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Abstract: Continuity of fractional wavelet transform (FrWT) in terrafractional convolution operator and its adjoint are did.
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1 Introduction

The word fraction is nowadays very popular in different fiefdknowledge. We only mention the fractional derivatives
in mathematics, the fractional dimension in geometry adtfonal transformations. In general, it means that some
parameter has a non-integer value. The fractional Fougasform (FrFT) is a generalization of the conventionalreu
transform with an anglé. Many years ago, it was proposed in mathematics literaturédolay many new applications

in several areas including Physics, Stochastic ProcesMatitematical Analysis are found{4]. The one-dimensional
FrET [5-9] with an angled of f(t) € L2(R) denoted by.%? f)(w) = f®(w) is given by

(F01)(w) = f(w) = ./IéKe(t,w)f(t)dt

where
CO d(t?+w?) Y —itwesed g £nm
1 —itw _
Kotw) = yan® =2
ot — w), 0 = 2nm,
o(t+ w), 6=2n+1)m, neZ,
5 denotes as the Dirac-delta function a@fti= |/ 119

The inversion formula of FrFT is given by

() = [Kotw) fP(w)do,

whereK8(t, w) =K °(t, w).

Lemma 11 (Parseval's Relation). If® and (¢ are the FrFT of {t) andy(t) respectively, then

/z FO@Odt = /: () 39 (@) dw, (1.1)

Proof. See Pathak et al9.
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Definition 11 (Pathak L0]) The Schwartz spac#’ is the set of rapidly decreasing functiopss C*(R) such that
e Dﬁ(p(t)‘ <w, Va,B eNo. (1.2)

Va,ﬁ ((P) = sup
teR
If f be a locally integrable function oR. Then f generates a distribution i#” as follows:

<f,(p>:/Rf(t)qo(t)dt, 0.7

The space”(R) is equipped with the topology generated by the collectioseafi-normsy, g}, it is a Fréchet space.
The dual of¥ is denoted by’ and its elements are called tempered distributions.

Definition 12 (Pathak et al.q]) The test function spac#yp is defined asip is member of} iff it is a complex valued
infinitely differentiable function oR®, such that

7 (&) ()| <, ¥ a,BeNo, (13)

rop(@) = sup

wheredy = — (& +itcotd).

The FrWT was introduced first by Mendlovit al.[11] as a way to deal with optical signals. Shi et dlZ] introduced
the continuous affine transformation and chirp modulatiomather wavelety(t) € L>(R) as

1 (t=b\ i
Wb,a,e(t) = TaLIJ (—) ez (t? bz)COtG’

a

foralla> 0, b€ R and 8 as above and defined a novel FrWT of a square integrable &mdfig = g, thenyp a6(t)
reduces to conventional mother wavelet defined.®13-15).
Prasad et al.][6] defined the FrFT off, 5 6(t) is given by

lﬂga’g(w) _ \/ae%(b2+w2)cot9—ibwcsc9—%azwzcote F0 [e—’z—i(.)zcote ‘IJ} (aw), (1.4)

and established a generalized continuous fractional watreinsform of a functiori € L?(R).
The continuous fractional convolution of two continuousdtionsf (t), (t) € L?(R) is defined as

(Trow)©) = [ 1@t ex &g, (L5)

wherexg is known as the continuous fractional convolution operator

The wavelet transform associated with conventional Foargasform was studied irlp, 14, 15] and corresponding
FrwT involving FrFT was investigated in different way/J 12,16,17]. The square integrable boundedness results for the
wavelet transform and its adjoint were proved and estaddighrelation between wavelet and Fourier transfdtéj. In
this paper continuity of FrWT in terms of fractional convtitun operator and its adjoint are obtained. A relation betwe
the FrWT and inverse FrFT is established. The fractionalel&\wof a test function space is investigated.

2 Continuity of fractional wavelet transform

The continuous FIWT of € L2(R) w.r.t. the wavelety € L?(R) is defined 11,12, 16] as:

(Wgt) ba) = o) = [ F(1) Poaalct. (2.
Using (1.1) of Parseval’s identity andL(4), it follows from (2.1) as:
(W) (ba) = (o) = va [ et e ycodiibacss jofureatd 70 7 (. cotdy | (aw)

x f%(w) dw. (2.2)

Definition 21 (Prasad et al.16]) A wavelety € L?(R) and satisfies the following admissibility condition

- ‘99 (e%i(.)zcotew) (V)‘Z
Cyo = /_w ' dv < o, (2.3)

where.Z? denotes the FrFT operator.

© 2015 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appll, No. 3, 201-210 (2015)www.naturalspublishing.com/Journals.asp NS = 203

Lemma 21 The continuous fractional convolution transform of fuoatif € L?(R) w.r.t. the functiony € L(R) at b
depending on a, is denoted Bi® f)(a) and defined as

(W £)(a) = (f g Wa)(b). (2.4)
Then

(W f)(b,a) = va (W f)(@),
whereya(t) = ().
Proof. Using (1.5, we have

(\Nbf / f wa( —t) E_Z_(b —t2)cotd dt

= /—oo f(t)a 17/ (‘Tb) ez(tz—bz)cote dt
= a0 gt
= %‘(Wj,’f) (b,a).

Remark 21 Using(2.2), then from Lemma1we have

(Wbe f)(a) _ /700e (b2+w2)cot9+|bwcsc(9+ azwzcotGg‘G [e—z— )2cotd (IJ} (aw)f (w) dow. (2.5)

As per [L8], we have define the operatt?)* as
Definition 22 The operatofW?)* associated witlf\W?) is defined by

(W) 110 = | == (@) Toagllida

_/ } (t b)eﬁ(tzbzmte da (2.6)
a a

Lemma 22 If f,g € L?(R), then the operatofW?)* is adjoint operator of W?).
Proof. Let f,g < L2(R). Define

Wog, f) /f Wog)(a)da

- [Ct@at [ anw (%) b0 g g

= [ g () Fle)e
_/ / at f( )m(%) e (0010 ga di
- /_oo f(a) afl/_[: s[(97/ (%) e2(t*-0%)c0t0 gt gz

= <Wbega f>
This completes the proof of Lemma.

and

Lemma 23 If fractional convolution operatory)‘?/ is self-adjoint, then the generalized fractional wavel@ig ¢ are given
by

Ubas(t) =1/a/t Yhre(a), VYteR\{0}. (2.7)
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Proof. From Lemma21 and Definition22, it follows that operatowbe is self-adjoint if

(W' f)(a) = (W) f)(a).

Now
W t)(a) = % (w;}f) (b,a)
- /_ 0; é )@ (%’) g3 (12-b2)c0td gy 2.8)
Similarly
a= 2 \/ 0) Yoo @t

- / 1t (a b) b(a-b?)cotd gy (2.9)

From 2.8) and @.9), we have the desired result.

Remark 22 If setting x= (a—b)/t and3 = 1—b/a, we find that operator\ﬂ/will be self-adjoint fory defined by
W) = (B/X) W(B/x—b/a)ed® P16y e R\ {0}, (2.10)
This requires the ratib/a to be constant. Furthe2(7) holds ifa=t.

The following theorem yields thie?-continuity of the operathb9 and(WbG)*.

Theorem 21 If  satisfies the admissibility conditiq@.3). Then adjointW?)* € L?(R) and ||(W¢)*f|]> < \/aCye
|| f]|2. Similarly, if W? is self-adjoint operator, thefi\W? f||2 < \ /T Cyq ||f||2.

Proof. First, we shall show thaty®)* f € L2(R) and||(W?F)*f||» < \/aCy.g || f||2. For anyh € L?(R) using Schwartz
inequality, we have

/_Z|[<wb9>*f1<t>h<t>|dt< / )] 1[04 (0
|(\ 2) Ghao(i)da

a)at

) Traa(lc] ) da

1/2

/oo e:z‘i (b%+w?) cotd-+ibwesch+ b a?w? cotd
—o0

5 1/2
da)

<1Iflls ( I [ 170 [edFey] (aw>|2da} (0 dw) v

—00

< VaCGua Il (| () do)
Now, using Parseval’s relation, we have

(W) ] hlla < /aCyg [[hl]2]| |2

By converse of Schwartz inequalit¢9, p. 385], ifh € L2(R) and||[(W)*f] h||1 < \/aCyg ||h||2||f]|2, then we get
desired result.
Anologously, we can prove the second part.

1/2
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3 Relation between the fractional wavelet transform and inerse fractional Fourier transform

Let a measurable functiapi defined orR which satisfies
i oy =A<, @)
instead of the admissibility conditio ().
Theorem 31 IfES, = g7 &cotd+iabesed < | Y(R) and [, [(v)||[v]~Y/2dv < . Then
sy 7~ = sign(a) # (W) Eg,
where
sigria) = { 1 570
Proof. Let f € L2(R) andg=.Z ?f®. Then

e @) =t [T (Y57 ) e i gy

a

|a|1/°;w<Y;b> 5 (y2—b?) cotd (/ Ke(y.t) fo(t )dt) dy

|a|/ {(v) ebl(avrb)>~b?cotd (/ Ko(av+b,t) f ()dt)dv

_S|gr‘(a/ KO(b,t)f </ gtavesed g >dt

= sign(a) / KO(b,t)fO(t)t2 (/ gaucsed (u/t)du) dt
= sign(a) e'zazcow—iabcscg/ m(/m }Lﬁ(x__b) b (0@-b?)cotd

—w t t

« 0 (t)efz—itzcot9+itbcsc9dt) dx

— sign(a) gba*coto-iabesed /‘:m (/ wat oo f (t)e—z—tzcot9+|tbcsc9dt> dx (3.2)
Therefore

(W7~ ) (a) = signa) eba? cotf—iabescd /Zm[(wbe)* fo (t)e%itzcote-&-itbcsce](x)d)g

or :

e%iazcotGJriabcsce\NngfG fo _ sign(a)ﬁfe[(\/\/be)*f (t)e’z'tzcotGJrltbcsce]

Hence
ES W7 = sign(a) 7 O (W) ES,).

Theorem 32 Let ¢ be a periodic function with period/a defined ori—o, o], wherea = max1, |B]), and satisfies
[ w0lx2dx < o
<1

Definey(x) = (B/x) W(B/x— b/a)ez@(B/%*~1co for x| > g. Then
o W70 = sign(a). 7 O WZES ).
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Proof. Using .10 for |3| < 1, we have
- i 42 2 _
/\v\>1|wv)”v| l/zd\,:/ @(B/v— b/a)ez® (B =10t g y||y|~1/2dy

lvi>1
x—Db
—erf ()
IX|<[B] a
< B2 [ WelX M Rdx< e,
Ix<1
Now again, usingZ.10 for |3] > 1, we have

/\t\>\B\ |(I1(t)||t|_1/2dt = / |L[J(B/t— b/a)eizaz[(B/I)Z_l]cot9||B/t||t|_1/2dt

[t|>|B]
X—Db
v (T)

= 1B [
<1

<IBM2 [ WGl V2dx< o
<1

x|~ Y/2dx

x|~ Y/2dx

SinceWb9 is self-adjoint, so by using3(2) and @.7), we get
WPg)(a) — sign(a) epbcetd—iabesed [ garxa) ([ Lm0 (1)t coto+itbesehg | iy
b \/)—( X,
= sign(a) e%a2cot07iabcsc(9 /oo m[wbe fo (t)e:‘ritzcotGJritbcscG](X)dx

Therefore

e—’ziazcot0+iabcscewb6 F-0F9 = signfa). 7 °We ° (t)efzitzcot9+itbcsc9].
Hence

ES WP .7 % =sign(a).Z P WIES .

4 Fractional wavelet transform of generalized functions

As per [18,20], we define the fractional wavelet transformpf@ € .75 (R) by
i 1 t—b\ iz 2
0 _ 5 (t“—b<) cotd
(Wwf)(b,a) /mf(t)\/aw( . >e2 dt.

Definition 41 (Pathak L8]) A complex valued smooth functigrb, a) belongs to the space(R?) if and only if

() 3 ) e

foralll,n,mk € Np.

< o, (4.1)

Vin(n) = sup
(b,a)eR2

Lemma 41Letyy a9 be wavelet. Then

(8" <ll7bf/,%(t)) _ <%)m [%%ﬁ(t)] e2(-EA)cot0 /e I,

where4; = (& —itcotd).

Proof. The proofis very easy and left to the eager reader.
Lemma 42If f (t), @(t) € #5(R). Then

k r
(@M1 900] = 3 A G (4700, ke

where/y;" is the same defined {1.3) and A, are constants.
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Proof. Sincef,p e .#5(R). Then

@110 ot0)] =~ (5 +tcotd) f)

_ _%qo(t) - f(t)i—‘f it cotdf (t)g(t)
= 2on -1 (% it cot9> o)
= - ZL00)+ 10 (&) 9()

B ioA“ o’ ®)

Similarly,
(8 215 ) 90)] = 5145 (F(0).0(0)]
— o |- Sle + 1A

- <% +it cot9> [—%qo(t)] <§t +it cot@) [F(t).4{ p(t)]

2
2ot 200 a0 + (04l

2 o f
;Az,r G (O85> T o(t).

In general, fokk € Ny, we get

k r
(BH11() 90 = 3 A Gy (80000

Remark 41 If f(t),@(t) € .#5(R). Then

k r
o' f
ZOBkr FTG AfTo(t), ke N, 4.2)

where/ is the same as defined in Lem#iband B, are constants.

Lemma 43If waveletyy, 5 ¢(t) is differentiable. Then

(a%+1)k(ll7b,\e>%(t)>:(b_t)k4k<lﬁb@\/,g(t))’ ke No.

where/\ is the same as defined in Lem#éiha

Proof. We have
9 Poas®)\ (.0 1-/t=b\ i 2)coe
<a07 +1)( Ja = aaa+1 an a e2
-1 _ t—b i 2_p2 ) (t—b)—l t—b i 2_p2 )
:a[?”(?) eI () e
+}Lﬁ t=bY\ e2-p?cot
a a

_ (b_t)qj’ (ﬂ) e%(tszz)cote

a? a

= (b—t)4 <Lﬁb$g(t))'
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Similarly,

(a%+1>2 (‘ﬁb’a\/’%(t)) = <a%+1) <a%+1
17}
da

= (b—1)A [a(_lt’ﬂ(;) ez(tz b?) cot

(t ;3b)q7' (%) ;(tz ) cote) Llfb\a/%( )}
b-tpaz (22l)
In general, by induction ok € No, we get
() () o ()
Remark 42 If ¢, p € .%5(R) and ke No. Then
[ o-vrpual (222 gt [ @Ko o- 1 B2l @3

Theorem 41If mother wavelety € .#p(R). Then the FrWT \ﬂ is a continuous linear mapping ofy(R) into B(R?).
Proof. Using Lemmadl, 42and43and integrating by parts, we have

0 K 1 9 0 ) 1 t— b l(tszz) cot@
(a%—i—l) E(Wwfp)(b,a) = <a£+1) [m o(t) 2 ¥ (T) ez dt

— [ ot o-vrar (L20l ) o

— /_Z(_l)k(ﬂt*)k[(p(t)(t_b)k] wb’j/%(t)dt,

Now

(%)m@ﬁia +1>k%(wﬁq0)(b,a) - / (—1)™ (a0 o(t)(t—b)"]

( ) |: Wba ] 5 (t2-b?) )cotB 4

(DM@ e -bg ar (220 Yo

/ Z(—l)m“mi)m*k[qo(t)(t oy L2200,

Similarly

(%>Wn<aé+1)k\if(wg¢)(b,a)
= [ 0 () | S| e P

Now, using the inequality

bl' < (It—|0|+|t|)<|a|2'<‘IO ‘ It/a|> I >0,
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we can write
a\N™"/ 9 k1
| L oae
ba (ab> <aa+1) \/é(ww(p)(b,a)

< (2Rl / ) Ubat\ +i/al) (@ >m+k[<p<t><t—b>k]

dt

Lgm (1=P) ghtr-rdcote
a a
25 A -0 @m0 2 (£22)
a a

1 (t=b
Lo (=P
0 (5o

1] i (t=b
Ll gm (=P

o (5o
(=)o

k 00
< 3 Aane 2 [0+ 2l sup(e b T (40901 [ ]y

< (2lal)

+(2|a|)'[mlt/al' ;Ak,m,r (t=b)" ()™ T a(t)

°|t=b

k
| k—r * k—r
< 3 Acne (2R su(t—0) " (4™ )] [

k 0
3 A 2 supt ()" (4™ 00 [ 21"

teR

Fsupt(t—b)" ()" g |/ u)ldul.
S
Therefore
b \' ,/a\""/ o K1,
() (2 ) e

[ee]

()]

—00

< iJAk,m,r 2 [rkfr,mirkfr((m /j; |u| Lﬁ(n>(u)|du+ /_I,k—r,m+k—r((P)/

k
< 2| M make su 1+u?) u D"y / du
< 3 A 2 |iccmricr(9)SUpl(L+ ol [

i@ UL+ 08) D) [ ],
whereA n, > 0. Sinceg, Y € #p(R) each term of the right-hand side is convergent. Hewﬁjs a continuous linear
mapping of 75 (R) into B(R?).
5 Examples

In this section we shall illustrate, by means of some exasjfie advantages of the fractional wavelet transform mser
of fractional convolution as:

2 )
If g(t) = g3t cotd ando(t) = \/%TtZE—%(lﬁ-Zl)cote_ Then

(pxo Y)(t / P& -3 E%) oty g

— tar? 0 (1—t2cot6)e‘fc°‘9,
which is fractional Mexican hat wavelet. & = 11/4, then it reduce to the conventional Mexican hat wavelet.
. . i |1 i
Similarly if @(t) = e2t*<® andg(t) = 7€ [3t+é0* ] cot0 Tpepy

(pxo Y)(1) = tan% 2] e[ifotfzé] cote’

which is fractional Morlet wavelet. 16 = 11/4, then it reduce to the conventional Morlet wavelet.
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