . . .} is an
equicontinuous family onX.

Fix a positive integermand a fix a sequenceε1 > ε2 >

.. . of positive numbers such that
∞
∑

i=1
εi <

1
m, and such that

dX
(

0,sni (x)− sn j (x)
)

<
1

m2k+1 ,

∀ j = 1,2, . . . and∀ i = 1,2, . . . , wheneverdX(0,x) < εk
in X, for every k = 1,2, . . . . This is possible, because
{

sni − sn j : i, j = 1,2, . . .
}

is equicontinuous.
Find a sequencei (1) < i (2)< .. . of positive integers

such that

dY

(

0,
i(k+1)

∑
j=i(k)+1

β j (ej +N)

)

< εk+1, ∀ k= 0,1,2, . . .

with i (0) = 0. Find a sequencez1,z2, . . . in X such that
dX(0,zk+1) < εk+1 and such that

Π (zk+1) =
i(k+1)

∑
j=i(k)+1

β j (ej +N),∀k= 0,1,2, . . . Then

dX
(

0,sni (zk+1)− sn j (zk+1)
)

<
1

m2k+1 , ∀ k= 0,1,2, . . . .
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∀ i = 1,2, . . . and∀ j = 1,2, . . . . To eachk = 0,1,2, . . . ,
write

yk+1 = sni(k+1)
(zk+1)− sni(k)

(zk+1)

so that

Π (yk+1) =
i(k+1)

∑
j=i(k)+1

β j (ej +N).

Then∑∞
k=1 yk converges to somewm ∈ X and

dX(0,wm) ≤
∞

∑
k=1

dX (0,yk)

≤
1
m
.

Moreover,

Π(wm) = Π

(

∞

∑
k=1

yk

)

=
∞

∑
j=1

β j (ej +N)

= 0.

Thus
ni+1

∑
j=ni+1

f j (wm) = 0, ∀ i = 0,1,2, . . . Since

sni(k+1)
(wm) − sni(k)

(wm) = yk+1, since

Π(yk+1) =
i(k+1)

∑
j=i(k)+1

β j (ej +N) and since eachβ j , with

i(k) + 1 ≤ j ≤ i(k+1), is a fixed finite sum of the form
np+1

∑
l=np+1

fl (wm), thenβ j = 0, for every j = 1,2,3. . . . This

proves the theorem.

4 Perturbation of block generalized bases

It is not being possible to say that all results for bases can
be extended to block generalized bases through theorem
3.13. There is no immediate application of theorem 3.13
to perturbation of block basis. Two classical results for
perturbation are modified to block generalized bases. The
first result is of Paley-Wiener type.

Definition 4.1. Two block gereralized bases(xn) and(yn)
of a TVSX is said to be equivalent, if there is a bijective
linear transformationT : X → X such that it is a
homeomorphism and such thatTxn = yn, ∀ n.

Theorem 4.2.Let (xn) be a block generalized basis for a
Banach space(X,‖ ‖). Let (yn) be a sequence inX and
0≤ λ<1 be a constant such that
∥

∥

∥

∥

∥

ni

∑
k=1

ck(xk− yk)

∥

∥

∥

∥

∥

≤ λ

∥

∥

∥

∥

∥

ni

∑
k=1

ckxk

∥

∥

∥

∥

∥

,

for any i, and for any scalarsck. Then (yn) is a block
gerenalized basis forX that is equivalent to(xn).

Proof.Let ( fn) be a.s.c.f. of(xn). Givenx= b−∑ fn(x)xn,
by our assumption, it is true that
∥

∥

∥

∥

∥

n j

∑
k=ni+1

fk(x)(xk− yk)

∥

∥

∥

∥

∥

≤ λ

∥

∥

∥

∥

∥

n j

∑
k=ni+1

fk(x)xk

∥

∥

∥

∥

∥

,

∀ i, j, whenever j > i, and hence
∞
∑

k=1
fk(x)(xk − yk)

block-converges. Define a bounded linear transformation
T : X → X by

T(x) = b−
∞

∑
k=1

fk(x)(xk− yk), ∀ x∈ X

Also,

‖Tx‖ =

∥

∥

∥

∥

∥

b−
∞

∑
k=1

fk(x)(xk− yk)

∥

∥

∥

∥

∥

≤ λ

∥

∥

∥

∥

∥

b−
∞

∑
k=1

fk(x)xk

∥

∥

∥

∥

∥

= λ ‖x‖ , x∈ X.

Thus‖T‖ = λ < 1 so that(I −T) : X → X is invertible.
So, there is a bijective homeomorphism(I −T) : X → X,
which is also a linear transformation such that
(I −T)(xn) = yn, ∀ n. This proves the theorem.

Corollary 4.3. Let (xn) be a block generalized basis for a
Banach space(X,‖ ‖) with a.s.c.f.( fn) in X∗. Suppose
(yn) is a sequence in X such that

λ =
∞
∑

n=1
‖ fn‖‖xn− yn‖ < 1. Then (yn) is a block

generalized basis forX that is equivalent to(xn).

Proof.If x=
n
∑

k=1
ck(xk− yk), then

∥

∥

∥

∥

∥

n

∑
k=1

ck(xk− yk)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n

∑
k=1

fk(x)(xk− yk)

∥

∥

∥

∥

∥

≤
n

∑
k=1

| fk(x)|‖xk− yk‖

≤ ‖x‖
n

∑
k=1

‖ fk‖‖xk− yk‖

≤ λ‖x‖

= λ

∥

∥

∥

∥

∥

n

∑
k=1

ck(xk− yk)

∥

∥

∥

∥

∥

.

Theorem 4.4.Let (xn) be a block generalized basis for a
Banach space(X,‖ ‖), with a.s.c.f.( fn) in X∗. Let (yn)
be aX-complete sequence inX (in the sense that span
{y1,y2, . . .} is dense in X) such that

λ =
∞
∑

n=1
‖ fn‖‖xn − yn‖ < ∞. Then (yn) is a block

generalized basis that is equivalent to(xn).
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Proof.Define a bounded linear operatorT : X → X by

T(x) = b−
∞

∑
n=1

fn(x)(xn− yn), ∀ x∈ X,

when

‖Tx‖ =

∥

∥

∥

∥

∥

b−
∞

∑
n=1

fn(x)(xn− yn)

∥

∥

∥

∥

∥

≤
∞

∑
n=1

| fn(x)|‖xn− yn‖

≤ ‖x‖
∞

∑
n=1

‖ fn‖‖xn− yn‖

≤ λ‖x‖, x∈ X.

To eachi, define a compact linear operatorTi : X → X by

Ti(x) =
ni

∑
k=1

fk(x)(xk− yk), ∀ x∈ X.

Then‖T −Ti‖ → 0 asi → ∞ under operator norm. So,T
is also compact so that(T − I) : X → X has closed range.
Since(I −T)(xn) = yn, ∀ n, and since span{y1,y2 . . .}
is dense inX, then(I −T)(X) = X. To prove thatI −T is
1−1, consider an integerj such that

∞

∑
k=n j+1

‖ fk‖‖xk− yk‖< 1.

Then, by the previous corollary,
{

x1,x2, . . . ,xn j ,yn j+1,yn j+2, . . .
}

is a block generalized
basis ofX that is equivalent to(xn). Define

X1 = span
{

x1,x2, . . .xn j

}

,

and

Y1 = closure o f span
{

yn j+1,yn j+2, . . .
}

.

ThenX = X1+Y1, X1
⋂

Y1 = {0}, andX1 andY1 are closed

subspaces ofX. Consider a relationb−
∞
∑

k=1
ckyk = 0 in X

for some scalarsck. If ck 6= 0 for somek≤ n j , then

yk = b−

(

−
1
ck

(

∞

∑
i=1

zi

))

with zi = ciyi for i 6= k, andzk = 0. ThusX = Z1+Y1, when

Z1 = span
{

y1,y2, . . . ,yk−1,yk+1, . . .yn j

}

,

becauseZ1 +Y1 is closed inX, and span{y1,y2, . . .} is
dense inX. SincedimZ1 < dimX1, X = X1+Y1 = Z1+Y1
andX1

⋂

Y1 = {0}, there is a contradiction. So,ck = 0 for
any k ≤ n j . Thus (with a natural sense)

b −
∞
∑

k=n j+1
ckyk = 0. Since

{

x1,x2, . . . ,xn j ,yn j+1,yn j+2, . . .
}

is a block generalized

basis,ck = 0, k ≥ n j + 1. Thus, ifb−
∞
∑

k=1
ckyk = 0, then

ck = 0, ∀ k = 1,2, . . . . In particular, if (I − T)(x) = 0,

then b−
∞
∑

n=1
fn(x)yn = 0 and thenfn(x) = 0, ∀ n, and

hence x = 0. Thus (I − T) : X → X is a bijective
homeomorphism which is a linear transformation such
that(I −T)(xn) = yn, ∀ n. This proves the theorem.

Definition 4.5. A subsetA of N, the set of all natural
numbers, is called a block subset ofN, if k∈ A, whenever
l ∈ A and ni + 1 ≤ k, l ≤ ni+1, for some i = 0,1,2, . . .
(with n0 = 0).

Let (xn) be a sequence in a TVSX; and letA be a block
subset ofN. Putyn = xn if n∈ A, and zero otherwise. Let
us say that a partial series∑

n∈A
xn block-converges to some

elementx

(

= b− ∑
n∈A

xn

)

in X, if
∞
∑

n=1
yn block-converges

to x in X.
Suppose further that(xn) is a block generalized basis

in a TVS X. Let us say that(xn)n∈A is a partial block
generalized basis in a linear spaceY of X, if
xn ∈ Y, ∀ n ∈ A and if to eachx ∈ Y, there are unique
scalarsαn, for n∈ A such thatx= b− ∑

n∈A
αnxn.

Theorem 4.6.Let (xn) be a block generalized basis in an
F−spaceX. LetA be an infinite block subset ofN andB=
N−A. LetY be the closure of linear span of{xn : n∈ A}.
Let Z be the quotient spaceX/Y, and letΠ : X → Z be the
natural quotient mapping,Π (x) = x+Y. Then(xn)n∈A is
a partial block generalized basis inY(relative toA). The
collection(Π (xn))n∈B is also a partial block generalized
basis ofZ(relative toB), whenB is infinite.(If B is finite,
{Π (xn) : n∈ B} is a Hamel basis ofZ).

Proof.Let ( fn) be the a.s.c.f. of the block generalized
basis (xn) in X. To each n = 1,2, . . . , let

sn (x) =
n
∑

i=1
fi (x)xi ∀ x ∈ X. By theorem 3.7,

{sni : i = 1,2, . . .} is equicontinuous onX. To eachi, let
s̃ni denote the restriction ofsni to Y; with codomainY.
Then{s̃ni : i = 1,2,3. . .} is also equicontinuous onY. So,
a variation of the theorem 3.7 implies that(xn)n∈A is a
partial block generalized basis ofY, with a biorthogonal
system (xn, fn)n∈A. To each n ∈ B, define a linear
functionalϕn on Z by ϕn (x+Y) = fn (x) , ∀ x∈ X. Then
ϕn is a well defined continuous linear functional onZ
such thatϕn(Π (xm)) is 1 if n = m; and it is zero if
n 6= m∈ B. Then(Π (xn) ,ϕn)n∈B is a biorthogonal system
for Z. If x + Y ∈ Z, then lim

i→∞
sni (x) = x, and hence

lim
i→∞

Π (sni (x)) = x+Y. So, by a variation of theorem 3.7,

(Π (xn))n∈B is a partial block generalized basis ofZ. This
completes the proof.

Remark 4.7.When(xn)n∈A is written as a sequence such
that order among suffices is preserved, a block
generalized basis toY is obtained with respect to a
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different (ni). Similarly, Z has a block generalized basis
with respect to a different(ni). These facts can be
extended to unconditional block generalized bases, when
they are introduced in the following way.

Definition 4.8. Let Π : N → N be a bijective mapping. It
is said to be a block permutation, if
Π ({ni +1,ni +2, . . . ,ni+1}) is a finite sequence of
successive elements ofN. In this case,Π is said to induce
a new block sequence 0= m0 < m1 < m2 < .. . , when

Π ({n0,n1,n2, . . .}) = {m0,m1,m2, . . .}

with n0 = 0.

Let (xn) be a sequence in a TVSX. Then
∞
∑

n=1
xn is said

to block-converge unconditionally, if
∞
∑

i=0

(

mi+1

∑
j=mi+1

x j

)

converges whenever the block sequence
0 = m0 < m1 < m2 < .. . is obtained from
0= n0 < n1 < n2 < .. . by means of a block permutation.

A block generalized basis(xn) in TVS X is called an
unconditional block generalized basis, whenever∑αnxn
block-converges unconditionally inX, for every
b−∑αnxn ∈ X

Remark 4.9.A series∑∞
n=1xn of scalars block-converges

unconditionally if and only if
∞
∑

i=0

∣

∣

∣

∣

∣

ni

∑
j=ni+1

x j

∣

∣

∣

∣

∣

converges,

whenn0 = 0. In this case,

∞

∑
i=0

ni+1

∑
j=ni+1

x j =
∞

∑
i=0

mi+1

∑
j=mi+1

x j

for any block sequence 0= m0 < m1 < m2 < .. . obtained
from 0 = n0 < n1 < n2 < .. . through any block
permutation.

This fact implies the following result.

Proposition 4.10. Suppose a series
∞
∑

n=1
xn

block-converges unconditionally in a TVSX, for which
the points are separated by its dualX∗. Then

∞

∑
i=0

ni+1

∑
j=ni+1

x j =
∞

∑
i=0

mi+1

∑
j=mi+1

x j

for any block sequence 0= m0 < m1 < m2 < .. . obtained
from 0 = n0 < n1 < n2 < .. . through any block
permutation.

Example 4.11.To each sequence of scalars(αn), let us
define

‖(αn)‖= sup

{∣

∣

∣

∣

∣

m

∑
k=1

αk

∣

∣

∣

∣

∣

: m= 1,2, . . .

}

.

Let X = {(αn) : ‖(αn)‖< ∞ andαk are scalars}. Then
(X,‖ ‖) is a Banach space with respect to natural
coordinatewise addition and scalar multiplication. To each

n= 1,2, . . . , let e(n) = (αk), whereαk = 1 for k = n, and
zero otherwise. To eachn= 1,2, . . . , and(αk) ∈ X, let

sn ((αk)) =
n

∑
i=1

αie
(i)

= (α1,α2, . . .αn,0,0, . . . ) ,

and tn((αk)) = (0,0, . . .0,αn+1,αn+2, . . . ), when zeros
occupy the first n-coordinates fortn. Define

Y = {(αk) ∈ X : ‖tni ((αk))‖→ 0 as i→ ∞} .

Then(Y,‖ ‖) is a Banach space with a block generalized

basis
(

e(n)
)∞

n=1
. If ni = 2i , ∀ i, then

(

(−1)k
)∞

k=1
∈Y.

5 A non-trivial example

Example 4.11 is a natural example of a block generalized
basis. Lemma 3.5 assures convergence of
(

∑ni+1
k=ni+1 fk(x)xk

)∞

i=0
to 0 in F-spaces; and convergence

of ( fk(x)xk)
∞
k=1 to 0 fails to be true in the space(Y,‖ ‖)

given in Example 4.11, withxk = e(k). So, some results
for classical bases need modifications for extensions. This
section provides a non-trivial example, which also gives a
natural motivation to study block generalized bases.
Example 5.1.When a pair(i, j) is used in this example, it
is assumed thati and j are natural numbers and
1 ≤ j ≤ 2i−1. Let us write (i, j i) ≤ (i + 1, j i+1), if
j i+1 = 2 j i or 2j i − 1. To each sequenceα =
(α(1,1),α(2,1),α(2,2),α(3,1),α(3,2),α(3,3),α(3,4),α(4,1), . . .
,α(4,8),α(5,1), . . . ,α(5,16), . . . ) of real scalars, let us define
‖α‖1 by

‖α‖1 = sup{sup

{
∣

∣

∣

∣

∣

n

∑
i=1

α(i, j i )

∣

∣

∣

∣

∣

: (1, j1)≤ (2, j2)≤ ·· · ≤ (n, jn)

}

: 1≤ jn ≤ 2n−1, n= 1,2, . . .}.

Let X denote the collection of all sequences
α =

(

α(1,1), . . .
)

for which‖α‖1 < ∞, and

sup

{
∣

∣

∣

∣

∣

n

∑
i=m

α(i, j i )

∣

∣

∣

∣

∣

: (m, jm)≤ (m+1, jm+1)≤ ·· · ≤ (n, jn)

}

→ 0

as m,n → ∞ with m ≤ n. Then (X,‖ ‖1) is a Banach
space with respect to natural coordinatewise addition and
scalar multiplication. This space has a block generalized
basis {(1,0,0,0, . . .),(0,1,0,0, . . .),(0,0,1,0, . . .), . . .}
with n1 = 1,n2 = 1+ 2 = 3,n3 = 1+ 2+ 22 = 7,n4 =
1+2+22+23 = 15, . . . . Let I(1,1) = [0,1], I(2,1) = [0, 1

3],
I(2,2) = [2

3,1], I(3,1) = [0, 1
32 ], I(3,2) = [ 2

32 ,
3
32 ],

I(3,3) = [ 6
32 ,

7
32 ], I(3,4) = [ 8

32 ,1], . . . . be the closed intervals
associated with a construction of classical Cantor ternary

set S over the interval[0,1]. Then S =
∞
⋂

n=1
Jn, where

J1 = I(1,1), J2 = I(2,1)
⋃

I(2,2),
J3 = I(3,1)

⋃

I(3,2)
⋃

I(3,3)
⋃

I(3,4), . . . . . . . Let C(S) denote
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the Banach space of all continuous real valued functions
on S with the supremum norm defined by
‖ f‖∞ = sup{| f (x)| : x∈ S}, for f ∈ C(S). To each(i, j),
let F(i, j) denote the characteristic functionχI(i, j) defined
onS, that is restricted toS. Then

{F(1,1),F(2,1),F(2,2),F(3,1),F(3,2),F(3,3),F(3,4),F(4,1), . . . ,F(4,8)

,F(5,1), . . . ,F(5,16), . . .}

is not a block generalized basis in(C(S),‖ ‖∞) with n1 =
1,n2 = 1+ 2= 3,n3 = 1+ 2+ 22 = 7,n4 = 1+ 2+ 22+
23 = 15, . . . . DefineT : (X,‖ ‖1)→ (C(S),‖ ‖∞) by

T
(

(α(1,1), . . . )
)

= lim
n→∞

n

∑
i=1

2i−1

∑
j=1

α(i, j)F(i, j)

=
∞

∑
i=1

2i−1

∑
j=1

α(i, j)F(i, j),

when the limit exists with respect to‖ ‖∞. Since
‖T(α)‖∞ ≤ ‖α‖1, for every α ∈ X, T is a continuous
linear transformation. Fixf ∈ C(S). To each(i, j), let
β(i, j) = max

{

f (x) : x∈ S
⋂

I(i, j)
}

. Then, define
α(1,1) = β(1,1), α(2,1) = β(2,1) − α(1,1),
α(2,2) = β(2,2) − α(1,1), α(3,1) = β(3,1) − α(2,1) − α(1,1),
α(3,2) = β(3,2) − α(2,1) − α(1,1),
α(3,3) = β(3,3) − α(2,2) − α(1,1),
α(3,4) = β(3,4) − α(2,2) − α(1,1),
α(4,1) = β(4,1) − α(3,1) − α(2,1) − α(1,1),
α(4,2) = β(4,2) − α(3,1) − α(2,1) − α(1,1),
α(4,3) = β(4,3) − α(3,2) − α(2,1) − α(1,1),
α(4,4) = β(4,4) − α(3,2) − α(2,1) − α(1,1),
α(4,5) = β(4,5) − α(3,3) − α(2,2) − α(1,1),
α(4,6) = β(4,6) − α(3,3) − α(2,2) − α(1,1),
α(4,7) = β(4,7) − α(3,4) − α(2,2) − α(1,1),
α(4,8) = β(4,8) − α(3,4) − α(2,2) − α(1,1),. . . . Then
(

α(1,1), . . .
)

∈ X, and f = lim
n→∞

n
∑

i=1

2i−1

∑
j=1

α(i, j)F(i, j) in C(S).

Thus T is surjective. The above representation off is
true, even if ”max” is replaced by ”min” in the definition
of β(i, j). So, T is not injective. Conclusion: Continuous
image of a block generalized basis need not be a block
generalized basis.

6 Conclusion

A systematic study has been presented on block
convergence and block generalized bases. A few classical
results for bases have been generalized to block
generalized bases. This includes a generalization: Every
block generalized basis in an F - space is a Schauder
block generalized basis. It is expected that many results
for classical bases can be generalized to block generalized
bases
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