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Abstract: If G is a connected graph, the distanced(x,y) between two verticesx,y ∈ V (G) is the length of a shortest path between
them. Letd(x,y) denote the distance between verticesx andy of a connected graphG. If d(z,x) 6= d(z,y), thenz is said to resolvex and
y and thereforez is called a resolving vertex for the verticesx andy. LetW = {w1,w2, . . . ,wk} be an ordered set of vertices ofG and let
v be a vertex ofG. The representationr(v|G) of v with respect toW is thek-tuple(d(v,w1),d(v,w2), . . . ,d(v,wk)). If distinct vertices
of G have distinct representations with respect toW , thenW is called a resolving set or locating set forG. A resolving set of minimum
cardinality is called a basis forG and this cardinality is the metric dimension ofG, denoted bydim(G). A family Γ of connected graphs
is a family with constant metric dimension ifdim(G) is finite and does not depend upon the choice ofG in Γ . In this paper, we find the
constant metric dimension ofPn(1,2,3) andMn.
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1 Notation and Preliminary Results

If G is a connected graph, the distanced(u,v) between
two verticesu,v ∈ V (G) is the length of a shortest path
between them. LetW = {w1,w2, . . . ,wk} be an ordered
set of vertices ofG and let v be a vertex ofG. The
representation ofv with respect toW is denoted by
r(v|W ) is the k-tuple (d(v,w1),d(v,w2), . . . ,d(v,wk)). If
distinct vertices ofG have distinct representations with
respect toW thenW is called a resolving set or locating
set forG [5]. A resolving set of minimum cardinality is
called a metric basis forG and this cardinality is the
metric dimension ofG, denoted bydim(G). The concepts
of resolving set and metric basis have previously
appeared in the literature (see [1]-[3],[6]-[13]). For a
given ordered set of verticesW = {w1,w2, . . . ,wk} of a
graphG, the ith component ofr(v|W ) is 0 if and only if
v = wi. Thus, to show thatW is a resolving set it suffices
to verify that r(x|W ) 6= r(y|W ) for each pair of distinct
vertices x,y ∈ V (G). Motivated by the problem of
uniquely determining the location of an intruder in a
network, the concept of metric dimension was introduced
by Slater in [11] and studied independently by Harary et
al. [6]. Applications of this invariant to the navigation of
robots in networks are discussed in [8] and applications to
chemistry in [5] while applications to problems of pattern

recognition and image processing, some of which involve
the use of hierarchical data structures are given in [8].

The join of two graphsG andH is denoted byG+H,
a fan is fn = K1 +Pn for n ≥ 1. Caceres et al. [4] found
the metric dimension of fanfn. The graph obtained from
a wheelW2n by deletingn alternating spokes, is called
Jahangir graph denoted byJ2n with n ≥ 2 (also known as
gear graph). Tomescu et al. [15] compute the metric
dimension of Jahangir graphJ2n. Also Tomescu et al. [15]
computed the partition and connected dimension of wheel
graphWn. In [5] Chartrand et al. proved that a graphG
has metric dimension 1 if and onlyG ∼= Pn, hence paths
on n vertices constitute a family of graphs with constant
metric dimension. Similarly, Cycles withn ≥ 3 vertices
also constitute such a family of graphs as their metric
dimension is 2. Since prismsDn are the trivalent plane
graphs obtained by the cartesian product of the pathP2
with a cycle Cn, hence they constitute a family of
3-regular graphs with constant metric dimension. Also
Javaid et al. proved in [7] that the plane graph Antiprism
An constitutes a family of regular graphs with constant
metric dimension asdim(An) = 3 for everyn ≥ 5.
In this paper, we extend this study by considering the two
different families of graphs with constant metric
dimension.
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Fig. 1: GraphPn(1,2,3)

The graphPn(1,2,3) is a graph withn vertices and
3(n − 2) edges. The edge set ofPn(1,2,3) as
E(Pn(1,2,3)) = {vivi+1,vivi+2,vivi+3} where
i = 1,2, . . . ,n andn+1 is taken modulon.

2 Main Results

Theorem 1The metric dimension of G∼= Pn(1,2,3) for n≥
6 and (n ∈ Z) is constant and equal to 3.

Proof: For anyW = {v1,v2,v3} ⊆V (Pn(1,2,3)), we need
to show thatW is a resolving set forPn(1,2,3). The
representations of the vertices ofV (Pn(1,2,3)) \W with
respect toW are as follows:
Case(1). If n ≡ 0 (mod 3) where n ≥ 6, then the
representations of the vertices are as follows:

r(v3i|W ) = (i, i, i−1) f or i = 1,2, . . . , n
3 −1.

r(v3i+1|W ) = (i, i, i) f or i = 1,2, . . . , n
3 −1.

r(v3i+2|W ) = (i+1, i, i−1) f or i = 1,2, . . . , n
3 −1.

Note that there are no two vertices having the same
representations. Which implies thatdim(Pn(1,2,3)) ≤ 3.
To prove the theorem, it is sufficient to show that
dim(Pn(1,2,3)) ≥ 3. By contradiction assume that there
exists a resolving setW

′
with |W

′
| = 2 we have the

following possibilities:
Let us suppose thatW

′
= {v3,vt} wheret ≡ 0 (mod 3)

andt ≤ n. Thenr(v4|{v3,vt}) = (1,(t −3)/3) which is a
contradiction.

(1) Let us suppose thatW
′
= {v4,vt} where

t ≡ 1 (mod 3) andt ≤ n.
Then r(v1|{v4,vt}) = (1,(t − 1)/3) which is a
contradiction.

(2) Let us suppose thatW
′
= {v5,vt} where

t ≡ 2 (mod 3) andt ≤ n.
Then r(v2)|{v5,vt} = (1,(t − 2)/3) which is a
contradiction.

(3) Let us suppose thatW
′
= {v3,vt} where

t ≡ 1 (mod 3) andt ≤ n.
Then r(v1|{v3,vt}) = (1,(t − 1)/3) which is a
contradiction.

(4) Let us suppose thatW
′
= {v3,vt} where

t ≡ 2 (mod 3) andt ≤ n.
Then r(v2|{v3,vt}) = r(v4|{v3,vt}) = (1,(t − 2)/3)
which is a contradiction.

(5) Let us suppose thatW
′
= {v4,vt} where

t ≡ 2 (mod 3) andt ≤ n.
Then r(v2|{v4,vt}) = r(v3|{v4,vt}) = (1,(t − 3)/3)
which is a contradiction.
Hence from above it follows that there is no resolving set
with two vertices for V (Pn(1,2,3)) Therefore
dim(Pn(1,2,3)) = 3 in this case.

Case(2). If n ≡ 1 (mod 3) where n ≥ 6, then the
representations of the vertices are as follows:

r(v3i|W ) = (i, i, i−1) for i = 1,2, . . . , n−1
3 −1.

r(v3i+1|W ) = (i, i, i) for i = 1,2, . . . , n−1
3 .

r(v3i+2|W ) = (i+1, i, i−1) for i = 1,2, . . . , n−1
3 −1.

Note that there are no two vertices having the same
representations. So dim(Pn(1,2,3)) ≤ 3. For
dim(Pn(1,2,3)) ≥ 3 we proceeding on the same line as
above in case(1) we get there is no resolving setW

′
with

|W
′
|= 2, so we havedim(Pn(1,2,3)) = 3 in this case.

Case(3). If n ≡ 2 (mod 3) where n ≥ 6, then the
representations of the vertices are as follows:

r(v3i|W ) = (i, i, i−1) for i = 1,2, . . . , n−2
3 −1.

r(v3i+1|W ) = (i, i, i) for i = 1,2, . . . , n−2
3 .

r(v3i+2|W ) = (i+1, i, i−1) for i = 1,2, . . . , n−2
3 .

Note that there are no two vertices having the same
representations, so dim(Pn(1,2,3)) ≤ 3. For
dim(Pn(1,2,3)) ≥ 3 we proceeding on the same line as
above in case(1) we get there is no resolving setW

′
with

|W
′
|= 2, so we havedim(Pn(1,2,3)) = 3 in this case.

Metric dimension for the graph Mn.
The graphMn is constructed from the graphs study by M.
Bača in [2,3]. The vertex set ofMn consists on three types
of vertices. E(Mn) = {ai;bi;ci : 1 ≤ i ≤ n} such that
V (Mn) = {ai} ∪ {bi} ∪ {ci} where deg(ai) = 2,
deg(bi) = 5 and deg(ci) = 1. The edge set is
E(Mn) = {bibi+1,biai,biai−1,bici} wheren + 1 is taken
modulun.

Theorem 2The metric dimension of G ∼= Mn for n ≥ 6(n ∈
Z) is constant and equal to 3.

Proof: We distinguish the following two cases.
Case(1). If n = 2k, k ≥ 3 and k is an integer, for any
W = {c1,a1,ck+1} ⊂ V (Mn). We show thatW is a
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Fig. 2: GraphMn

resolving set forV (Mn). The representations of the
vertices are as follows:

r(ci|W )=

{

(i+1, i,3+ k− i), for ,2≤ i ≤ k,

(2k− i+3,2k+3− i, i+1− k), for k+2≤ i ≤ n.

r(ai|W )=

{

(i+1, i,2+ k− i), for ,2≤ i ≤ k,

(2k− i+2,2k+2− i, i+1− k), for k+1≤ i ≤ n.

r(bi|W )=







(1,1,k+ i+3), for , i = 1,

(i, i−1,k+2− i), for 2≤ i ≤ k+1,

(2k+2− i,2k+2− i, i− k), for k+2≤ i ≤ n.

We observe that there are no two vertices having the same
representations implying thatdim(Mn) ≤ 3. Now we
show that dim(Mn) ≥ 3, by proving that there is no
resolving setW

′
with |W

′
|= 2 then we have the following

possibilities:

(1) W is the subset of{bi : i = 1,2, . . . ,n}, we suppose
that one resolving vertex isb1 and the other is
bt ,2 ≤ t ≤ k + 1 then for 2 ≤ t ≤ k we have
r(c1|{b1,bt}) = r(an|{b1,bt}) = (1, t) and for t = k + 1
the representation is
r(ak|{b1,bt}) = r(ak+1|{b1,bt}) = (k,1) which is a
contradiction.

(2) W is the subset of{ci : i = 1,2, . . . ,n}, we suppose
that one resolving vertex isc1 and the other is
ct ,2 ≤ t ≤ k + 1 then for 2 ≤ t ≤ k we have
r(bn|{c1,ct}) = r(an|{c1,ct}) = (2, t + 1) and for
t = k + 1 the representation is
r(ak|{c1,ct}) = r(ak+1|{c1,ct}) = (k,1) which is a
contradiction.

(3) W is the subset of{ai : i = 1,2, . . . ,n}, we suppose
that one resolving vertex isa1 and the other is
at ,2 ≤ t ≤ k + 1 then for 2 ≤ t ≤ k we have
r(c1|{a1,at}) = r(an|{c1,ct}) = (2, t + 1) and for
t = k + 1 the representation is

r(bk+1|{a1,at}) = r(bk+2|{a1,at}) = (k,1) which is a
contradiction.

(4) One vertex belong to{bi} ⊂ V (Mn) and the other
vertex belong to{ci} ⊂ V (Mn), we suppose that one
resolving vertex isb1 and the other isct ,2 ≤ t ≤ k + 1.
Then for 2 ≤ t ≤ k we have
r(an|{b1,ct}) = r(bn|{b1,ct}) = (1, t + 1) and for
t = k + 1 the representation is
r(ak|{b1,ct}) = r(ak+2|{b1,ct}) = (k,1) which is a
contradiction.

(5) One vertex belong to{bi} ⊂ V (Mn) and the other
vertex belong to{ai} ⊂ V (Mn), we suppose that one
resolving vertex isb1 and the other isat ,2 ≤ t ≤ k + 1.
Then for 2 ≤ t ≤ k we have
r(an|{b1,at}) = r(cn|{b1,at}) = (1, t + 1) and for
t = k + 1 the representation is
r(bk|{b1,at}) = r(ak+2|{b1,at}) = (k − 1,2) which is a
contradiction.

(6) One vertex belong to{ci} ⊂ V (Mn) and the other
vertex belong to{ai} ⊂ V (Mn), we suppose that one
resolving vertex isc1 and the other isat ,2 ≤ t ≤ k + 1.
Then for 2 ≤ t ≤ k we have
r(an|{c1,at}) = r(bn|{c1,at}) = (2, t + 1) and for
t = k + 1 the representation is
r(ak|{c1,at}) = r(ck+2|{c1,at}) = (k + 1,2) which is a
contradiction.
Hence, from above it follows that there is no resolving set
with two vertices forV (Mn) implying thatdim(Mn) = 3.

Case(2). Supposen = 2k + 1,k ≥ 3 (k ∈ Z) for any
W = {c1,a1,ck+1} ⊂ V (Mn), we will show thatW is a
resolving set for V (Mn). For this we take the
representations of vertices ofV (Mn) \W with respect to
{c1,a1,ck+1}. The representations of the vertices are as
follows:

r(ci|W ) =

{

(i+1, i,3+ k− i), for ,2≤ i ≤ k,

(2k− i+4,2k+4− i, i− k), for k+2≤ i ≤ n.

r(ai|W ) =







(i+1, i,2+ k− i), for ,2≤ i ≤ k,

(k+2,k+1,2), for i = k+1,

(2k+3− i,2k+3− i, i− k), for k+2≤ i ≤ n.

r(bi|W ) =







(1,1,k+1), for , i = 1,

(i, i−1,k+2− i), for 2≤ i ≤ k+1,

(2k+3− i,2k+3− i, i− k−1), for k+2≤ i ≤ n.

Proceeding on same line as in Case(1) we observe that
there are no two vertices having the same representations.
which implies thatdim(Mn) ≤ 3, now we show that
dim(Mn) ≥ 3 for this consider thatdim(Mn) = 2 then
there are the same possibilities as in Case(1) and
contradiction can be deduced, which implies that
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dim(Mn) ≥ 3 in this case. Finally from Case(1) and
Case(2) we getdim(Mn) = 3.

3 Conclusion

In this paper we found the metric dimension ofPn(1,2,3)
andMn. Next we are thinking on the metric dimension of
some special type of join ofPn(1,2,3) andMn.
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