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Abstract: If Gis a connected graph, the distardie,y) between two verticeg,y € V(G) is the length of a shortest path between
them. Letd(x,y) denote the distance between vertigesmdy of a connected grapB. If d(z x) # d(zy), thenzis said to resolve and

y and therefore s called a resolving vertex for the verticeandy. LetW = {wy,wy, ..., w} be an ordered set of vertices®fand let

v be a vertex ofG. The representation(v|G) of v with respect td/ is thek-tuple (d(v,wy),d(v,wz),...,d(v,wy)). If distinct vertices

of G have distinct representations with respedttpthenW is called a resolving set or locating set far A resolving set of minimum
cardinality is called a basis f@ and this cardinality is the metric dimension®fdenoted bydim(G). A family I of connected graphs
is a family with constant metric dimensiondfm(G) is finite and does not depend upon the choic&afi I" . In this paper, we find the
constant metric dimension &h(1,2,3) andMp.
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1 Notation and Preliminary Results recognition and image processing, some of which involve
the use of hierarchical data structures are giveJn [

If G is a connected graph, the distar@,v) between - .

two verticesu,v € V(G) is the length of a shortest path ~ The join of two graph$ andH is denoted byG +H,
between them. Le¥V = {w;,wa,..., W} be an ordered a fanisf, = K;+P, for n> 1. Caceres et al4] found

set of vertices ofG and letv be a vertex ofG. The the metric dimension of fatfi,. The graph obtained from
representation ofs with respect toW is denoted by @ wheelWy, by deletingn alternating spokes, is called
r(v|W) is the k-tuple (d(v,wy),d(v,w2),...,d(v,w)). If Jahangir graph denoted By, with n > 2 (also known as
distinct vertices ofG have distinct representations with gear graph). Tomescu et all§ compute the metric
respect toV thenW is called a resolving set or locating dimension of Jahangir gragh,. Also Tomescu et al 1[5

set forG [5]. A resolving set of minimum cardinality is computed the partition and connected dimension of wheel
called a metric basis fo6 and this cardinality is the graphWa. In [5] Chartrand et al. proved that a gragh
metric dimension o6, denoted bydim(G). The concepts has metric dimension 1 if and onfg = R,, hence paths
of resolving set and metric basis have previouslyon n vertices constitute a family of graphs with constant
appeared in the literature (seé]-[3],[6]-[13]). For a  metric dimension. Similarly, Cycles with > 3 vertices
given ordered set of verticdd = {wy,wo,...,w} of a also constitute such a family of graphs as their metric
graphG, thei" component of (v]W) is 0 if and only if ~ dimension is 2. Since prismi3, are the trivalent plane
v=w;. Thus, to show thatV is a resolving set it suffices graphs obtained by the cartesian product of the [Fath
to verify thatr(x\W) # r(y|W) for each pair of distinct With a cycle C,, hence they constitute a family of
vertices x,y € V(G). Motivated by the problem of 3-regular graphs with constant metric dimension. Also
uniquely determining the location of an intruder in a Javaid et al. proved in7] that the plane graph Antiprism
network, the concept of metric dimension was introducedAn constitutes a family of regular graphs with constant
by Slater in [L1] and studied independently by Harary et metric dimension adim(A,) = 3 for everyn > 5.

al. [6]. Applications of this invariant to the navigation of In this paper, we extend this study by considering the two
robots in networks are discussed 8 &nd applications to ~ different families of graphs with constant metric
chemistry in ] while applications to problems of pattern dimension.
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Fig. 1: GraphP,(1,2,3)

The graphPy(1,2,3) is a graph withn vertices and
3(n — 2) edges. The edge set ofy(1,2,3) as
E(P(1,2,3)) = {ViVit1,ViVi;2,ViVit3} where
i=212,...,nandn+ 1is taken modula.

2 Main Results

Theorem 1The metric dimension of G2 Py(1,2,3) for n >
6 and (n € Z) is constant and equal to 3.

Proof: For anyW = {vi,v2,v3} CV(Py(1,2,3)), we need
to show thatW is a resolving set foP(1,2,3). The
representations of the vertices 6{Py(1,2,3)) \ W with

respect taV are as follows:

Case(1). If n=0 (mod 3) wheren > 6, then the
representations of the vertices are as follows:

r(valW) = (i,i,i—1) for i=12,...,5—-1.
r(vaiza|W) = (i,i,i) for i=1,2,...,9-1.

r(Vairo|W)=(i+1,i,i—1) for i=1,2,...,3 -1

[S]}=]

Note that there are no two vertices having the same

representations. Which implies théitm(P,(1,2,3)) < 3.

To prove the theorem, it is sufficient to show that

(4) Let us suppose thatW = {vsw} where
t=2 (mod 3)andt <n.
Then r(val{vsu}) = r(val{vau}) = (L(t - 2)/3)
which is a contradiction.

(5) Let us suppose thatW = {vsw%} where
t=2 (mod 3)andt <n.

Then r(vzl{vau}) = r(val{vaw}) = (L(t - 3)/3)
which is a contradiction.

Hence from above it follows that there is no resolving set

with  two vertices for V(Py(1,2,3)) Therefore
dim(Py(1,2,3)) = 3 in this case.
Case(2). If n=1 (mod 3) wheren > 6, then the

representations of the vertices are as follows:
r(valW) = (i,i,i—1)fori=12,..., %2 -1
r(vaiza W) = (i,i,i) fori=1,2,..., 0L,
r(VaizoW) = (i+1Li,i—1)fori=1,2,..., 01 -1,
Note that there are no two vertices having the same

representations.  So dim(P,(1,2,3)) < 3. For
dim(Py(1,2,3)) > 3 we proceeding on the same line as

above in case(1) we get there is no resolving\NéWith
\W'| = 2, so we havelim(P,(1,2,3)) = 3 in this case.

Case(3). If n=2 (mod 3) wheren > 6, then the
representations of the vertices are as follows:

r(valW) = (i,i,i—1)fori=1,2,...,%2 1.

r(Vaiza|W) = (i,i,i) fori=1,2,..., %22,

n—2

dim(Py(1,2,3)) > 3. By contradiction assume that there f(Vai+2|W) = (i+1i,i—1)fori=1,2.... %=

exists a resolving setvV' with |W'| = 2 we have the

following possibilities:

Let us suppose that/' = {va, v} wheret =0 (mod 3)
andt < n. Thenr(vg|{vs,%}) = (1, (t — 3)/3) which is a
contradiction.

(1) Let us suppose thatW = {vsw%} where
t=1 (mod 3)andt <n.

Then r(vil{va,v}) = (L,(t — 1)/3)
contradiction.

which is a

(2) Let us suppose thatW' = {vs,x} where
t=2 (mod 3)andt <n.

Then r(va)|{vs,w} = (L(t — 2)/3)
contradiction.

which is a

(3) Let us suppose thatW' = {vs,v} where
t=1 (mod 3)andt <n.

Then r(vil{vaw}) = (L (t — 1)/3)
contradiction.

which is a

Note that there are no two vertices having the same
representations, so dim(P(1,2,3)) < 3. For
dim(Py(1,2,3)) > 3 we proceeding on the same line as
above in case(1) we get there is no resolvingwetvith
IW'| = 2, so we havelim(Py(1,2,3)) = 3 in this case.

Metric dimension for the graph My,
The graphM, is constructed from the graphs study by M.
BaCa in P, 3]. The vertex set oM, consists on three types
of vertices.E(Mp) = {&;hi;ci : 1 <i < n} such that
V(My) = {a} U {b} U {g} where deg(a) = 2,
deg(bj) = 5 and deg(c)) = 1. The edge set is
E(M;) = {bibi1,bia,bia_1,bici} wheren+ 1 is taken
modulun.

Theorem 2The metric dimension of G = M, for n > 6(n €
7Z) is constant and equal to 3.

Proof: We distinguish the following two cases.
Case(1). If n= 2k, k> 3 andk is an integer, for any
W = {c1,a1,c;1} € V(Mn). We show thatW is a
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Fig. 2. GraphM,

resolving set forV(Mp).
vertices are as follows:

i+1,0,31k-1), for ,2<i<k,

rlaw) - { | )

(2 W) — (i+1i,2+k—1), for ,2<i<Kk,

(@IW) =\ (2k—i+ 2.2k 2—0.i+1—K), for K+1<i < Me(al{cral)
(L,1,k+i+3), for ,i=1, "

r(bi|W):{(i,i—1,k+2—i), for 2<i<k+1,
(2k+2—i,2k+2—i,i—k),for k2<i<n.

We observe that there are no two vertices having the same

representations implying thadim(Mp) < 3. Now we
show thatdim(Mp) > 3, by proving that there is no
resolving seW' with |W'| = 2 then we have the following
possibilities:

(1) W is the subset ofb; : i = 1,2,...,n}, we suppose
that one resolving vertex ish; and the other is
b,2 <t <k+1 then for 2<t < k we have
r(ci|{b1,bt}) = r(an/{bs,b}) = (1,t) and fort =k+1

the representation is
r(a{br,b}) = r(acal{bb}) = (k1) which is a

contradiction.

(2) W is the subset ofc : i =1,2,...,n}, we suppose
that one resolving vertex ix; and the other is
G,2 <t < k+1 then for 2<t < k we have

r(bpl/{ci,c}) = r(an/{c1,c}) = (2t + 1) and for

t = k + 1 the representation is
r(axl{ci,a}) = r(asil{c,a}) = (k1) which is a

contradiction.

(3) W is the subset ofa : i =1,2,...,n}, we suppose
that one resolving vertex isa; and the other is
a,2 <t <k+1 then for 2<t < k we have
r(cil{as,a}) = r(an|{c1,ct}) = (2,t + 1) and for
t = k + 1 the representation is

The representations of the

2k—i+43,2k+3—1i,i+1-Kk), for k+2<i<nyertex belong to{a}  V(My), we suppose that one
k

r(bkril{as,a}) = r(bol{as,&}) = (k,1) which is a
contradiction.

(4) One vertex belong tdhi} ¢ V(M,) and the other
vertex belong to{ci} ¢ V(My), we suppose that one
resolving vertex is; and the other is;,2 <t < k+ 1.

Then for 2 < t < Kk we have
r(an|/{bs,ct}) = r(bn/{bs,c}) = (L,t +1) and for
t = k + 1 the representation is
r(a{by,&}) = r(a2l{bra}) = (k1) which is a

contradiction.

(5) One vertex belong tdhi} ¢ V(M,) and the other
vertex belong to{a} C V(My), we suppose that one
resolving vertex is; and the other is,2 <t < k-+1.
Then for 2 < t < Kk we have
r(an|/{bg,a}) = r(cal{br,&}) = (L,t + 1) and for
t = k + 1 the representation is
r(bg/{b1,a}) = r(axi2/{b1,a}) = (k—1,2) which is a
contradiction.

(6) One vertex belong tdci} € V(My) and the other

resolving vertex isc; and the other is;,2 <t < k+ 1.
Then we have
(2t + 1) and for
representation is

(k+1,2) which is a

2 < t < Kk

for
= r(bo{cr,a}) =
t + 1 the
r(adfer,a}) = r(cuzl{crat) =
contradiction.

Hence, from above it follows that there is no resolving set
with two vertices folV (M,) implying thatdim(M;) = 3.

Case(2). Supposen = 2k+ 1k > 3 (k € Z) for any

W = {c1,a1,Cr1} C V(Mp), we will show thatW is a
resolving set for V(Mp). For this we take the
representations of vertices Wf{Mp) \ W with respect to
{c1,a1,¢cks1}. The representations of the vertices are as
follows:

(i+1,i,3+k—1i), for ,2<i<Kk,
r(c|w) = ) . .
(2k—i+4,2k+4—i,i—k), for k+2<i<n.
(i+1,i,24+k—1i), for ,2<i <Kk,
r(a4|W)—{(k+2,k+172), for i=k+1,
(2k+3—1i,2k+3—i,i—k), for k+2<i<n.
(1,1,k+1), for ,i=1,
r(bi|W):{(i,il,k+2i), for 2<i<k+1,
(2k+3—i,2k+3—i,i—k—1),for k+2<i<n.

Proceeding on same line as in Case(1) we observe that
there are no two vertices having the same representations.
which implies thatdim(M,) < 3, now we show that
dim(Mp) > 3 for this consider thatim(M,) = 2 then
there are the same possibilities as in Case(l) and
contradiction can be deduced, which implies that
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dim(Mp) > 3 in this case. Finally from Case(l) and = Gohar ALI received the
Case(2) we gedim(M,) = 3. : ' = PhD degree in Mathematics
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